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PREFACE

Control Engineering plays a fundamental role in modern technological systems. The
benefits of improved control in industry can be immense. They include improved
product quality, reduced energy consumption, minimization of waste materials, in-
creased safety levels and reduction of pollution.

However, a difficulty with the subject is that some of the more advanced aspects
depend on sophisticated mathematical background. Arguably, mathematical sys-
tems theory is one of the most significant achievements of twentieth century science.
However, its practical impact is only as good as the benefits it can bring. Thus, in
this book, we aim to strike a balance which places strong emphasis on design.

It was the author’s involvement in several industrial control system design
projects that provided part of the motivation to write this book. In a typical
industrial problem, we found ourselves investigating fluid and thermal dynamics,
experiencing the detrimental effects of non-constant PLC scan rates, dealing with
system integration and network communication protocols, building trust with plant
operators and investigating safe bumpless transfer schemes for testing tentative
control designs on potentially dangerous plants. In short, we experienced the day-
to-day excitement, frustration, set-backs and progress in getting advanced control
to contribute to a commercial company’s bottom line. This is not an easy task.
Moreover, success in this type of venture typically depends on the application of a
wide range of multidisciplinary skills. However, it is rewarding and exciting work
for those who do it.

One of the main aims of this book is to share this excitement with our readers.
We hope to contribute to the development of skills and attitudes within readers
and students that will better equip them to face the challenges of real-world design
problems. The book is thus intended to contribute to the ongoing reform of the
Control Engineering curriculum. This topic is receiving considerable international
attention. For example, a recent issue of IEEE Control Systems Magazine features
an entire special section devoted to this theme.

However, reforming the curriculum will not be done by books alone - it will be
done by people; by students, by teachers, by researchers, by practitioners, by publi-
cation and grant reviewers; and by market pressures. Moreover, for these efforts to

xxiii



xxiv PREFACE

be efficient and sustainable, the control engineering community will need to com-
municate their experiences via a host of new books, laboratories, simulations and
web-based resources. Thus, there will be a need for several different and comple-
mentary approaches. In this context, the authors believe that this book will have
been successful if it contributes, in some way, to the revitalization of interest by
students in the exciting discipline of control engineering.

We stress that this is not a how-to book. On the contrary, we provide a compre-
hensive, yet condensed, presentation of rigorous control engineering. We employ,
and thus require, mathematics as a means to model the process, analyze its proper-
ties under feedback, synthesize a controller with particular properties and arrive at a
design addressing the inherent trade-offs and constraints applicable to the problem.

In particular, we believe that success in control projects depends on two key
ingredients: (i) having a comprehensive understanding of the process itself, gained
by studying the relevant physics, chemistry, etc.; and (ii) by having mastery of the
fundamental concepts of signals, systems and feedback. The first ingredient typi-
cally occupies more than fifty per cent of the effort. It is an inescapable component
of the complete design cycle. However, it is impractical for us to give full details
of the processes to which control might be applied since it covers chemical plants,
electromechanical systems, robots, power generators, etc. We thus emphasize the
fundamental control engineering aspects that are common to all applications and
leave readers to complement this with process knowledge relevant to their particular
problem. Thus, the book is principally aimed at the second ingredient of control
engineering. Of course, we do give details of several real world examples so as to
put the methods into a proper context.

The central theme of this book is continuous-time control. However we also
treat digital control in detail, since most modern control systems will usually be
implemented on some form of computer hardware. This approach inevitably led
to a book of larger volume than originally intended but with the advantage of
providing a comprehensive treatment within an integrated framework. Naturally,
there remain specialized topics that are not covered in the book. However, we trust
that we provide a sufficiently strong foundation so that the reader can comfortably
turn to the study of appropriate complementary literature.

Thus, in writing this book we chose our principal goals as:

• providing accessible treatment of rigorous material selected with applicability
in mind,

• giving early emphasis to design including methods for dealing with fundamen-
tal trade-offs and constraints,

• providing additional motivation through substantial interactive web-based
support, and

• demonstrating the relevance of the material through numerous industrial case
studies.
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Design is a complex process, which requires judgment and iteration. The design
problem is normally incompletely specified, sometimes ill-defined, and many times
without solution. A key element in design is an understanding of those factors which
limit the achievable performance. This naturally leads to a viewpoint of control
design which takes account of these fundamental limitations. This viewpoint is a
recurring theme throughout the book.

Our objective is not to explore the full depth of mathematical completeness but
instead to give enough detail so that a reader can begin applying the ideas as soon as
possible. This approach is connected to our assumption that readers will have ready
access to modern computational facilities including the software package MATLAB-
SIMULINK. This assumption allows us to put the emphasis on fundamental ideas
rather than on the tools. Every chapter includes worked examples and problems
for the reader.

The book is divided into eight parts. A brief summary of each of the parts is
given below:

Part 1: The Elements
This part covers basic continuous time signals and systems and would be suitable

for an introductory course on this topic. Alternatively it could be used to provide
revision material before starting the study of control in earnest.

Part II: SISO Control Essentials
This part deals with basic SISO control including classical PID tuning. This,

together with part 1, covers the content of many of the existing curricula for basic
control courses.

Part III: SISO Control Design
This part covers design issues in SISO Control. We consider many of these ideas

to be crucial to achieving success in practical control problems. In particular, we
believe the chapter dealing with constraints should be mentioned, if at all possible,
in all introductory courses. Also feedforward and cascade structures, which are
covered in this part, are very frequently employed in practice.

Part IV: Digital Computer Control
This part covers material essential to the understanding of digital control. We

go beyond traditional treatments of this topic by studying inter-sample issues.

Part V: Advanced SISO Control
This part could be the basis of a second course on control at an undergraduate

level. It is aimed at the introduction of ideas that flow through to multi-input
multi-output (MIMO) systems later in the book.

Part VI: MIMO Control Essentials
This part gives the basics required for a junior level graduate course on MIMO

control. In particular, this part covers basic MIMO system’s theory. It also shows
how one can exploit SISO methods in some MIMO design problems.
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Part VII: MIMO Control Design
This part describes tools and ideas that can be used in industrial MIMO de-

sign. In particular, it includes linear quadratic optimal control theory and optimal
filtering. These two topics have major significance in applications. We also include
a chapter on Model Predictive Control. We believe this to be important material
because of the widespread use of this technique in industrial applications.

Part VIII: Advanced MIMO Control
This final part of the book could be left for private study. It is intended to

test the readers understanding of the other material by examining advanced issues.
Alternatively instructors could use this part to extend parts VI and VII in a more
senior graduate course on MIMO Control.

Two of the authors (Goodwin and Salgado) have taught undergraduate and
postgraduate courses of the type mentioned above using draft versions of this book
in both Australia and South America.

The material in the book is illustrated by several industrial case studies with
which the authors have had direct involvement. Most of these case studies were
carried out, in collaboration with industry, by the Centre for Integrated Dynamics
and Control (CIDAC) (a Commonwealth Special Research Centre) at the University
of Newcastle.

The projects that we have chosen to describe include:

• Satellite tracking

• pH control

• Control of a continuous casting machine

• Sugar mill control

• Distillation column control

• Ammonia synthesis plant control

• Zinc coating mass estimation in continuous galvanizing line

• BISRA gauge for thickness control in rolling mills

• Roll eccentricity compensation in rolling mills

• Hold-up effect in reversing rolling mills

• Flatness control in steel rolling

• Vibration control

Many of the case studies have also been repeated, and further embellished, on
the book’s web page where Java applets are provided so that readers can experiment
with the systems in the form of a “virtual laboratory”. A secondary advantage of
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having the case studies gathered in one place on the web page is that real control
problems usually bring together many aspects and thus it is difficult to localize them
in the book. The web page thus gives a more holistic view of the issues involved in
the case studies.

In addition, we refer to several laboratory scale control problems including a
ball and plate mechanism, coupled tanks apparatus, and inverted pendulum. Each
of these is the basis of a laboratory experiment within our universities to illustrate
control principles.

The book has substantial Internet support — this was designed and built by
Nathan Clement and can be accessed at:

http://csd.newcastle.edu.au/control/

Alternatively see the authors’ home-pages for a link.

Newcastle, Australia
Valparáıso, Chile
Vienna, Austria
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THE ELEMENTS
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PREVIEW

Designing and operating an automated process so that it maintains specifications on
profitability, quality, safety, environmental impact, etc., requires a close interaction
between experts from different disciplines. These include, for example, computer-,
process-, mechanical-, instrumentation- and control-engineers.

Since each of these disciplines views the process and its control from a differ-
ent perspective, they have adopted different categories, or elements, in terms of
which they think about the automated system. The computer engineer, for exam-
ple, would think in terms of computer hardware, network infrastructure, operating
system and application software. The mechanical engineer would emphasize the
mechanical components from which the process is assembled, whereas the instru-
mentation engineer would think in terms of actuators, sensors and their electrical
wiring.

The control engineer, in turn, thinks of the elements of a control system in
terms of abstract quantities such as signals, systems and dynamic responses. These
elements can be further specified by their physical realization, the associated model
or their properties (see Table 1).

Tangible examples Examples of mathematical
approximation

Examples of properties

Signals set point, control
input, disturban-
ces, measurements,
...

continuous function, sample-
sequence, random process,...

analytic, stochastic, si-
nusoidal, standard devi-
ations

Systems process, controller,
sensors, actuators,
...

differential equations, differ-
ence equations, transfer func-
tions, state space models, ...

continuous time, sam-
pled, linear, nonlinear,
...

Table 1. Systems and signals in a control loop

3



4 Preview

This book emphasizes the control engineer’s perspective of process automation.
However, the reader should bear the other perspectives in mind, since they form
essential elements in a holistic view of the subject.

This first part of the book is the first stage of our journey into control engineer-
ing. It gives an introduction to the core elements of continuous time signals and
systems, as well as describing the pivotal role of feedback in control system design.
These are the basic building blocks on which the remainder of the development
rests.



Chapter 1

THE EXCITEMENT OF
CONTROL ENGINEERING

1.1 Preview

This chapter is intended to provide motivation for studying control engineering. In
particular it covers:

• an overview of the scope of control

• historical periods in the development of control theory

• types of control problems

• introduction to system integration

• economic benefits analysis

1.2 Motivation for Control Engineering

Feedback control has a long history which began with the early desire of humans
to harness the materials and forces of nature to their advantage. Early examples
of control devices include clock regulating systems and mechanisms for keeping
wind-mills pointed into the wind.

A key step forward in the development of control occurred during the industrial
revolution. At that time, machines were developed which greatly enhanced the
capacity to turn raw materials into products of benefit to society. However, the
associated machines, specifically steam engines, involved large amounts of power
and it was soon realized that this power needed to be controlled in an organized
fashion if the systems were to operate safely and efficiently. A major development
at this time was Watt’s fly ball governor. This device regulated the speed of a
steam engine by throttling the flow of steam, see Figure 1.1. These devices remain
in service to this day.

5



6 The Excitement of Control Engineering Chapter 1

Figure 1.1. Watt’s fly ball governor

The World Wars also lead to many developments in control engineering. Some
of these were associated with guidance systems whilst others were connected with
the enhanced manufacturing requirements necessitated by the war effort.

The push into space in the 1960’s and 70’s also depended on control devel-
opments. These developments then flowed back into consumer goods, as well as
commercial, environmental and medical applications. These applications of ad-
vanced control have continued at a rapid pace. To quote just one example from
the author’s direct experience, centre line thickness control in rolling mills has been
a major success story for the application of advanced control ideas. Indeed, the
accuracy of centre line thickness control has improved by two orders of magnitude
over the past 50 years due, in part, to enhanced control. For many companies these
developments were not only central to increased profitability but also to remaining
in business.

By the end of the twentieth century, control has become a ubiquitous (but largely
unseen) element of modern society. Virtually every system we come in contact
with is underpinned by sophisticated control systems. Examples range from simple
household products (temperature regulation in air-conditioners, thermostats in hot
water heaters etc.) to more sophisticated systems such as the family car (which has
hundreds of control loops) to large scale systems (such as chemical plants, aircraft,
and manufacturing processes). For example, Figure 1.2 on page 8 shows the process
schematic of a Kellogg ammonia plant. There are about 400 of these plants around
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the world. An integrated chemical plant, of the type shown in Figure 1.2 will
typically have many hundreds of control loops. Indeed, for simplicity, we have not
shown many of the utilities in Figure 1.2, yet these also have substantial numbers
of control loops associated with them.

Many of these industrial controllers involve cutting edge technologies. For ex-
ample, in the case of rolling mills (illustrated in Figure 1.3 on page 13), the control
system involves forces of the order of 2,000 tonnes, speeds up to 120 km/hour and
tolerances (in the aluminum industry) of 5 micrometers or 1/500th of the thick-
ness of a human hair! All of this is achieved with precision hardware, advanced
computational tools and sophisticated control algorithms.

Beyond these industrial examples, feedback regulatory mechanisms are central
to the operation of biological systems, communication networks, national economies,
and even human interactions. Indeed if one thinks carefully, control in one form or
another, can be found in every aspect of life.

In this context, control engineering is concerned with designing, implementing
and maintaining these systems. As we shall see later, this is one of the most
challenging and interesting areas of modern engineering. Indeed, to carry out control
successfully one needs to combine many disciplines including modeling (to capture
the underlying physics and chemistry of the process), sensor technology (to measure
the status of the system), actuators (to apply corrective action to the system),
communications (to transmit data), computing (to perform the complex task of
changing measured data into appropriate actuator actions), and interfacing (to allow
the multitude of different components in a control system to talk to each other in
a seemless fashion).

Thus control engineering is an exciting multidisciplinary subject with an enor-
mously large range of practical applications. Moreover, interest in control is unlikely
to diminish in the foreseeable future. On the contrary, it is likely to become ever
more important due to the increasing globalization of markets and environmental
concerns.

1.2.1 Market Globalization Issues

Market globalization is increasingly occurring and this means that, to stay in busi-
ness, manufacturing industries are necessarily placing increasing emphasis on issues
of quality and efficiency. Indeed, in today’s society, few if any companies can afford
to be second best. In turn, this focuses attention on the development of improved
control systems so that processes operate in the best possible way. In particular,
improved control is a key enabling technology underpinning:

• enhanced product quality

• waste minimization

• environmental protection

• greater throughput for a given installed capacity
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• greater yield

• deferring costly plant upgrades, and

• higher safety margins.

All of these issues are relevant to the control of an integrated plant such as that
shown in Figure 1.2.

Figure 1.2. Process schematic of a Kellogg ammonia plant

1.2.2 Environmental Issues

All companies and governments are becoming increasingly aware of the need to
achieve the benefits outlined above whilst respecting finite natural resources and
preserving our fragile environment. Again, control engineering is a core enabling
technology in reaching these goals. To quote one well known example, the changes
in legislation covering emissions from automobiles in California have led car manu-
facturers to significant changes in technology including enhanced control strategies
for internal combustion engines.
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Thus, we see that control engineering is driven by major economic, political,
and environmental forces. The rewards for those who can get all the factors right
can be enormous.

1.3 Historical Periods of Control Theory

We have seen above that control engineering has taken several major steps forward
at crucial times in history (e.g. the industrial revolution, the Second World War,
the push into space, economic globalization, shareholder value thinking etc.). Each
of these steps has been matched by a corresponding burst of development in the
underlying theory of control.

Early on, when the compelling concept of feedback was applied, engineers some-
times encountered unexpected results. These then became catalysts for rigorous
analysis. For example, if we go back to Watt’s fly ball governor, it was found that
under certain circumstances these systems could produce self sustaining oscillations.
Towards the end of the 19th century several researchers (including Maxwell) showed
how these oscillations could be described via the properties of ordinary differential
equations.

The developments around the period of the SecondWorld War were also matched
by significant developments in Control Theory. For example, the pioneering work
of Bode, Nyquist, Nichols, Evans and others appeared at this time. This resulted
in simple graphical means for analyzing single-input single-output feedback control
problems. These methods are now generally known by the generic term Classical
Control Theory.

The 1960’s saw the development of an alternative state space approach to con-
trol. This followed the publication of work by Wiener, Kalman (and others) on
optimal estimation and control. This work allowed multivariable problems to be
treated in a unified fashion. This had been difficult, if not impossible, in the classical
framework. This set of developments is loosely termed Modern Control Theory.

By the 1980’s these various approaches to control had reached a sophisticated
level and emphasis then shifted to other related issues including the effect of model
error on the performance of feedback controllers. This can be classified as the period
of Robust Control Theory.

In parallel there has been substantial work on nonlinear control problems. This
has been motivated by the fact that many real world control problems involve
nonlinear effects.

There have been numerous other developments including adaptive control, au-
totuning, intelligent control etc. These are too numerous to detail here. Anyway,
our purpose is not to give a comprehensive history but simply to give a flavor for
the evolution of the field.

At the time of writing this book, control has become a mature discipline. It is
thus possible to give a treatment of control which takes account of many different
viewpoints and to unify these in a common framework. This is the approach we
will adopt here.
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1.4 Types of Control System Design

Control system design in practice requires cyclic effort in which one iterates between
modeling, design, simulation, testing, and implementation.

Control system design also takes several different forms and each requires a
slightly different approach.

One factor that impacts on the form that the effort takes is whether the system
is part of a predominantly commercial mission or not. Examples where this is not
the case include research, education and missions such as landing the first man on
the moon. Although cost is always a consideration, these types of control design
are mainly dictated by technical, pedagogical, reliability and safety concerns.

On the other hand, if the control design is motivated commercially, one again
gets different situations depending on whether the controller is a small sub-component
of a larger commercial product (such as the cruise controller or ABS in a car) or
whether it is part of a manufacturing process (such as the motion controller in the
robots assembling a car). In the first case one must also consider the cost of in-
cluding the controller in every product, which usually means that there is a major
premium on cost and hence one is forced to use rather simple microcontrollers. In
the second case, one can usually afford significantly more complex controllers, pro-
vided they improve the manufacturing process in a way that significantly enhances
the value of the manufactured product.

In all of these situations, the control engineer is further affected by where the
control system is in its lifecycle, e.g.:

• Initial grass roots design

• Commissioning and Tuning

• Refinement and Upgrades

• Forensic studies

1.4.1 Initial Grass Roots Design

In this phase, the control engineer is faced by a green-field, or so called grass
roots projects and thus the designer can steer the development of a system from
the beginning. This includes ensuring that the design of the overall system takes
account of the subsequent control issues. All too often, systems and plants are
designed based on steady state considerations alone. It is then small wonder that
operational difficulties can appear down the track. It is our belief that control
engineers should be an integral part of all design teams. The control engineer needs
to interact with the design specifications and to ensure that dynamic as well as
steady-state issues are considered.
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1.4.2 Commissioning and Tuning

Once the basic architecture of a control system is in place, then the control engineer’s
job becomes one of tuning the control system to meet the required performance
specifications as closely as possible. This phase requires a deep understanding of
feedback principles to ensure that the tuning of the control system is carried out in
an expedient, safe and satisfactory fashion.

1.4.3 Refinement and Upgrades

Once a system is up and running, then the control engineer’s job turns into one of
maintenance and refinement. The motivation for refinement can come from many
directions. They include

• internal forces - e.g. the availability of new sensors or actuators may open the
door for improved performance

• external forces - e.g. market pressures, or new environmental legislation may
necessitate improved control performance

1.4.4 “Forensic” Studies

Forensic investigations are often the role of control engineering consultants. Here
the aim is to suggest remedial actions that will rectify an observed control problem.
In these studies, it is important that the control engineer take a holistic view since
successful control performance usually depends on satisfactory operation of many
interconnected components. In our experience, poor control performance is as likely
to be associated with basic plant design flaws, poor actuators, inadequate sensors,
or computer problems as it is to be the result of poor control law tuning. However,
all of these issues can, and should be, part of the control engineer’s domain. Indeed,
it is often only the control engineer who has the necessary overview to successfully
resolve these complex issues.

1.5 System Integration

As is evident from the above discussion, success in control engineering depends on
taking a holistic viewpoint. Some of the issues that are embodied in a typical control
design include:

• plant, i.e. the process to be controlled

• objectives

• sensors

• actuators

• communications
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• computing

• architectures and interfacing

• algorithms

• accounting for disturbances and uncertainty

These issues are briefly discussed below.

1.5.1 Plant

As mentioned in subsection 1.4.1, the physical layout of a plant is an intrinsic
part of control problems. Thus a control engineer needs to be familiar with the
physics of the process under study. This includes a rudimentary knowledge of
the basic energy balance, mass balance and material flows in the system. The
physical dimensions of equipment and how they relate to performance specifications
must also be understood. In particular, we recommend the production of back of
the envelope physical models as a first step in designing and maintaining control
systems. These models will typically be refined as one progresses.

1.5.2 Objectives

Before designing sensors, actuators or control architectures, it is important to know
the goal, that is, to formulate the control objectives. This includes

• what does one want to achieve (energy reduction, yield increase, . . . )

• what variables need to be controlled to achieve these objectives

• what level of performance is necessary (accuracy, speed, . . . )

1.5.3 Sensors

Sensors are the eyes of control enabling one to see what is going on. Indeed, one
statement that is sometimes made about control is: If you can measure it, you can
control it. This is obviously oversimplified and not meant literally. Nonetheless, it is
a catchy phrase highlighting that being able to make appropriate measurements is
an intrinsic part of the overall control problem. Moreover, new sensor technologies
often open the door to improved control performance.

Alternatively, in those cases where particularly important measurements are not
readily available then one can often infer these vital pieces of information from other
observations. This leads to the idea of a soft or virtual sensor. We will see that this
is one of the most powerful techniques in the control engineer’s bag of tools.



Section 1.5. System Integration 13

1.5.4 Actuators

Once sensors are in place to report on the state of a process, then the next issue is the
ability to affect, or actuate, the system in order to move the process from the current
state to a desired state. Thus, we see that actuation is another intrinsic element in
control problems. The availability of new or improved actuators also often opens
the door to significant improvements in performance. Conversely, inadequate, or
poor, actuators often lie at the heart of control difficulties. A typical industrial
control problem will usually involve many different actuators - see, for example, the
flatness control set-up shown in Figure 1.3.

Figure 1.3. Typical flatness control set-up for rolling mill

1.5.5 Communications

Interconnecting sensors to actuators, involves the use of communication systems.
A typical plant can have many thousands of separate signals to be sent over long
distances. Thus the design of communication systems and their associated protocols
is an increasingly important aspect of modern control engineering.

There are special issues and requirements for communication systems with real
time data. For example, in voice communication, small delays and imperfections
in transmission are often unimportant since they are transparent to the recipient.
However, in high speed real time control systems, these issues could be of major
importance. For example, there is an increasing tendency to use Ethernet type
connections for data transmission in control. However, as is well known by those
familiar with this technology, if a delay occurs on the transmission line, then the
transmitter simply tries again at some later random time. This obviously intro-
duces a non-deterministic delay into the transmission of the data. Since all control
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systems depend upon precise knowledge of, not only what has happened, but when
it happened, attention to such delays is very important for the performance of the
overall system.

1.5.6 Computing

In modern control systems, the connection between sensors and actuators is invari-
ably made via a computer of some sort. Thus, computer issues are necessarily part
of the overall design. Current control systems use a variety of computational de-
vices including DCS’s (Distributed Control Systems), PLC’s (Programmable Logic
Controllers), PC’s (Personal Computers), etc. In some cases, these computer el-
ements may be rather limited with respect to the facilities they offer. As with
communication delays, computational delays can be crucial to success or failure
in the operation of control systems. Since, determinism in timing is important, a
multi-tasking real-time operating system may be required.

Another aspect of computing is that of numerical precision. We know of several
control systems that failed to meet the desired performance specifications simply
because of inadequate attention to numerical issues. For this reason, we will devote
some attention to this issue in the sequel.

A final computer based question in control concerns the ease of design and imple-
mentation. Modern computer aided tools for rapid prototyping of control systems
provide integrated environments for control system modeling, design, simulation
and implementation. These pictures to real time code facilities have allowed devel-
opment times for advanced control algorithms to be reduced from many months to
the order of days or, in some cases, hours.

1.5.7 Architectures and Interfacing

The issue of what to connect to what is a non-trivial one in control system design.
One may feel that the best solution would always be to bring all signals to a central
point so that each control action would be based on complete information (leading
to so called, centralized control). However, this is rarely (if ever) the best solution
in practice. Indeed, there are very good reasons why one may not wish to bring
all signals to a common point. Obvious objections to this include complexity, cost,
time constraints in computation, maintainability, reliability, etc.

Thus one usually partitions the control problem into manageable sub-systems.
How one does this is part of the control engineer’s domain. Indeed, we will see in
the case studies presented in the text that these architectural issues can be crucial
to the final success, or otherwise, of a control system.

Indeed, one of the principal tools that a control system designer can use to im-
prove performance is to exercise lateral thinking relative to the architecture of the
control problem. As an illustration, we will present a real example later in the text
(see Chapter 8) where thickness control performance in a reversing rolling mill is ir-
revocably constrained by a particular architecture. It is shown that no improvement
in actuators, sensors or algorithms (within this architecture) can remedy the prob-
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lem. However, by simply changing the architecture so as to include extra actuators
(namely the currents into coiler and uncoiler motors) then the difficulty is resolved
(see Chapter 10). As a simpler illustration, the reader is invited to compare the
difference between trying to balance a broom on one’s finger with one’s eyes open
or shut. Again there is an architectural difference here - this time it is a function
of available sensors. A full analysis of the reasons behind the observed differences
in the difficulty of these types of control problems will be explained in Chapters 8
and 9 of the book.

We thus see that architectural issues are of paramount importance in control
design problems. A further architectural issue revolves around the need to divide
and conquer complex problems. This leads to a hierarchical view of control as
illustrated in Table 1.1

Level Description Goal Time
frame

Typical
design tool

4 Plant wide opti-
mization

Meeting customer orders
and scheduling supply of
materials

Everyday
(say)

Static opti-
mization

3 Steady state
optimization at
unit operational
level

Efficient operation of a sin-
gle unit (e.g. distillation
column)

Every
hour
(say)

Static opti-
mization

2 Dynamic control
at unit opera-
tion level

Achieving set-points spec-
ified at level 3 and achiev-
ing rapid recovery from
disturbances

Every
minute
(say)

Multivariable
control, e.g.
Model
Predictive
Control

1 Dynamic control
at single actua-
tor level

Achieving liquid flow rates
etc as specified at level 2
by manipulation of avail-
able actuators (e.g. valves)

Every
second
(say)

Single vari-
able control,
e.g. PID

Table 1.1. Typical control hierarchy

Having decided what connections need to be made, there is the issue of inter-
facing the various sub-components. This is frequently a non-trivial job as it is often
true that special interfaces are needed between different equipment. Fortunately
vendors of control equipment are aware of this difficulty and increasing attention is
being paid to standardization of interfaces.
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1.5.8 Algorithms

Finally, we come to the real heart of control engineering i.e. the algorithms that
connect the sensors to the actuators. It is all to easy to underestimate this final
aspect of the problem.

As a simple example from the reader’s everyday experience, consider the problem
of playing tennis at top international level. One can readily accept that one needs
good eye sight (sensors) and strong muscles (actuators) to play tennis at this level,
but these attributes are not sufficient. Indeed eye-hand coordination (i.e. control)
is also crucial to success.

Thus beyond sensors and actuators, the control engineer has to be concerned
with the science of dynamics and feedback control. These topics will actually be
the central theme of the remainder of this book. As one of our colleagues put it;
Sensors provide the eyes and actuators the muscle but control science provides the
finesse.

1.5.9 Disturbances and Uncertainty

One of the things that makes control science interesting is that all real life systems
are acted on by noise and external disturbances. These factors can have a significant
impact on the performance of the system. As a simple example, aircraft are subject
to disturbances in the form of wind gusts, and cruise controllers in cars have to
cope with different road gradients and different car loadings. However, we will find
that, by appropriate design of the control system, quite remarkable insensitivity to
external disturbances can be achieved.

Another related issue is that of model uncertainty. All real world systems have
very complex models but an important property of feedback control is that one can
often achieve the desired level of performance by using relatively simple models.
Of course, it is beholden on designers to appreciate the effect of model uncertainty
on control performance and to decide if attention to better modeling would enable
better performance to be achieved.

Both of the issues raised above are addressed, in part, by the remarkable prop-
erties of feedback. This concept will underpin much of our development in the
book.

1.5.10 Homogeneity

A final point is that all interconnected systems, including control systems, are only
as good as their weakest element. The implications of this in control system design
are that one should aim to have all components (plant, sensors, actuators, commu-
nications, computing, interfaces, algorithms, etc) of roughly comparable accuracy
and performance. If this is not possible, then one should focus on the weakest com-
ponent to get the best return for a given level of investment. For example, there
is no point placing all one’s attention on improving linear models (as has become
fashionable in parts of modern control theory) if the performance limiting factor
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is that one needs to replace a sticking valve or to develop a virtual sensor for a
key missing measurement. Thus a holistic viewpoint is required with an accurate
assessment of error budgets associated with each sub-component.

1.5.11 Cost Benefit Analysis

Whilst on the subject of ensuring best return for a given amount of effort it is
important to raise the issue of benefits analysis. Control engineering, in common
with all other forms of engineering, depends on being able to convince management
that there is an attractive cost-benefit trade-off in a given project. Payback periods
in modern industries are often as short as 6 months and thus this aspect requires
careful and detailed attention. Typical steps include:

• assessment of a range of control opportunities

• developing a short list for closer examination

• deciding on a project with high economic or environmental impact

• consulting appropriate personnel (management, operators, production staff,
maintenance staff etc)

• identifying the key action points

• collecting base case data for later comparison

• deciding on revised performance specifications

• updating actuators, sensors etc

• development of algorithms

• testing the algorithms via simulation

• testing the algorithms on the plant using a rapid prototyping system

• collecting preliminary performance data for comparison with the base case

• final implementation

• collection of final performance data

• final reporting on project
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1.6 Summary

• Control Engineering is present in virtually all modern engineering systems

• Control is often the hidden technology as its very success often removes it
from view

• Control is a key enabling technology with respect to

◦ enhanced product quality

◦ waste and emission minimization

◦ environmental protection

◦ greater throughput for a given installed capacity

◦ greater yield

◦ deferring costly plant upgrades, and

◦ higher safety margins

• Examples of controlled systems include

System Controlled outputs
include

Controller Desired performance
includes

Aircraft Course, pitch, roll,
yaw

Autopilot Maintain flight path on
a safe and smooth tra-
jectory

Furnace Temperature Temperature con-
troller

Follow warm-up temper-
ature profile, then main-
tain temperature

Wastewater
treatment

pH value of effluent pH controller Neutralize effluent to
specified accuracy

Automobile Speed Cruise controller Attain, then maintain
selected speed without
undue fuel consumption

• Control is a multidisciplinary subject that includes

◦ sensors

◦ actuators

◦ communications

◦ computing

◦ architectures and interfacing

◦ algorithms

• Control design aims to achieve a desired level of performance in the face of
disturbances and uncertainty
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• Examples of disturbances and uncertainty include

System Actuators Sensors Disturbances Uncertainties

Aircraft Throttle servo, rud-
der and flap actua-
tors, etc.

Navigation in-
struments

Wind, air
pockets, etc.

Weight, exact
aerodynamics,
etc.

Furnace Burner valve actua-
tor

Thermocouples,
heat sensors

Temperature
of incoming
objects, etc.

Exact thermo-
dynamics,
temperature
distribution

Wastewater
treatment

Control acid valve
servo

pH sensor Inflow concen-
tration

pH gain curve,
measurement
errors

Automobile Throttle position-
ing

Tachometer Hills Weight, exact
dynamics

1.7 Further Reading

Historical notes

The IEEE History Centre and its resources are an excellent source for the historically
interested reader.

Other useful sources are:
Black, H.W. (1934). Stabilized Feedback Amplifiers. Bell Systems Tech. Journal,
13:1–18.

Bode, H. (1969). Feedback: the history of an idea. In Selected Papers on Mathe-
matical Trends in Control Theory, pages 106–123. Dover, New York.

Fuller, A. (1976). The early development of control theory. Trans. ASME, J. Dyn.
Sys. Meas. Contr., 98:109–118, 224–235.

James, H.M., Nichols, N.B., and Phillips, R.S., editors (1947). Theory of Ser-
vomechanisms. McGraw–Hill, New York.

Maxwell, T. (1868). On governors. Proc. Royal Soc. London, 16:270–283.

Mayr, O. (1970). The Origins of Feedback Control. MIT Press, Cambridge, Mass.





Chapter 2

INTRODUCTION TO THE
PRINCIPLES OF FEEDBACK

2.1 Preview

This chapter delineates the path we have chosen for our control engineering journey.
In particular, this Chapter contains:

• an industrial motivational example

• a statement of the fundamental nature of the control problem

• the idea of inversion as the central ingredient in solving control problems

• evolution from open loop inversion to closed loop feedback solutions

2.2 The Principal Goal of Control

As we have seen in Chapter 1, examples of dynamic systems with automatic con-
trollers abound: advanced process controllers are operating in virtually every indus-
trial domain; micro-controllers pervade an immense array of household and enter-
tainment electronics; thermostats regulate temperatures in domestic- to industrial-
sized ovens and autopilots control aircraft.

Designing any one of these systems requires the close cooperation of experts
from various disciplines.

To particularize the principal goal of control engineering within this team effort,
it is helpful to distinguish between a system’s tangible realization and its behav-
ior. The aircraft’s physical realization, for example, includes fuselage, wings and
ailerons. Its behavior, on the other hand, refers to the aircraft’s dynamic response
to a change in throttle-, aileron- or flap-position.

To control such a system automatically, one needs to interface the system to a
controller, which will also have a physical realization and behavior. Depending on
the application, the controller could be realized in a chip, analogue electronics, a
PLC or a computer. There also needs to be a channel by which the controller and

21
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system can interact via sensors and actuators: sensors to report the state of the
system, actuators as a means for the controller to act on the system.

With this process and control infrastructure in place, the key remaining question
pertains to the controller behavior. In the aircraft application, for example, if the
controller (here called an autopilot) detects a deviation in speed, height or heading
via the sensors, just how should it command throttle and ailerons to get back on
target?

This is the control engineer’s key concern, or stated in general terms, the fun-
damental goal of control engineering is to find technically, environmentally and
economically feasible ways of acting on systems to control their outputs to desired
values, thus ensuring a desired level of performance. As discussed earlier, finding a
good solution to this question frequently requires an involvement in process design,
actuator and sensor selection, mathematical analysis and modeling.

The control engineer’s perspective of the aircraft navigation example described
above includes a cyclical dependency: autopilot commands affect the aircraft, whose
changed speed, height and heading, in turn, affect the further actions of the autopi-
lot.

Such a cyclically dependent interaction between system behaviors is called feed-
back.

Feedback phenomena exist both in nature and technology. The periodic popu-
lation growth and reduction in the famous predator and prey interactions are an
example of feedback occurring in nature. The high-pitch whistling sound occurring
as a result of interaction between microphones and loudspeakers in a concert hall,
is a technical example of feedback.

In both of these cases, neither of the two interacting systems can be clearly
designated as controller or process - they are simply two systems interacting in
feedback. Nevertheless, the feedback interaction is seen to have a profound impact
on the behavior of the engaged systems.

This behavior altering effect of feedback is a key mechanism that control engi-
neers exploit deliberately to achieve the objective of acting on a system to ensure
that the desired performance specifications are achieved.

2.3 A Motivating Industrial Example

To make the above general discussion more concrete we next present a simplified, yet
essentially authentic, example of an industrial control problem. The example, taken
from the steel industry, is of a particular nature, however the principal elements of
specifying a desired behavior, modeling and the necessity for trade-off decisions are
generic. Some details of the example may not be quite clear at this early stage, but
will set the scene for future work.

One of the products of the steel industry is a so-called bloom, which is a rect-
angular slab of steel. Blooms are produced in a process called a continuous caster.
A diagram of an industrial bloom caster is given in Figure 2.1. The principal com-
ponents of such a system relevant to our discussion here are shown in Figure 2.2.
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A photograph of a bloom caster can be found on the web page.

Figure 2.1. Process schematic of an industrial bloom caster

The tundish can be thought of as a large container that acts as a reservoir for
molten steel. A control valve regulates the rate of flow of steel that enters the
mould mounted under the tundish. The mould, whose cross-sectional area equals
the cross-sectional area of the desired bloom, is open from above and below. Due to
intense cooling, steel in the mould is cooled to a semi-solid state. In this state it is
sufficiently firm so that the strand can be continuously withdrawn from the mould
by rolls. The resulting continuous strand is then subjected to further cooling and
finally cut into blooms.

2.3.1 Performance Specifications

There are two fundamental specifications for the continuous caster: safety and
profitability.

These ultimate requirements can be further broken down to derive a control
system specification that quantifies the target to be met by controller-design:

• Safety: In this example, the safety requirement translates rather straight-
forwardly into a constraint on the level of molten steel in the mould (called the
mould level). Clearly, the mould level must never be in danger of overflowing
or emptying as either case would result in molten metal spilling with disastrous
consequences.

• Profitability: Obviously the system needs to be operated in a cost effective
fashion. Aspects which contribute to this requirement include:
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Figure 2.2. Continuous caster. Typical bloom (left) and simplified diagram
(right)

◦ Product quality: It turns out that high frequency changes in the mould level
reduce bloom quality, as molten metal has a viscosity similar to water
and turbulence mixes impurities into the steel. Furthermore, due to the
cooling applied to the mould, an oscillating mould level results in uneven
cooling of the steel which also reduces its quality. Thus, product quality
demands steady control of the mould level.

◦ Maintenance: Due to an oxidizing reaction, the nozzle through which the
metal flows into the mould is subject to intense wear at the mould level.
The nozzle’s lifetime is therefore maximized if the mould level is con-
trolled so that it slowly ramps across the wear band of the nozzle. Main-
tenance costs are further reduced if the lifetime of the control valve is
maximized by having relatively non-aggressive control actions. Thus,
keeping the cost of maintenance low requires steady regulation around a
set-point that slowly ramps across the nozzle wear band while avoiding
aggressive valve movements.

◦ Throughput : Throughput is a direct function of casting speed. The cast-
ing speed, however, is also a function of numerous process up-stream
factors (availability of the necessary grades of raw material, furnace ca-
pacity, etc.) as well as down-stream factors (product demand, shipping
capacity, etc.). Thus, the mould level control system should maintain
performance at all casting speeds to avoid being a limiting factor in the
overall operation of the process.
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2.3.2 Modeling

To make progress on the control system design problem as set out above, it is first
necessary to gain an understanding of how the process operates. This understanding
is typically expressed in the form of a mathematical model which describes the
steady state and dynamic behavior of the process. To construct such a model we
first define relevant process variables. Thus, we introduce:

h∗ : commanded level of steel in mould
h(t) : actual level of steel in mould
v(t) : valve position
σ(t) : casting speed

qin(t) : inflow of matter into the mould
qout(t) : outflow of matter from the mould.

Physics suggests that the mould level will be proportional to the integral of the
difference between in- and outflow, i.e.

h(t) =
∫ t

−∞
(qin(τ) − qout(τ)) dτ (2.3.1)

where we have assumed a unit cross-section of the mould for simplicity. We also
assume, again for simplicity, that the measurements of valve position, v(t), and
casting speed, σ(t), are calibrated such that they actually indicate the corresponding
in and outflows:

v(t) = qin(t) (2.3.2)
σ(t) = qout(t) (2.3.3)

Hence, the process model becomes

h(t) =
∫ t

−∞
(v(τ) − σ(τ)) dτ (2.3.4)

The casting speed can be measured fairly accurately, but mould level sensors are
typically prone to high frequency measurement noise which we take into account by
introducing an additive spurious signal n(t), i.e.

hm(t) = h(t) + n(t) (2.3.5)

where hm(t) is the measurement of h(t) corrupted by noise. A block diagram of the
overall process model and the measurements is shown in Figure 2.3.

This is a very simple model but captures the essence of the problem.
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Figure 2.3. Block diagram of the simplified mould level dynamics, sensors and
actuator

2.3.3 Feedback and Feedforward

We will find later that the core idea in control is that of inversion. Moreover,
inversion can be conveniently achieved by the use of two key mechanisms (namely,
feedback and feedforward). These tools give an elegant and robust solution to
many control design problems. In the context of mould level control, the simplest
feedback controller is a constant gain, K, driving the valve proportionally to the
error between the commanded mould level, h∗, and the measurement of the actual
mould level, hm(t):

v(t) = K(h∗ − hm(t)) (2.3.6)

To anticipate how a controller of this form might perform, we observe that a
deviation between set-point and measurement must first occur before the controller
can react. We know, however, that a change in casting speed requires a modi-
fied operating point for the valve. Thus, rather than letting a change in casting
speed occur, which then leads to an error in the mould level to which the feed-
back controller reacts, we can improve the strategy by changing the valve-position
pro-actively. This is called feedforward. This leads to a final controller of the form:

v(t) = K

(
[h∗ − hm(t)] +

[
1
K
σ(t)
])

(2.3.7)

Note that this controller features joint feedback and a preemptive action (feed-
forward). In particular, the second term gives the predictable action necessary
to compensate for the casting speed changes, whilst the first term reacts to the
remaining error.

A block diagram for the final control system is shown in Figure 2.4.
Further discussion of this problem, together with the capability of the reader

interacting with the design, is contained in the book’s web page.
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Figure 2.4. Model of the simplified mould level control with feedforward com-
pensation for casting speed.

2.3.4 A First Indication of Trade-offs

On simulating the performance of the above control loop for K = 1 and K = 5,
see Figure 2.5, we find that the smaller controller gain (K = 1) results in a slower
response to a change in the mould level set-point. On the other hand, the larger
controller gain (K = 5), results in a faster response but also increases the effects of
measurement noise as seen by the less steady level control and by the significantly
more aggressive valve movements.

Thus, the performance requirements derived in subsection §2.3.1 appear to be
in conflict with each other, at least to some degree.

At this point, a control engineer who does not have a systematic background in
control system design would have a difficult time to assess whether this conflict is
merely a consequence of having such a simple controller or whether it is fundamental.
How much effort should be spent in finding a good value for K? Should one choose
a more complex controller? Should one spend more effort in modeling the mould
level process?

The remainder of the book is devoted to developing systematic answers to these
and other related questions.

2.4 Definition of the Problem

The example presented in section §2.3 motivates the following more formal state-
ment of the nature of the control problem:

Definition 2.1. The fundamental control problem
The central problem in control is to find a technically feasible way to act on a

given process so that the process behaves, as closely as possible, to some desired
behavior. Furthermore, this approximate behavior should be achieved in the face of
uncertainty of the process and in the presence of uncontrollable external disturbances
acting on the process.
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Figure 2.5. A first indication of trade-offs: Increased responsiveness to set-point
changes also increases sensitivity to measurement noise and actuator
wear.

✷✷✷

The above definition introduces several ideas:

• Desired behavior. This needs to be specified as part of the design problem.

• Feasibility. This means that the solution must satisfy various constraints,
which can be of technical, environmental, economic or other nature.

• Uncertainty. The available knowledge about a system will usually be limited
and of limited accuracy.

• Action. The solution requires that action be somehow applied to the process
typically via one or more manipulated variables which command the actuators.

• Disturbances. The process to be controlled will typically have inputs other
than those that are manipulated by the controller. These other inputs are
called disturbances.
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• Approximate behavior. A feasible solution will rarely be perfect. There
will invariably be a degree of approximation in achieving the specified goal.

• Measurements. These are crucial to let the controller know what the system
is actually doing and how the unavoidable disturbances are affecting it.

In the sequel, we will refer to the process to be controlled as the plant and we
will say that the plant is under automatic control when the control objectives are
achieved with infrequent human intervention.

2.5 Prototype Solution to the Control Problem via Inversion

One particularly simple, yet insightful way of thinking about control problems is
via inversion. To describe this idea we argue as follows:

• say that we know what effect an action at the input of a system produces at
the output, and

• say that we have a desired behavior for the system output, then one simply
needs to invert the relationship between input and output to determine what
input action is necessary to achieve the desired output behavior.

In spite of the apparent naivity of this argument, its embellished ramifications
play a profound role in control system design. In particular, most of the real world
difficulties in control relate to the search for a strategy that captures the intent of
the above inversion idea, whilst respecting a myriad of other considerations such as
insensitivity to model errors, disturbances, measurement noise, etc.

To be more specific, let us assume that the required behavior is specified by a
scalar target signal, or reference r(t), for a particular process variable, y(t) which
has an additive disturbance d(t). Say we also have available a single manipulated
variable, u(t). We denote by y a function of time i.e. y = {y(t) : t ∈ R}.

In describing the prototype solution to the control problem below, we will make
a rather general development which, in principle, can apply to general nonlinear
dynamical systems. In particular, we will use a function, f〈◦〉, to denote an operator
mapping one function space to another. So as to allow this general interpretation,
we introduce the following notation:

The symbol y (without brackets) will denote an element of a function space,

i.e. y
�
= {y(t) : R → R}. An operator f〈◦〉 will then represent a mapping from a

function space, say χ, onto χ.
What we suggest is that the reader, on a first reading, simply interpret f as a

static linear gain linking one real number, the input u, to another real number, the
output y. On a subsequent reading, the more general interpretation using nonlinear
dynamic operators can be used.

Let us also assume (for the sake of argument) that the output is related to the
input by a known functional relationship of the form:
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y = f〈u〉+ d (2.5.1)

where f is a transformation or mapping (possibly dynamic) which describes the
input-output relations in the plant.1 We call a relationship of the type given in
(2.5.1), a model.

The control problem then requires us to find a way to generate u in such a way
that y = r. In the spirit of inversion, a direct, although somewhat naive, approach
to obtain a solution would thus be to set

y = r = f〈u〉+ d (2.5.2)

from which we could derive a control law , by solving for u. This leads to

u = f−1〈r − d〉 (2.5.3)

This idea is illustrated in Figure 2.6

r

+

−
f−1〈◦〉

u
f〈◦〉

+

+

y

d

Conceptual controller Plant

Figure 2.6. Conceptual controller

This is a conceptual solution to the problem. However a little thought indi-
cates that the answer given in (2.5.3) presupposes certain stringent requirements
for its success. For example, inspection of equations (2.5.1) and (2.5.3) suggest the
following requirements:

R1 The transformation f clearly needs to describe the plant exactly.

R2 The transformation f should be well formulated in the sense that a bounded
output is produced when u is bounded–we then say that the transformation
is stable.

1We introduce this term here loosely. A more rigorous treatment will be deferred to Chapter
19.
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R3 The inverse f−1 should also be well formulated in the sense used in R2.

R4 The disturbance needs to be measurable, so that u is computable.

R5 The resulting action u should be realizable and not violate any constraint.

Of course, these are very demanding requirements. Thus, a significant part
of Automatic Control theory deals with the issue of how to change the control
architecture so that inversion is achieved but in a more robust fashion and so that
the stringent requirements set out above can be relaxed.

To illustrate the meaning of these requirements in practice, we briefly review a
number of situations:

Example 2.1 (Heat exchanger). Consider the problem of a heat exchanger in
which water is to be heated by steam having a fixed temperature. The plant output is
the water temperature at the exchanger output and the manipulated variable is the
air pressure (3 to 15 [psig]) driving a pneumatic valve which regulates the amount
of steam feeding the exchanger.

In the solution of the associated control problem, the following issues should be
considered:

• Pure time delays might be a significant factor, since this plant involves mass
and energy transportation. However a little thought indicates that a pure time
delay does not have a realizable inverse (otherwise we could predict the future)
and hence R3 will not be met.

• It can easily happen that, for a given reference input, the control law (2.5.3)
leads to a manipulated variable outside the allowable input range (3 to 15 [psig]
in this example). This will lead to saturation in the plant input. Condition
R5 will then not be met.

✷✷✷

Example 2.2 (Flotation in mineral processing). In copper processing one cru-
cial stage is the flotation process. In this process the mineral pulp (water and ground
mineral) is continuously fed to a set of agitated containers where chemicals are added
to separate (by flotation) the particles with high copper concentration. From a con-
trol point of view, the goal is to determine the appropriate addition of chemicals and
the level of agitation to achieve maximal separation.

Characteristics of this problem are:

• The process is complex (physically distributed, time varying, highly nonlinear,
multivariable and so on) and hence it is difficult to obtain an accurate model
for it. Thus R1 is hard to satisfy.

• One of the most significant disturbances in this process is the size of the min-
eral particles in the pulp. This disturbance is actually the output of a previous
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stage (grinding). To apply a control law derived from (2.5.3) one would need
to measure the size of all these particles, or at least to obtain some average
measure of this. Thus, condition R4 is hard to satisfy.

• Pure time delays are also present in this process and thus condition R3 cannot
be satisfied.

✷✷✷

One could imagine various other practical cases where one or more of the require-
ments listed above cannot be satisfied. Thus the only sensible way to proceed is to
accept that there will inevitably be intrinsic limitations and to pursue the solution
within those limitations. With this in mind, we will impose constraints which will
allow us to solve the problem subject to the limitations which the physical set-up
imposes. The most commonly used constraints are:

L1 To restrict attention to those problems where the prescribed behavior (ref-
erence signals) belong to restricted classes and where the desired behavior is
achieved only asymptotically.

L2 To seek approximate inverses.

In summary, we may conclude

In principle, all controllers implicitly generate an inverse of the process, in so
far that this is feasible. Controllers differ with respect to the mechanism used
to generate the required approximate inverse.

2.6 High Gain Feedback and Inversion

As we will see later, typical models used to describe real plants cannot be inverted
exactly. We will next show, however, that there is a rather intriguing property of
feedback that implicitly generates an approximate inverse of dynamic transforma-
tions, without the inversion having to be carried out explicitly.

To develop this idea, let us replace the conceptual controller shown in Figure 2.6
by the realization shown in Figure 2.7. As before f represents the process model.
The transformation h will be described further below.

As in section §2.5, r, u, y can be interpreted as real numbers, and h〈◦〉, f〈◦〉 are
scalar linear gains, on a first reading. On a second reading, these can be given the
general nonlinear interpretation introduced in section §2.5.

From Figure 2.7 we see that

u = h〈r − z〉 = h〈r − f〈u〉〉 (2.6.1)

Thus
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Figure 2.7. Realization of conceptual controller

h−1〈u〉 = r − f〈u〉 (2.6.2)

from which we finally obtain

u = f−1〈r − h−1〈u〉〉 (2.6.3)

Equation (2.6.3) suggests that the loop in Figure 2.7 implements an approximate
inverse of f〈◦〉, i.e. u = f〈r〉, if

r − h−1〈u〉 ≈ r (2.6.4)

We see that this is achieved if h−1 is small, i.e. if h is a high gain transformation.
Hence, if f characterizes our knowledge of the plant and if h is a high gain

transformation, then the architecture illustrated in Figure 2.7 effectively builds an
approximate inverse for the plant model without the model of the plant, f , being
explicitly inverted. We illustrate this idea by an example.

Example 2.3. Assume that a plant can be described by the model

dy(t)
dt

+ 2
√
y(t) = u(t) (2.6.5)

and that a control law is required to ensure that y(t) follows a slowly varying refer-
ence.

One way to solve this problem is to construct an inverse for the model which is
valid in the low frequency region. Using the architecture in Figure 2.7, we obtain an
approximate inverse, provided that h〈◦〉 has large gain in the low frequency region.
A simple solution is to choose h〈◦〉 to be an integrator which has infinite gain at
zero frequency. The output of the controller is then fed to the plant. The result is
illustrated in Figure 2.8 which shows the reference and the plant outputs. The reader
might wish to explore this example further by using the SIMULINK file tank1.mdl
on the accompanying diskette.

✷✷✷
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Figure 2.8. Tank level control using approximate inversion

2.7 From Open to Closed Loop Architectures

A particular scheme has been suggested in Figure 2.7 for realizing an approximate
inverse of a plant model. Although the controller in this scheme is implemented
as a feedback system, the control is actually applied to the plant in open loop. In
particular, we see that the control signal u(t) is independent of what is actually
happening in the plant. This is a serious drawback, since the methodology will not
lead to a satisfactory solution to the control problem unless:

• the model on which the design of the controller has been based is a very good
representation of the plant,

• the model and its inverse are stable, and

• disturbances and initial conditions are negligible.

We are thus motivated to find an alternative solution to the problem which
retains the key features but which does not suffer from the above drawback. This is
indeed possible by changing the scheme slightly so that feedback is placed around
the plant itself rather than around the model.

To develop this idea we begin with the basic feedback structure as illustrated in
Figure 2.9. We proceed as follows.

If we assume, for the moment, that the model in Figure 2.9 is perfect, then we
can rearrange the diagram to yield the alternative scheme shown in Figure 2.10

This scheme, which has been derived from an open loop architecture, is the basis
of feedback control. The key feature of this scheme is that the controller output
depends not only on the a-priori data provided by the model, but also depends
on what is actually happening at the plant output at every instant. It has other
interesting features which are discussed in detail below. However at this point it will
be worthwhile to carry out an initial discussion of the similarities and differences
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Figure 2.10. Closed loop control

between open and closed loop architectures of the types shown in Figure 2.9 and
Figure 2.10.

• The first thing to note is that, provided the model represents the plant exactly,
and that all signals are bounded (i.e. the loop is stable), then both schemes are
equivalent, regarding the relation between r(t) and y(t). The key differences
are due to disturbances and different initial conditions.

• In the open loop control scheme the controller incorporates feedback internally,
i.e. a signal at point A is fed back. In closed loop control the signal at A’
is fed back. The fundamental difference is that, in the first case everything
happens inside the controller, i.e. either in a computer or in some external
hardware connection. In the second case, the signal which is fed back is a
process variable, i.e. measuring devices are used to determine what is actually
happening. The heuristic advantages of the latter alternative are undoubtly
clear to the reader. We will develop the formal background to these advantages
as we proceed.
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2.8 Trade-offs Involved in Choosing the Feedback Gain

The preliminary insights of the previous two sections could seem to imply that all
that is needed to generate a controller is to place high gain feedback around the
plant. This is true in so far that it goes. However, nothing in life is cost free and
this also applies to the use of high gain feedback.

For example, if a plant disturbance leads to a non-zero error e(t), in Figure 2.10,
then high gain feedback will result in a very large control action u(t). This may lie
outside the available input range and thus invalidate the solution.

Another potential problem with high gain feedback is that it is often accompa-
nied by the very substantial risk of instability. Instability is characterized by self
sustaining (or growing) oscillations. As an illustration, the reader will probably
have witnessed the high pitch whistling sound that is heard when a loudspeaker is
placed too close to a microphone. This is a manifestation of instability resulting
from excessive feedback gain. Tragic manifestations of instability include aircraft
crashes and the Chernobyl disaster in which a runaway condition occurred.

Yet another potential disadvantage of high loop gain was hinted at in subsection
§2.3.4. There we saw that increasing the controller gain leads to increased sensitivity
to measurement noise.

In summary, high loop gain is desirable from many perspectives but it is also
undesirable when viewed from other perspectives. Thus, when choosing the feedback
gain one needs to make a conscious trade-off between competing issues.

The previous discussion can be summarized in the following statement

High loop gain gives approximate inversion which is the essence of control.
However, in practice, the choice of feedback gain is part of a complex web of
design trade-offs. Understanding and balancing these trade-offs is the essence
of control system design.

2.9 Measurements

We have seen that one of the key issues in feedback control is that there must exist
suitable measurements to feed back. Indeed, if one can measure a variable, then
there is a good chance that one can design a controller to bring it to a desired
reference value.

A more accurate description of the feedback control loop including sensors is
shown in Figure 2.11. From this figure, it can be seen that what we actually control
is the measured value rather than the true output. These can be quite different.

Hence the measurement system should ideally satisfy requirements such as:

• Reliability. It should operate within the necessary range.

• Accuracy. For a variable with a constant value, the measurement should settle
to the correct value.
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Figure 2.11. Closed loop control with sensors

• Responsiveness. If the variable changes, the measurement should be able to
follow the changes. Slow responding measurements can, not only affect the
quality of control but can actually make the feedback loop unstable. Loop
instability may arise even though the loop has been designed to be stable
assuming an exact measurement of the process variable.

• Noise immunity. The measurement system, including the transmission path,
should not be significantly affected by exogenous signals such as measurement
noise.

• Linearity. If the measurement system is not linear, then at least the nonlin-
earity should be known so that it can be compensated.

• Non intrusive. The measuring device should not significantly affect the be-
havior of the plant.

In most of the sequel we will assume that the measurement system is suffi-
ciently good, so that only measurement noise needs to be accounted for. This ideal
measurement loop will be known as a unity feedback loop .

2.10 Summary

• Control is concerned with finding technically, environmentally and commer-
cially feasible ways of acting on a technological system to control its outputs
to desired values whilst ensuring a desired level of performance.

• Fundamental to control engineering is the concept of inversion.

• Inversion can be achieved by a feedback architecture.

• Feedback refers to an iterative cycle of

◦ quantifying the desired behavior

◦ measuring the actual values of relevant system variables by sensors
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◦ inferring the actual system state from the measurements

◦ comparing the inferred state to the desired state

◦ computing a corrective action to bring the actual system to the desired
state

◦ applying the corrective action to the system via actuators

◦ repeating the above steps.

• The principal components in a feedback loop are shown in Figure 2.12.

Reference-

of output
Desired value

Control 
signal

Actual
output

noise
Measurement

Controller

Measurements
Sensors

Disturbances

Actuators System

Figure 2.12. Typical feedback loop

• The desired performance is typically quantified as

◦ the accuracy with which the outputs should attain their desired values;

◦ required tolerance level to inaccurate assumptions, disturbances and plant
changes;

◦ specification of transients;

◦ constraints on acceleration, overshoot, energy consumption, etc.

• Control system objectives usually include

◦ maximization of throughput, speed, yield safety and more;

◦ minimization of energy consumption, waste production, emissions and
more;

◦ decreasing the impact of disturbances, noise uncertainty, time variations,
etc.

• The chapter gives a first indication that the desired performance objectives are
usually in conflict with each other and therefore form a network of trade-offs.
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• By control system design we mean the process of

◦ understanding the trade-off network

◦ making deliberate design decisions consistent with these trade-offs.

◦ being able to systematically translate the chosen goal into a controller.
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Chapter 3

MODELING

3.1 Preview

The design of a control system typically requires a delicate interplay between fun-
damental constraints and trade-offs. To accomplish this, a designer must have a
comprehensive understanding of how the process operates. This understanding is
usually captured in the form of a mathematical model. With the model in hand,
the designer can proceed to use the model to predict the impact of various design
choices. The aim of this chapter is to give a brief introduction to modeling. Specific
topics to be covered include

• how to select the appropriate model complexity

• how to build models for a given plant

• how to describe model errors.

• how to linearize nonlinear models

It also provides a brief introduction to certain commonly used models, including

• state space models

• high order differential and high order difference equation models

3.2 The Raison d’être for Models

The basic idea of feedback is tremendously compelling. Recall the mould level con-
trol problem from Chapter 2. Actually, there are only three ways that a controller
could manipulate the valve: open, close or leave it as it is. Nevertheless, we have
seen already that the precise way this is done involves subtle trade-offs between
conflicting objectives, such as speed of response and sensitivity to measurement
noise.

For many problems, it is both possible and feasible to find these precise controller
settings by simple trial and error. However, many problems preclude this approach
due to complexity, efficiency, cost or even danger. Also, a trial and error approach
cannot answer, before trial, questions such as:

41
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• Given a physical plant and objective, what controller can achieve the given
objective? Can it be achieved at all?

• Given controller and plant, how will they perform in closed loop?

• Why is a particular loop behaving the way it is? Can it be done better? If
so, by which controller?

• How would the loop performance change if the system parameters were to
change, or disturbances were larger, or a sensor were to fail?

To answer these questions systematically, we need a means to capture the behav-
ior of the system in such a way that it can be manipulated outside the constraints
of physical reality.

An appropriate means to achieve this goal is to express the impact that ini-
tial conditions, control inputs and disturbances have on internal variables and the
output by a set of mathematical equations. This set of equations is called a model.

The power of a mathematical model lies in the fact that it can be simulated in
hypothetical situations, be subject to states that would be dangerous in reality,
and it can be used as a basis for synthesizing controllers.

To tap into this power however, it is first necessary to come up with the model
– an effort that can range from trivial to near impossible.

Therefore, just as in control system design itself, there is also an art and a
science in the building of models. The following sections briefly raise some of the
issues involved.

3.3 Model Complexity

In building a model, it is important to bear in mind that all real processes are
complex and hence any attempt to build an exact description of the plant is usually
an impossible goal. Fortunately, feedback is usually very forgiving and hence, in
the context of control system design, one can usually get away with rather simple
models, provided they capture the essential features of the problem.

Actually both art and science is involved in deriving a model which, on the one
hand, captures the plant features which are relevant to designing the controller, but
which, on the other hand, is not so complex as to mask the essence of the problem.
This is a nontrivial task and often involves iteration and refinement as the solution
proceeds. It is usually best to start simple and add features as the solution evolves.

It is also important to note that models for control purposes usually differ from
those intended for other purposes such as process design. Control relevant models
describe the quantitative dynamic relationships between plant inputs and outputs.
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Fine internal details of a plant are only relevant to the extent that they are necessary
to achieve the desired level of performance.

Since we recognize that all real systems are arbitrarily complex, then all models
must necessarily be approximate descriptions of the process. We introduce several
terms to make this clear:

• Nominal model. This is an approximate description of the plant used for
control system design.

• Calibration model. This is a more comprehensive description of the plant.
It includes other features not used for control system design but which have
a direct bearing on the achieved performance.

• Model error. This is the difference between the nominal model and the
calibration model. Details of this error may be unknown but various bounds
may be available for it.

In the sequel we will often refer to the calibration model as the true plant.
However, the reader should note that the calibration model will also generally not
be an exact description of the true plant and hence one needs to exercise caution
in interpreting the results.

To decide what is a sensible nominal model is usually not easy. For the mo-
ment, let us just say that it should capture the control relevant features of the
plant dynamics and plant nonlinearities. The authors have seen several examples
in industry where extremely intricate physical models were developed but they ulti-
mately turned out to be of limited value for control system design. This was either
because they contained so many free parameters that they were incapable of being
calibrated on the real process or because they failed to describe certain key features
(such as backlash in a valve) which was ultimately found to dominate controller
performance. This will be illustrated by two examples.

Example 3.1 (Control of temperature in an industrial furnace). Consider
a very large industrial furnace which is heated by oil. We want to control the tem-
perature inside the furnace by throttling the valves which regulate the oil flow to the
burners. A nominal model in this case should include the dynamics of the furnace
heating process. Typically, the speed at which the valves open or close will not be
significant in comparison with the relatively slower dynamics of the heating, and
hence the inclusion of this effect will usually not add relevant accuracy to the de-
scription for the purpose of control. However, careful consideration should be given
to the fact that the valves might saturate or stick and this may point to difficulties
in deriving a suitable control law. We should thus include these issues as part of
the nominal model if we suspect they are important to the operation of the control
system.

✷✷✷
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Example 3.2 (Control of water flow in a pipe). Consider a pipe where water
flow has to be controlled. To that end, a valve is installed and the control input
u(t) is the signal driving the valve positioner. Assuming that the pipe is always
full of water, it is then clear that the model of this plant is dominated by the valve
dynamics, since it is the only source of dynamics in the problem. Stickiness of the
valve and saturation might well be significant issues for this control problem.

✷✷✷

The examples sketched above suggest that modeling errors and model complexity
are relative concepts.

A final point in this discussion relates to the idea of robustness . Control design is
typically based on the nominal plant model. However the controller will be used to
control the real plant. One of the challenges for the designer is to obtain a controller
which, when in command of the true plant, continues to perform essentially as
predicted by the model, i.e. without significant degradation. When this is the case
we will say that we have designed a robust controller. To achieve robustness, it is
usually necessary to have a measure of the modeling error in the form of a bound
of some sort, so that appropriate precautions can be taken in the design phase.

3.4 Building Models

A first possible approach to building a plant model is to postulate a specific model
structure and to use what is known as a black box approach to modeling. In this ap-
proach one varies, either by trial and error or by an algorithm, the model parameters
until the dynamic behavior of model and plant match sufficiently well.

An alternative approach for dealing with the modeling problem is to use phys-
ical laws (such as conservation of mass, energy and momentum) to construct the
model. In this approach one uses the fact that, in any real system, there are basic
phenomenological laws which determine the relationships between all the signals in
the system. These laws relate to the nature of the system and may include physics,
chemistry, economic theory and so on. One can use these principles to derive a
model as was done in subsection §2.3.2.

In practice, it is common to combine both black box and phenomenological ideas
to build a model. Phenomenological insights are often crucial to understanding
the key dynamics (including dominant features), nonlinearities and significant time
variations in a given system. It will thus help to make an initial choice regarding
the complexity of the model. On the other hand, the black–box approach often
allows one to fit models to sections of the plant where the underlying physics is too
complex to derive a suitable phenomenological model.

To illustrate the point consider a simple cylindrical tank containing water and
having cross sectional area A. This tank discharges through an orifice in the bottom
of the tank. Physical principles indicate that the discharge flow q(t) ought to be
reasonably modeled as q(t) = K

√
h(t) where h(t) is the water level in the tank and

K is a constant to be determined. This constant could be determined also using
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physical principles, but it would be a substantial effort. A simpler method would
be to measure h(t) every T seconds, where T is chosen such that |h(t) − h(t − T )|
is small. Then a good estimate of the flow is q̂(t) = |h(t)−h(t−T )|A/T . We could
then estimate the value of K using linear regression of q̂(t) on

√
h(t), for different

values of t. We can see that, in this example, the final model combines physical
knowledge with experimental observations. This situation occurs very frequently in
modeling for control purposes.

Another issue of practical relevance is the inclusion of the actuator in the mod-
eling process. Actuators are, in many cases, highly nonlinear. They usually also
have their own dynamic behavior. Indeed, in some cases, the actuator dynamics
may actually dominate other plant features. This is, for instance, the situation aris-
ing with valves, hydraulic actuators, controlled rectifiers and so on. Thus, in the
sequel, when we refer to the plant model, it should be understood that this model
also includes the actuators if necessary.

To summarize

Control relevant models are often quite simple compared to the true process
and usually combine physical reasoning with experimental data.

3.5 Model Structures

Given the dynamic nature of real processes, the standard mathematical description
of process models includes, apart from algebraic relations:

• dependencies on the accumulated (or integrated) effect of process variables,
and

• dependencies on the rate of change (or differential) of variables.

These two features determine what is generally called the plant dynamics and
point to the fact that the behavior of a real process cannot be satisfactorily described
without including its past history and the way it deals with changes.

Models can usually be reduced to the form of differential equations (continuous
time), difference equations (discrete time) or combinations of these (hybrid or sam-
pled data systems). These models relate plant inputs to selected plant outputs, and
they deal with a limited description of the system under study.

In the next two sections, we describe two possible ways that are commonly used
to describe models.

3.6 State Space Models

A very valuable and frequently used tool for plant modeling is a state variable
description. State variables form a set of inner variables which is a complete set, in
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the sense that, if these variables are known at some time, then any plant output,
y(t), can be computed, at all future times, as a function of the state variables and
the present and future values of the inputs.

3.6.1 The General Case

If we denote by x the vector corresponding to a particular choice of state variables,
then the general form of a state variable model is as follows:

For continuous time systems

dx

dt
= f(x(t), u(t), t) (3.6.1)

y(t) = g(x(t), u(t), t) (3.6.2)

For discrete time systems

x[k + 1] = fd(x[k], u[k], k) (3.6.3)
y[k] = gd(x[k], u[k], k) (3.6.4)

The fact that a state space description is structured around a first order vector
differential equation (see (3.6.1)) frequently facilitates numerical solutions to various
control problems. This is particularly true in the linear case where very substantial
effort has been devoted to numerically robust ways for solving the associated control
problems. We will devote Chapter 17 to a more in-depth treatment of linear state
space models. We give a brief overview below.

3.6.2 Linear State Space Models

We say that a system is linear if the principle of superposition holds. By this we
mean that if initial conditions x01 and x02 produce responses h01(t) and h02(t)
respectively with zero input, and inputs u1(t) and u2(t) produce responses h11(t)
and h12(t) respectively, with zero initial conditions, then the response to input
u1(t) + u2(t) with initial conditions x01 + x02 is h01(t) + h01(t) + h11(t) + h12(t).

A system is said to be time-invariant if the response to a time translated input
is simply a time translation of the original response, i.e. if the input u1(t) (∀t ∈ R)
produces a response g1(t) (∀t ∈ R), then, the input u2(t) = u1(t + τ) (∀t ∈ R),
produces the response g2(t) = g1(t+ τ) (∀t ∈ R).

In the linear, time invariant case, equations (3.6.1) and (3.6.2) become

dx(t)
dt

= Ax(t) +Bu(t) (3.6.5)

y(t) = Cx(t) +Du(t) (3.6.6)

where A,B,C and D are matrices of appropriate dimensions.
We illustrate by building of a state space model for an electric network.
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Example 3.3. Consider the simple electrical network shown in Figure 3.1. Assume
we want to model the voltage v(t).

+

vf (t)

i(t)R1

L C v(t)R2

Figure 3.1. Electric network. State space model.

On applying fundamental network laws we obtain the following equations:

v(t) = L
di(t)
dt

(3.6.7)

vf (t)− v(t)
R1

= i(t) + C
dv(t)
dt

+
v(t)
R2

(3.6.8)

These equations can be rearranged as follows:

di(t)
dt

=
1
L
v(t) (3.6.9)

dv(t)
dt

= − 1
C
i(t)−

(
1

R1C
+

1
R2C

)
v(t) +

1
R1C

vf (t) (3.6.10)

Equations (3.6.9) and (3.6.10) have the form of vector equation (3.6.1) if the
state variables are chosen to be x1(t) = i(t) and x2(t) = v(t), i.e. the state vector
becomes x(t) = [x1(t) x2(t)]T . The equation corresponding to (3.6.2) is generated
on noting that y(t) = v(t) = x2(t).

Also, equations (3.6.9) and (3.6.10) represent a linear state space model, i.e. of
the form in (3.6.5)-(3.6.6), with

A =

[
0 1

L

− 1
C −

(
1

R1C
+ 1

R2C

)] ; B =
[

0
1

R1C

]
; C =

[
0 1
]
; D = 0 (3.6.11)

✷✷✷

A further example is provided by

Example 3.4. Consider a separately excited d.c. motor. Let va(t) denote the
armature voltage, θ(t) the output angle. A simplified schematic diagram of this
system is shown in Figure 3.2.
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vω(t)

ia(t)

va(t)

R

θ(t)

Figure 3.2. Simplified model of a d.c. motor

Let
J - be the inertia of the shaft
τe(t) - the electrical torque
ia(t) - the armature current
k1, k2 - constants
R - the armature resistance

Application of well known principles of physics tells us that the various variables
are related by:

Jθ̈(t) = τe(t) = k1ia(t) (3.6.12)

vω(t) = k2θ̇(t) (3.6.13)

ia(t) =
va(t)− k2θ̇(t)

R
(3.6.14)

Combining these equations we obtain the following second order differential equa-
tion model:

Jθ̈(t) = k1

[
va(t)− k2θ̇(t)

R

]
(3.6.15)

We can easily convert this model to state space form by introducing

x1(t) = θ(t) (3.6.16)

x2(t) = θ̇(t) (3.6.17)

The model 3.6.15 can be rewritten as



Section 3.7. Solution of Continuous Time State Space Models 49

d

dt

(
x1(t)
x2(t)

)
=
[
0 1
0 −k1k2

R

] [
x1(t)
x2(t)

]
+
[
0
k1
R

]
va(t) (3.6.18)

Although very simple, the reader may be surprised to find how often simple servos
of the type shown in Figure 3.2 arise in practice. They are the basis of many
positioning systems, robots, etc.

✷✷✷

3.7 Solution of Continuous Time State Space Models

Because state space models are described by (a set of) first order differential equa-
tions, it is quite easy to solve them.

A key quantity in determining solutions to state equations is the matrix expo-
nential defined as

eAt = I+
∞∑
i=1

1
i!
Aiti (3.7.1)

The explicit solution to the linear state equation is then given by

x(t) = eA(t−to)xo +
∫ t

to

eA(t−τ)Bu(τ)dτ (3.7.2)

This claim can be verified by direct substitution of (3.7.2) in (3.6.5). To perform
the necessary differentiation, note that

deAt

dt
= AeAt = eAtA (3.7.3)

and also recall Leibnitz’s rule

d

dt

∫ g(t)

f(t)

H(t, τ)dτ = H(t, g(t))ġ(t)−H(t, f(t))ḟ(t) +
∫ g(t)

f(t)

∂

∂t
H(t, τ)dτ (3.7.4)

Applying (3.7.4) and (3.7.3) to (3.7.2) yields

ẋ(t) = AeA(t−to)xo +Bu(t) +A
∫ t

to

eA(t−τ)Bu(τ)dτ (3.7.5)

= Ax(t) +Bu(t) (3.7.6)
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as claimed.
Notice that if u(t) = 0 ∀t ≥ τ , then the matrix eA(t−τ) alone determines the

transition from x(τ) to x(t) ∀t ≥ τ . This observation justifies the name transition
matrix which is usually given to the matrix eAt. The model output y(t) is found
from (3.6.6) and (3.7.5) to be

y(t) = CeA(t−to)xo +C
∫ t

to

eA(t−τ)Bu(τ)dτ +Du(t) (3.7.7)

Notice that the state and the output solutions (3.7.2) and (3.7.7) consist of two
terms each, namely an initial condition response due to xo and a forced response
which depends on the input u(t) over the interval [to, t]. The reader is invited to
check that the principle of superposition holds for the response given in (3.7.7)

We shall use state space models sparingly in Part I to III of the book. How-
ever, whenever convenient, we will make side comments to show how the various
results relate to these models. In parts V to VIII, where more advanced material is
presented, we will use state space models frequently since it simplifies much of the
presentation.

3.8 High Order Differential and Difference Equation Models

An alternative model format that is frequently used is that of a high order differen-
tial equation which directly relates inputs to outputs. These models are normally
known as input-output models.

In the continuous time case, these models have the form:

l

(
dny(t)
dtn

, · · · , y(t), d
n−1u(t)
dtn−1

, · · · , u(t)
)
= 0 (3.8.1)

where l is some nonlinear function.
A simple example of such a model was given in equation (3.6.15).
Similarly, for the discrete case we can write

m (y[k + n], y[k + n− 1], · · · , y[k], u[k + n− 1], · · · , u[k]) = 0 (3.8.2)

where m is a nonlinear function and where we have used the notation {y[k]} to
denote the sequence {y[k] : k = 0, 1, . . . }.

We will describe this kind of model in more detail in Chapter 4.

3.9 Modeling Errors

We have argued earlier that models for real processes will invariably involve some
level of approximation. It is desirable, if possible, to include knowledge of the degree
of approximation into the design procedure.
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Say that the true plant and its nominal model are described, respectively, by

y = g〈u〉 (3.9.1)
yo = go〈u〉 (3.9.2)

where g and go are general transformations (see section §2.5).
The so-called additive modeling error (AME) is then defined by a transformation

gε

y = yo + gε〈u〉 (3.9.3)

A difficulty with the AME is that it is not scaled relative to the size of the
nominal model. This is the advantage of the so-called multiplicative modeling error
(MME), g∆, defined by

y = go
〈
u+ g∆〈u〉〉 (3.9.4)

Example 3.5. The output of a plant is assumed to be exactly described by

y = f
〈
satα〈u〉

〉
(3.9.5)

where f〈◦〉 is a linear transformation and satα denotes the α–saturation operator,
i.e.

satα〈x〉 =
{
α |x(t)| > |α|
x |x(t)| ≤ |α| (3.9.6)

If the nominal model is chosen as go〈◦〉 = f〈◦〉, i.e. the saturation is ignored,
determine the additive and the multiplicative modeling errors.

Solution

Since f is a linear transformation, it is then distributive and additive. Hence the
plant output is

y = f
〈
u+ satα〈u〉 − u

〉
= f
〈
u〉+ gε〈u

〉
= f
〈
u+ satα〈u〉 − u

〉 (3.9.7)

The AME and the MME are thus described by the block diagrams shown in
Figure 3.3.

✷✷✷
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1
1

1
1

1
1

1
1

α

α

−α

−α

f〈◦〉

Additive modelling error

Multiplicative modelling error

Figure 3.3. AME and MME due to saturation

Of course, the exact model errors are rarely known since the true plant is not
precisely known. However, certain information about the size of errors may still
be available. This will typically be expressed in terms of a bound on the AME
or MME between the nominal model and some other (more complex) calibration
model. For example, we might have a description of the form: ||g∆|| < ε, where
|| ◦ || is a suitable norm.

3.10 Linearization

Although almost every real system includes nonlinear features, many systems can
be reasonably described, at least within certain operating ranges, by linear models.
The incentive to try to approximate a nonlinear system by a linear model is that the
science and art of linear control is vastly more complete and simpler than they are
for the nonlinear case. A useful way to obtain these linear models is to begin with a
nonlinear model and to then build a linear approximation in the neighborhood of a
chosen operating point. This approach is not particular to control system analysis,
synthesis and design, but is also a key modeling tool in other fields, for example in
analogue electronics.

The linearization strategy can be applied equally well to continuous and discrete
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time models, and to state space and input-output models (high order differential
and difference equations). For simplicity we sketch below the linearization for state
space models. Thus consider

ẋ(t) = f(x(t), u(t)) (3.10.1)
y(t) = g(x(t), u(t)) (3.10.2)

Say that {xQ(t), uQ(t), yQ(t); t ∈ R} is a given set of trajectories that satisfy the
above equations, i.e.

ẋQ(t) = f(xQ(t), uQ(t)); xQ(to) given (3.10.3)
yQ(t) = g(xQ(t), uQ(t)) (3.10.4)

The trajectory {xQ(t), uQ(t), yQ(t); t ∈ R} may correspond to an equilibrium
point of the state space model. In this case, xQ, uQ, yQ will not depend on time
and (xQ, yQ) will satisfy ẋQ = 0, i.e.

f(xQ, uQ) = 0 (3.10.5)

Say now that we want to describe a trajectory {x(t), u(t), y(t); t ∈ R}, where
x(t), u(t) and y(t) are close to {xQ(t), uQ(t), yQ(t); t ∈ R}. We can then use a first
order Taylor’s series to approximate the model. This leads to

ẋ(t) ≈ f(xQ, uQ) +
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t)− uQ) (3.10.6)

y(t) ≈ g(xQ, uQ) +
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

(x(t) − xQ) +
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

(u(t)− uQ) (3.10.7)

In the above , we have used the notation ∂f
∂x to denote the matrix having the

ijth element ∂fi
∂xj

. Note that the derivatives are evaluated at the nominal trajectory.
In the case of a fixed equilibrium point, these derivative matrices will be constant
matrices.

Equations (3.10.7)and (3.10.6) have the form :

ẋ(t) = Ax(t) +Bu(t) +E (3.10.8)
y(t) = Cx(t) +Du(t) + F (3.10.9)

where
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A =
∂f

∂x

∣∣∣∣ x=xQ
u=uQ

; B =
∂f

∂u

∣∣∣∣ x=xQ
u=uQ

(3.10.10)

C =
∂g

∂x

∣∣∣∣ x=xQ
u=uQ

; D =
∂g

∂u

∣∣∣∣ x=xQ
u=uQ

(3.10.11)

E = f(xQ, uQ)− ∂f

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂f

∂u

∣∣∣∣ x=xQ
u=uQ

uQ (3.10.12)

F = g(xQ, uQ)− ∂g

∂x

∣∣∣∣ x=xQ
u=uQ

xQ − ∂g

∂u

∣∣∣∣ x=xQ
u=uQ

uQ (3.10.13)

In general, A, B, C, D, E and F, will depend on time. However, in the case
when we linearize about an equilibrium point, then they will be time-invariant.

It is also possible to write approximate equations in terms of the increments
∆x(t) = x(t) − xQ(t), ∆u(t) = u(t) − uQ(t). From (3.10.7) and (3.10.6) on using
(3.10.3) and (3.10.4) we have

d∆x(t)
dt

= A∆x(t) +B∆u(t) (3.10.14)

∆y(t) = C∆x(t) +D∆u(t) (3.10.15)

Remark 3.1. The linearization procedure presented above produces a model which
is linear in the incremental components of inputs and outputs around a chosen
operating point (i.e. small signal model).

We illustrate by two examples.

Example 3.6. Consider a continuous time system with true model given by

dx(t)
dt

= f(x(t), u(t)) = −
√
x(t) +

(u(t))2

3
(3.10.16)

Assume that the input u(t) fluctuates around u = 2. Find an operating point
with uQ = 2 and a linearized model around it.

Solution

(i) The operating point is computed from (3.10.16) with uQ = 2 and by taking
dx(t)
dt = 0. This leads to

√
xQ − (uQ)

2

3
= 0 =⇒ xQ =

16
9

(3.10.17)
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(ii) The linearized model is then obtained by expanding (3.10.16) in Taylor series
to obtain

d∆x(t)
dt

= − 1
2√xQ

∆x(t) +
2uQ
3

∆u(t) (3.10.18)

When the numerical values for the operating point are used, we obtain the
following linearized model:

d∆x(t)
dt

= −3
8
∆x(t) +

4
3
∆u(t) (3.10.19)

To appreciate the quality of the approximation we consider the original system
and its linearized model and run a simulation where the input to the original system
is a constant equal to 2 plus an increasing amplitude pulse sequence. The results are
shown in Figure 3.4. We can see there that the linearization error increases as the
system is driven away from the operating point around which the linearized model
was computed.
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Figure 3.4. Nonlinear system output, ynl(t), and linearized system output, yl(t),
for a square wave input of increasing amplitude, u(t).

✷✷✷

As a slightly more complex example we present:

Example 3.7 (Inverted pendulum). Many readers will be familiar with the ob-
jective of balancing a broom (or rod) on the tip of one’s finger. Common experience
indicates that this is a difficult control task. Many universities around the world
have built inverted pendulum systems to demonstrate control issues. A photograph
of one built at the University of Newcastle, Australia is shown on the book’s web
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site. The reason that the problem is interesting from a control perspective is that it
illustrates many of the difficulties associated with real world control problems. For
example, the model is very similar to that used in rudder roll stabilization of ships.
The latter problem will be addressed in Chapter 23. A sketch of a typical inverted
pendulum system is shown in Figure 3.5.

Figure 3.5. Inverted pendulum

In Figure 3.5, we have used the following notation

y(t) - distance from some reference point
θ(t) - angle of pendulum
M - mass of cart
m - mass of pendulum (assumed concentrated at tip)
) - length of pendulum
f(t) - forces applied to pendulum

Application of Newtonian physics to this system leads to the following model:

ÿ =
1

λm + sin2 θ(t)

[
f(t)
m

+ θ̇2(t)) sin θ(t)− g cos θ(t) sin θ(t)
]

(3.10.20)

θ̈ =
1

)λm + sin2 θ(t)

[
−f(t)

m
cos θ(t) + θ̇2(t)) sin θ(t) cos θ(t) + (1− λm)g sin θ(t)

]
(3.10.21)

where λm = (M/m)
These equations are nonlinear. However, for small departures of θ from the

vertical position we can linearize about θo = 0, θ̇o = 0. Using the methods outlined
above, we obtain:
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ÿ =
1
λm

[
f(t)
m

− gθ(t)
]

(3.10.22)

θ̈ =
1

)λm

[
−f(t)

m
+ (1 + λm)gθ(t)

]
(3.10.23)

We can now convert this to state space form with input u(t) = f(t) and output
y(t); by introducing

x1(t) = y(t)
x2(t) = ẏ(t)
x3(t) = θ(t)
x4(t) = θ̇(t)

This leads to a linear state space model as in (3.6.5), (3.6.6) where

A =



0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

M� 0


 ; B =




0
1
M
0

− 1
M�


 ; C =

[
1 0 0 0

]
(3.10.24)

More will be said about control issues associated with this system later.

✷✷✷

Remark 3.2. Modern computational packages include special commands to com-
pute linearized models around a user defined (pre-computed) operating point. In the
case of MATLAB-SIMULINK, the appropriate commands are linmod (for contin-
uous time systems) and dlinmod (for discrete time and hybrid systems).

Remark 3.3. It is obvious that linearized models are only approximate models.
Thus these models should be used with appropriate caution (as indeed should all
models). In the case of linearized models, the next term in the Taylor’s series
expansion can often be usefully employed to tell us something about the size of the
associated modeling error.

Linear models often give deep insights and lead to simple control strategies.
Linear models can be obtained by linearizing a nonlinear model at an operating
point. Caution is needed to deal with unavoidable modeling errors.

3.11 Case Studies

Space precludes us from giving a more detailed treatment of modeling. Indeed, this
usually falls into the realm of other courses which specifically deal with this topic.
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Nonetheless, simple models for all of the case studies will be presented when these
problems are discussed. The reader is referred to:

• Satellite Tracking (Chapter 22)

• pH Control (Chapter 19 and the web site)

• Continuous Casting Machine (Chapters 2, 8 and the web site)

• Sugar Mill (Chapter 24 and the web site)

• Distillation Column (Chapter 6 and the web site)

• Ammonia Synthesis (Chapter 20)

• Zinc Coating Mass Estimation (Chapter 22)

• BISRA Gauge (Chapter 8 and the web site)

• Roll Eccentricity (Chapters 10, 22 and the web site)

• Hold-up Effect in Rolling Mills (Chapters 8, 10 and the web site)

• Flatness Control in Steel Rolling (Chapter 21 and the web site)

• Vibration Control (Chapter 22)

• Servomechanism (Chapter 3)

• Tank Level Estimation (Chapter 18 and the web site)

• Four Coupled Tanks (Chapters 21, 24 and the web site)

• Ball and Plate Mechanism (the web site)

• Heat Exchanger (Chapter 4)

• Inverted Pendulum (Chapters 3, 9, 24 and the web site)

• Ship Roll Rudder Stabilization (Chapter 23)

3.12 Summary

• In order to systematically design a controller for a particular system, one
needs a formal – though possibly simple – description of the system. Such a
description is called a model.

• A model is a set of mathematical equations that are intended to capture the
effect of certain system variables on certain other system variables.

• The italized expressions above should be understood as follows:
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◦ certain system variables: It is usually neither possible nor necessary to
model the effect of every variable on every other variable; one therefore
limits oneself to certain subsets. Typical examples include the effect
of input on output, the effect of disturbances on output, the effect of
a reference signal change on the control signal, or the effect of various
unmeasured internal system variables on each other.

◦ capture: A model is never perfect and it is therefore always associated with
a modeling error. The word capture highlights the existence of errors,
but does not yet concern itself with the precise definition of their type
and effect.

◦ intended : This word is a reminder that one does not always succeed in
finding a model with the desired accuracy and hence some iterative re-
finement may be needed.

◦ set of mathematical equations : There are numerous ways of describing the
system behavior, such as linear or nonlinear differential or difference
equations.

• Models are classified according to properties of the equation they are based
on. Examples of classification include:

Model
attribute

Contrasting attribute Asserts whether or not ...

Single input
single output

Multiple input multiple
output

. . . the model equations have one input
and one output only

Linear Nonlinear . . . the model equations are linear in
the system variables

Time varying Time invariant . . . the model parameters are constant

Continuous Sampled . . . model equations describe the be-
havior at every instant of time, or only
in discrete samples of time

Input-output State space . . . the models equations rely on func-
tions of input and output variables
only, or also include the so called state
variables

Lumped pa-
rameter

Distributed parameter . . . the model equations are ordinary
or partial differential equations

• In many situations nonlinear models can be linearized around a user defined
operating point.
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3.14 Problems for the Reader

Problem 3.1. Consider an electronic amplifier with input voltage vi(t) and output
voltage vo(t). Assume that

vo(t) = 8vi(t) + 2 (3.14.1)

3.1.1 Show that the amplifier does not strictly satisfy the principle of superposition.
Thus this system is not strictly linear. (A better term for this system would
be affine.).

3.1.2 Note that the system can also be written :

vo(t) = 8vi(t) + 2di(t) (3.14.2)

where di(t) is a constant offset (equal to 1).

Show that the principle of superposition does hold for the input vector [vi(t) di(t)]T .

3.1.3 Obtain an incremental model for ∆vo(t) = vo(t)− voQ, ∆vi(t) = vi(t)− viQ
where (viQ, voQ) is any point satisfying the model (3.14.1). Show that this
incremental model is the same for all choices of the pair (viQ, voQ).

Problem 3.2. Consider an electronic amplifier, similar to that in Problem 3.1 but
having input voltage vi(t) and output voltage vo(t) related by

vo(t) = 8(vi(t))2 (3.14.3)

3.2.1 Show that this amplifier is nonlinear, by showing that if we compose vi(t)
from two subcomponents, i.e. vi(t) = vi1(t)+ vi2(t), then the response to vi(t)
is not the sum of the responses to vi1(t) and vi2(t).

3.2.2 Assume that vi(t) = 5 + cos(100t). What is the output?.

3.2.3 Obtain an incremental model for ∆vo(t) = vo(t)− voQ, ∆vi(t) = vi(t)− viQ
where (viQ, voQ) is any point satisfying the model (3.14.3). Show that this
incremental model depends on the choice of the pair (viQ, voQ). Compare this
with the result in Problem 3.1 and discuss.

Problem 3.3. A system has an input-output model given by

y(t) = 2|u(t)| (3.14.4)
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3.3.1 Build a small signal model around uQ = 5.

3.3.2 Discuss why this cannot be done at uQ = 0.

Problem 3.4. A discrete time system with input u[k] and output y[k] is described
by the difference equation

y[k]− 0.8y[k − 1] + 0.15y[k − 2] = 0.2u[k − i] (3.14.5)

3.4.1 Build a state space model for i = 0

3.4.2 Repeat for i = 1

Problem 3.5. Consider a savings account yielding a 5% interest p.a. Assume
that the opening deposit is US$ 200 and that a yearly deposit of d[i] is made at the
end of the ith year. Build a model which describes the evolution of the balance of
this account at the end of the kth year, for k = 1, 2, 3, . . . .

Problem 3.6. Consider the mechanical system in Figure 3.6 where u(t) is an
externally applied force, v(t) is the speed of the mass w.r.t. the wall inertial system,
and y(t) is the displacement from the wall.

K

M

v(t)

y(t)

u(t)

Figure 3.6. Dynamic mechanical system

Find the differential equation describing the relationship between the input u(t)
and the variables v(t) and y(t).

Problem 3.7. Consider a system with input u(t) and output y(t) having a (non-
linear) calibration model given by

dy(t)
dt

+
(
2 + 0.1 (y(t))2

)
y(t) = 2u(t) (3.14.6)
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Assume that we associate with this system a (linear) nominal model given by

dy(t)
dt

+ 2y(t) = 2u(t) (3.14.7)

Simulate the two systems and plot the model error for u(t) = A cos(0.5t), with
A = 0.1, 1.0 and 10.

Discuss why the modelling error grows when A is made larger.

Problem 3.8. Consider the following nonlinear state space model

ẋ1(t) = −2x1(t) + 0.1x1(t)x2(t) + u(t) (3.14.8)

ẋ2(t) = −x1(t)− 2x2(t) (x1(t))
2 (3.14.9)

y(t) = x1(t) + (1 + x2(t))2 (3.14.10)

Build a linearized model around the operating point given by uQ = 1

Problem 3.9. Consider a nonlinear plant having a model given by

d2y(t)
dt2

+
[
1 + 0.2 sin

(
y(t)
)]dy(t)

dt
+ 0.5y(t) = 3u(t)− sign

(
u(t)
)

(3.14.11)

3.9.1 Find an approximate inverse for this plant by using the architecture shown
in Figure 2.7 on page 33, with h〈◦〉 a linear non-dynamic gain.

3.9.2 Set up a simulation as shown in Figure 3.7.

+
−

f〈◦〉

h〈◦〉 f〈◦〉u yr

z

e

+ −

Figure 3.7. Scheme to evaluate the quality of the inversion

where f〈◦〉 denotes the nonlinear dynamic system described in (3.14.11).
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3.9.3 Evaluate the quality of your inverse, by examining e, using the SIMULINK
schematic in Figure 3.7. Use sine waves of frequency in the range 0 to
0.5[rad/s].

Problem 3.10. Consider a nonlinear system having a model given by

d2y(t)
dt2

+ 3
[
y(t) + 0.2

(
y(t)
)3]dy(t)

dt
+ 2y(t) = 2

du(t)
dt

+ u(t) (3.14.12)

Build a linear (small signal) model around the operating point defined by a constant
input u = 2.

Problem 3.11. Consider the mechanical system shown in Figure 3.8. An external
force, f(t), is applied at one end of the lever, and it is counterbalanced by a spring
connected to the other end. The lever rotates around its center, where the friction
torque is proportional to the rotational speed.

Figure 3.8. Lever system

3.11.1 Without building any model nominate how many states the system has.

3.11.2 Build an input-output linear model for the system, with input ∆f(t) and
output ∆θ(t).

3.11.3 Build a linear state space model.



Chapter 4

CONTINUOUS TIME
SIGNALS AND SYSTEMS

4.1 Preview

The advantage of being able to cast a modeling problem into the form of a linear
approximation is that subsequent analysis, as well as controller design, can draw on
the wealth of information that is available about the operation of linear systems.
In this chapter we will cover the fundamentals of this theory for linear models of
continuous-time processes. Specific topics to be covered include:

• linear high order differential equation models

• Laplace transforms, which convert linear differential equations to algebraic
equations, thus greatly simplifying their study

• methods for assessing the stability of linear dynamic systems

• frequency response.

4.2 Linear Continuous Time Models

A fundamentally important linear model is the linear version of the general high
order differential model briefly introduced in section §3.8 of Chapter 3. The linear
form of this model is:

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ . . .+ a0y(t) = bn−1
dn−1

dtn−1
u(t) + . . .+ b0u(t) (4.2.1)

The reader is invited to recall the model given in equation (3.6.15) for a simple
servo. This model was in the form of (4.2.1).

Sometimes it is convenient to use operator notation to denote the operation of
differentiation. Consequently we introduce the Heaviside, or differential, operator
ρ〈◦〉 defined by

65
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ρ〈f(t)〉 = ρf(t) � df(t)
dt

(4.2.2)

ρn〈f(t)〉 = ρnf(t) = ρ
〈
ρn−1〈f(t)〉〉 = dfn(t)

dtn
(4.2.3)

In terms of this operator, the model (4.2.1) can be written

ρny(t) + an−1ρ
n−1y(t) + . . .+ a0y(t) = bn−1ρ

n−1u(t) + . . .+ b0u(t) (4.2.4)

Of major importance for linear systems is that the Principle of Superposition
holds. As described in subsection §3.6.2, this implies that if two inputs are applied
simultaneously, then the response due to these inputs is simply the sum of the
responses resulting from applying the inputs separately. This has wide ranging
implications. For example, one can understand the response to complex inputs by
decomposing them into elementary sub-components. Regrettably the same principle
fails to hold for nonlinear systems and this implies that one cannot analyze responses
in a piece meal fashion but instead one is forced to consider the combined inputs
in total. Thus one can gain much more insight into linear systems (for example by
considering benchmark inputs) than is, in general, feasible for nonlinear systems.

4.3 Laplace Transforms

The study of differential equations of the type described above is a rich and interest-
ing subject. Of all the methods available for studying linear differential equations,
one particularly useful tool is provided by Laplace Transforms. A powerful fea-
ture of this transform is that it converts linear differential equations into algebraic
equations. This is very helpful for analysis purposes.

Definition of the Transform

Consider a continuous time signal y(t), 0 ≤ t < ∞. The Laplace transform pair
associated with y(t) is defined as

L [y(t)] = Y (s) =
∫ ∞

0−
e−sty(t)dt (4.3.1)

L−1 [y(s)] = y(t) =
1
2πj

∫ σ+j∞

σ−j∞
estY (s)ds (4.3.2)
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Y (s) is referred to as the Laplace transform of y(t). The transform pair is well
defined if there exists σ ∈ R and a positive constant k < ∞ such that

|y(t)| < keσt ; ∀t ≥ 0 (4.3.3)

The region �{s} ≥ σ is known as the region of convergence of the transform.
The above transform pair can be used to derive a table of transform pairs.

Examples of transforms frequently used in control applications are given in Table
4.1. The reader is encouraged to derive some of the results from first principles.

There are also many interesting properties that flow from the definition of the
transforms. Some of these are listed in Table 4.2. Again the reader is encouraged
to revise these properties or to derive them from first principles.

4.4 Laplace Transform. Properties and Examples

Equations (4.3.1) and (4.3.2) provide a way to take signal and system descriptions
to the s-domain and back to the time domain. However, equation (4.3.2) is rarely
used to obtain the inverse Laplace transform, since the Laplace transform of most
signals of interest are rational fractions in s. Thus a partial fraction approach is
normally used to evaluate the inverse transform by comparing the transform with
standard results.

The reader is asked to verify the following key result (see Table 4.2) regarding
the transform of the derivative of a function

L
[
dy(t)
dt

]
= sY (s)− y(0−) (4.4.1)

where L [y(t)] = Y (s). This result can be used to convert differential equations into
algebraic equations in the variable s.

We illustrate by an example.

Example 4.1. Consider the d.c. motor problem described in Example 3.4. Say,
by way of illustration, that a1 = 2, b0 = 1 (note that, in this particular example,
a0 = 0). Then applying (4.4.1) and taking Laplace transforms of the model we
obtain

s2Θ(s) + 2sΘ(s)− (s+ 2)θ(0−)− θ̇(0−) = Va(s) (4.4.2)

Say that the initial conditions are specified as θ(0−) = 0, θ̇(0−) = 0 and that the
input is a unit step applied at t = 0. Then
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f(t) (t ≥ 0) L [f(t)] Region of Convergence

1
1
s

σ > 0

δD(t) 1 |σ| < ∞

t
1
s2

σ > 0

tn n ∈ Z
+ n!

sn+1
σ > 0

eαt α ∈ C
1

s− α
σ > �{α}

teαt α ∈ C
1

(s− α)2
σ > �{α}

cos(ωot)
s

s2 + ω2
o

σ > 0

sin(ωot)
ωo

s2 + ω2
o

σ > 0

eαt sin(ωot+ β)
(sinβ)s+ ω2

o cosβ − α sinβ
(s− α)2 + ω2

o

σ > �{α}

t sin(ωot)
2ωos

(s2 + ω2
o)2

σ > 0

t cos(ωot)
s2 − ω2

o

(s2 + ω2
o)2

σ > 0

µ(t)− µ(t− τ)
1− e−sτ

s
|σ| < ∞

Table 4.1. Laplace transform table
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f(t) L [f(t)] Names

l∑
i=1

aifi(t)
l∑

i=1

aiFi(s) Linear combination

dy(t)
dt

sY (s)− y(0−) Derivative Law

dky(t)
dtk

skY (s)−∑k
i=1 s

k−i d
i−1y(t)
dti−1

∣∣∣∣
t=0−

High order derivative

∫ t

0−
y(τ)dτ

1
s
Y (s) Integral Law

y(t− τ)µ(t − τ) e−sτY (s) Delay

ty(t) −dY (s)
ds

tky(t) (−1)k d
kY (s)
dsk∫ t

0−
f1(τ)f2(t− τ)dτ F1(s)F2(s) Convolution

lim
t→∞ y(t) lim

s→0
sY (s) Final Value Theorem

lim
t→0+

y(t) lim
s→∞ sY (s) Initial Value Theorem

f1(t)f2(t)
1
2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(s− a) Frequency Shift

Table 4.2. Laplace transform properties. Note that Fi(s) = L [fi(t)], Y (s) =
L [y(t)], k ∈ {1, 2, 3, . . .}, f1(t) = f2(t) = 0 ∀t < 0.
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Θ(s) =
(

1
s2 + 2s

)
Va(s) (4.4.3)

=
(

1
s2 + 2s

)
1
s

(4.4.4)

Expanding in partial fractions 1 gives

Θ(s) =
1

4(s+ 2)
+

1
2s2

− 1
4s

(4.4.5)

Hence, applying the results from Table 4.1, the output response for t ≥ 0 is

θ(t) =
1
4
e−2t +

1
2
t− 1

4
(4.4.6)

✷✷✷

Laplace transforms are useful in the study of linear differential systems since
they convert differential equations to algebraic equations.

4.5 Transfer Functions

4.5.1 High Order Differential Equation Models

Consider again the linear high order differential equation model (4.2.1). Taking
Laplace Transforms converts the differential equation into the following algebraic
equation:

snY (s) + an−1s
n−1Y (s) + . . .+ a0Y (s)

= bn−1s
n−1U(s) + . . .+ b0U(s) + f(s, xo) (4.5.1)

where f(s, xo) stands for a function of the initial conditions. In the case of zero
initial conditions, we have

Y (s) = G(s)U(s) (4.5.2)

where
1Use the MATLAB command residue
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G(s) =
B(s)
A(s)

(4.5.3)

and

A(s) =sn + an−1s
n−1 + . . .+ a0 (4.5.4)

B(s) =bn−1s
n−1 + bn−2s

n−2 + . . .+ b0 (4.5.5)

G(s) is called the transfer function. The representation (4.5.3) is a very useful
one in gaining insights into various control design questions.

Example 4.2. The transfer function for the system in example 4.1 is

G(s) =
1

s2 + 2s
(4.5.6)

4.5.2 Transfer Functions for Continuous Time State Space Mod-
els

As usual, we can use Laplace transform to solve the differential equations arising
from a state space model. Taking Laplace transform in (3.6.5), (3.6.6) yields

sX(s)− x(0) = AX(s) +BU(s) (4.5.7)
Y (s) = CX(s) +DU(s) (4.5.8)

and hence

X(s) = (sI−A)−1x(0) + (sI−A)−1BU(s) (4.5.9)

Y (s) = [C(sI−A)−1B+D]U(s) +C(sI−A)−1x(0) (4.5.10)

Actually, these equations can be used to re-derive the formula for the solution to
the state space model. In particular, equation (3.7.7) can be obtained by applying
the inverse Laplace transform to (4.5.10) and by noting that

L [eAt
]
= (sI−A)−1 (4.5.11)

We see that, with zero initial conditions, the Laplace Transform of the output,
Y (s), is related to the transform of the input U(s) as follows

Y (s) = G(s)U(s) (4.5.12)

G(s) = C(sI−A)−1B+D (4.5.13)

Thus G(s) is the system transfer function.
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Example 4.3. Consider again the inverted pendulum from Chapter 3. If we derive
the transfer function from U to Y then we obtain

G(s) = C(sI −A)−1B (4.5.14)

=
1
M

(s2 − b2)
s2(s2 − a2)

(4.5.15)

where a =
√

(M+m)g
M� ; b =

√
g
�

✷✷✷

We next define some terms used in connection with transfer functions.
Consider the transfer function given in equations (4.5.3) to (4.5.5).
For simplicity, we assume for the moment that B(s) and A(s) are not simulta-

neously zero for the same value of s. (This assumption will be further clarified in
connection with controllability and observability in Chapter 17.) We then define
the following terms.

(i) The roots of B(s) = 0 are called the system zeros.

(ii) The roots of A(s) = 0 are called the system poles.

(iii) If A(s) = 0 has nk roots at s = λk, the pole λk is said to have multiplicity nk.

(iv) The difference in degrees between A(s) and B(s) is called the relative degree.

(v) If m < n we say that the model is strictly proper. This means positive relative
degree.

(vi) If m = n we say that the model is biproper. This means zero relative degree.

(vii) If m ≤ n we say that the model is proper.

(viii) If m > n we say that the model is improper, or has negative relative degree.

✷✷✷

Remark 4.1. Real systems are almost always strictly proper. However some con-
troller design methods lead to biproper or even to improper transfer functions. To
be implemented, these controllers are usually made proper e.g. by augmenting A(s)
with factors of the type (αis+ 1), where αi ∈ R+.

Remark 4.2. Often practical systems have a time delay between input and output.
This is usually associated with the transport of material from one point to another.
For example, if there is a conveyor belt or pipe connecting different parts of a plant,
then this will invariably introduce a delay.

The transfer function of a pure delay is of the form (see Table 4.2):
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H(s) = e−sTd (4.5.16)

where Td is the delay (in seconds). Td will typically vary depending on the trans-
portation speed.

Example 4.4 (Heating system). As a simple example of a system having a pure
time delay consider the heating system shown in Figure 4.1.

Figure 4.1. Heat transfer system

The transfer function from input (the voltage applied to the heating element) to
the output (the temperature as seen by the thermocouple) is approximately of the
form:

H(s) =
Ke−sTd

(τs+ 1)
(4.5.17)

Note that K, Td and τ all depend on the speed of the fan which changes the
transport lag from the heater to the measured output as well as various heat transfer
coefficients.

Although this is a very simple example, the kind of model given in (4.5.17) is
extremely prevalent in process control applications.

✷✷✷

Our conclusion regarding transfer functions can be summarized as follows:

Transfer functions describe the input-output properties of linear systems in
algebraic form.
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4.6 Stability of Transfer Functions

We have seen above that the response of a system having transfer function G(s) is
of the form:

Y (s) = G(s)U(s) +
p∑

k=1

nk∑
i=1

βki
(s− λk)i

(4.6.1)

where every βki is a function of the initial conditions, and where, for completeness,
we have assumed that every pole, at s = λk, has multiplicity nk. This latter
assumption implies that n1 + n2 + . . .+ np = n

We say that the system is stable if any bounded input produces a bounded
output for all bounded initial conditions. In particular, we can use a partial fraction
expansion to decompose the total response into the response of each pole taken
separately. For continuous-time systems, we then see that stability requires that
the poles have strictly negative real parts, i.e., they need to be in the open left half
plane (OLHP) of the complex plane s . This also implies that, for continuous time
systems, the stability boundary is the imaginary axis.

Example 4.5. Consider the system of example 4.1. The poles of this transfer
function are −2 and 0. These do not lie in the open left half plane, OLHP (0 is in
the closed left half plane, CLHP). Thus the system is not stable. Indeed, the reader
should verify that a non-zero constant input will produce an output which increases
without bound.

4.7 Impulse and Step Responses of Continuous Time Linear Sys-
tems

Of special interest in the study of linear systems is the response to a dirac delta
function. This can be considered as the limit as � → 0 of the pulse shown in
Figure 4.2. The Laplace Transorm of the Dirac Delta is 1 (see Table 4.1). Hence
if we were to apply such an input to a system with zero initial conditions then the
output response would simply be Y (s) = G(s)U(s) = G(s). We can summarize this
observation as follows:

The transfer function of a continuous time system is the Laplace transform of
its response to an impulse (Dirac’s delta) with zero initial conditions.

Because of the idealization implicit in the definition of an impulse, it is more
common to study a system’s dynamic behavior using the step response, i.e. when
U(s) = 1/s. This leads to the so called step response.

Y (s) = G(s)
1
s

(4.7.1)
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Figure 4.2. Discrete pulse

Application of the final value theorem (see Table 4.2) shows that the steady
state response (provided it exists) for a unit step is given by

lim
t→∞ y(t) = y∞ = lim

s→∞ sG(s)
1
s
= G(0) (4.7.2)

If the system is stable, then the transient part of the step response will decay
exponentially to zero and hence y∞ will exist. Note that if G(s) has one or more
zeros at s = 0, then y∞ = 0.

It is also useful to define a set of parameters which succinctly describe certain
relevant properties of the system dynamics. To introduce these definitions, we
consider a stable transfer function having the step response shown in Figure 4.3.

We then define the following indicators:

Steady state value, y∞: the final value of the step response (this is meaningless
if the system has poles in the CRHP).

Rise time, tr : the time elapsed up to the instant at which the step response
reaches, for the first time, the value kry∞. The constant kr varies from author
to author, being usually either 0.9 or 1.

Overshoot, Mp : the maximum instantaneous amount by which the step response
exceeds its final value. It is usually expressed as a percentage of y∞.

Undershoot, Mu : the (absolute value of the) maximum instantaneous amount
by which the step response falls below zero.



76 Continuous Time Signals and Systems Chapter 4

Settling time, ts : the time elapsed until the step response enters (without leaving
it afterwards) a specified deviation band, ±δ, around the final value. This
deviation, δ, is usually defined as a percentage of y∞, say 2% to 5%.
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Figure 4.3. Step response indicators

4.8 Poles, Zeros and Time Responses

We next examine a number of fundamental properties of poles and zeros of transfer
functions. At this point we are not interested in how these transfer functions arise.
Later we will relate these results to specific transfer functions that arise in feedback
systems.

For the moment, we will consider a general transfer function of the form

H(s) = K

∏m
i=1(s− βi)∏n
l=1(s− αl)

(4.8.1)

where αl ∈ C and βi ∈ C. If we pressume again that there is no values of l and i
such that αl = βi then, β1, β2, . . . , βm and α1, α2, . . . , αn are the zeros and poles
of the transfer function, respectively. The relative degree is nr

�
= n−m.
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We will be particularly interested in those zeros which lie on, or in the neigh-
borhood of, the imaginary axis, and in those poles which lie in the RHP. Poles and
zeros in these locations play a fundamental role on the dynamic behavior of systems.

A special class of transfer functions arises when all poles and zeros lie in the
left half of the complex plane s . Traditionally these transfer functions have been
called minimum phase transfer functions . In the sequel, however, we will use this
name as simply referring to transfer functions with no RHP zeros irrespective of
whether they have RHP poles or not. We will say that a zero is non minimum
phase (NMP) if it lies in the closed RHP, otherwise it will be known as a minimum
phase zero. If a transfer function is referred to as a stable transfer function, the
implication is that all its poles are in the open LHP; if it is said to be unstable it
has at least one pole in the closed RHP. The poles themselves are also called stable
or unstable poles, depending on whether they lie in the open LHP or closed RHP. 2

We next investigate the transient behavior arising from poles and zeros.

4.8.1 Poles

The reader will recall that any scalar rational transfer function can be expanded into
a partial fraction expansion, each term of which contains either a single real pole,
a complex conjugate pair or multiple combinations with repeated poles. Thus an
understanding of the effect of poles on transient performance reduces to an under-
standing of the transients due to first and second order poles and their interactions.

A general first order pole contributes

H1(s) =
K

τs+ 1
(4.8.2)

The response of this system to a unit step can be computed as

y(t) = L−1

[
K

s(τs + 1)

]
= L−1

[
K

s
− Kτ

τs+ 1

]
= K(1− e−

t
τ ) (4.8.3)

The signal y(t) in equation (4.8.3) can be depicted as in Figure 4.4.
From Figure 4.4 we see that the parametersK (= y∞) and τ (the time constant)

can be computed graphically.
For the case of a pair of complex conjugate poles, it is customary to study a

canonical second order system with the transfer function

H(s) =
ω2
n

s2 + 2ψωns+ ω2
n

(4.8.4)

2Sometimes, with abuse of language, non minimum phase zeros are also called unstable zeros,
since they lie in the s-plane region where poles are unstable.
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Step Response
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Figure 4.4. Step response of a first order system

where ψ (0 < ψ < 1) is known as the damping factor and ωn, as the natural
or undamped natural frequency. We also define for future use, the damped natural
frequency, ωd, as

ωd = ωn
√
1 + ψ2 (4.8.5)

This system has two complex conjugate poles, s1 and s2, which are given by

s1,2 = −ψωn ± jωd = ωne
±j(π−β) (4.8.6)

where β is the angle such that cosβ = ψ.
For this system, the Laplace transform of its unit step response is given by

Y (s) =
ω2
n

(s2 + 2ψωns+ ω2
n)s

=
ω2
n

[(s+ ψωn)2 + ω2
d] s

(4.8.7)

Expanding in partial fractions we obtain

Y (s) =
1
s
− s+ ψωn

(s+ ψωn)2 + ω2
d

− ψωn
(s+ ψωn)2 + ω2

d

(4.8.8)

=
1
s
− 1√

1− ψ2

[√
1− ψ2

s+ ψωn
(s+ ψωn)2 + ω2

d

− ψ
ωd

(s+ ψωn)2 + ω2
d

]
(4.8.9)

On applying the inverse Laplace transform we finally obtain

y(t) = 1− e−ψωnt√
1− ψ2

sin(ωdt+ β) (4.8.10)

The main characteristics of this response are shown in Figure 4.5. In that figure,
y∞ = 1 and Td = 2π/ωd.

We can also compute some of the indicators described in Figure 4.3 on page 76.
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Figure 4.5. Pole location and unit step response of a canonical second order
system.

Rise time

For this case we use kr = 1 (see Figure 4.3 on page 76) and we thus have that

e−ψωntr√
1− ψ2

sin(ωdtr + β) = 0 (4.8.11)

From where we obtain

tr =
π − β

ωd
(4.8.12)

Overshoot

The maximum overshoot, Mp, and the instant at which it occurs, tp, can be com-
puted by differentiation of y(t) and then equating this derivative to zero.

dy(t)
dt

= − e−ψωnt√
1− ψ2

[−ψωn sin(ωdt+ β) + ωd cos(ωdtr + β)] (4.8.13)

Thus, setting this derivative equal to zero, we have that ωdtp = π and the
overshhoot time tp results

tp =
π

ωd
=

Td
2

(4.8.14)

In turn, the overshoot is given by

Mp = y(tp)− 1 = − e
−πψωn

ωd√
1− ψ2

sin(π + β) = e
− πψ√

1−ψ2 (4.8.15)
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The above expressions suggest that a small damping factor ψ will lead to small
rise time, at the expense of a high overshoot. We can also appreciate that the decay
speed and, consequently, the settling time, are determined by the product ψωn.

✷✷✷

Every pole generates a special component or natural mode in the system response
to an impulsive input. These modes are present in the system response to any given
input (except in very special cases when poles coincide with zeros).

We will usually refer to fast poles as those poles which are much farther away
from the stability boundary than the other system poles. This is also equivalent
to saying that the transients associated with fast poles extinguish faster than those
associated with other poles. On the other side, we will use the expression dominant
or slow pole(s) to denote OLHP system pole(s) which are closer to the stability
boundary than the rest of the system poles. This is equivalent to saying that the
transients associated with the dominant poles decay slower than the rest.

If, for example, the system poles are (−1;−2± j6;−4;−5± j3) we can say that
the dominant pole is −1, and the fast poles are −5± j3.

4.8.2 Zeros

The effect that zeros have on the response of a transfer function is a little more subtle
than that due to poles. One reason for this is that whilst poles are associated with
the states in isolation, zeros arise from additive interactions amongst the states
associated with different poles. Moreover, the zeros of a transfer function depend
on where the input is applied and how the output is formed as a function of the
states.

Although the location of the poles determines the nature of system modes, it is
the location of the zeros which determines the proportion in which these modes are
combined. These combinations may look completely different from the individual
modes.

In a way which parallels the definitions for the system poles, we define fast and
slow zeros. Fast zeros are those which are much farther away from the stability
boundary than the dominant poles. On the other hand, slow zeros are those which
are much closer to the stability boundary than the system dominant poles.

To illustrate some of the issues discussed so far, we consider the following ex-
ample.

Example 4.6. Consider a system with transfer function given by

H(s) =
−s+ c

c(s+ 1)(0.5s+ 1)
(4.8.16)

This structure allows us to study the effects of a variable zero location, without
affecting the location of the poles and the d.c. gain.

In this system we observe that there are two natural modes: e−t and e−2t arising
from the two poles at −1 and −2 respectively. The first of these modes will be almost
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absent in the response as c approaches −1. The situation is the same for the second
mode when c approaches −2.

The more general situation can be appreciated from Figure 4.6. In that figure,
the corresponding value for c appears besides each response. We can see that a fast
zero, i.e. |c| � 1, has no significant impact on the transient response. When the
zero is slow and stable, then one obtains significant overshoot, whereas when the
zero is slow and unstable, then significant undershoot is obtained. Indeed the effect
of different zero locations can be seen to be quite dramatic in this example, where
400% overshoot and 500% undershoot are observed depending on the zero location.
The reader might like to verify that even more dramatic results occur if the zeros
are shifted even closer to the origin. These properties actually hold quite generally
as we show below.

✷✷✷

Indeed, the issue of undershoot is readily understood using the following lemma
which is an elementary consequence of the definition of the transform.

Lemma 4.1. Let H(s) be a strictly proper function of the Laplace variable s with
region of convergence �{s} > −α. Denote the corresponding time function by h(t),
i.e.

H(s) = L [h(t)] (4.8.17)

Then, for any z0 such that �{z0} > −α, we have

∫ ∞

0

h(t)e−z0tdt = lim
s→z0

H(s) (4.8.18)

Proof

From the definition of the Laplace transform we have that, for all s in the region of
convergence of the transform, i.e. for �{s} > −α

H(s) =
∫ ∞

0

h(t)e−stdt (4.8.19)

The result follows since z0 is in the region of convergence of the transform.
✷✷✷

We illustrate this result by a simple example:

Example 4.7. Consider the signal

y(t) = e+2t t ≥ 0 (4.8.20)
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Then

Y (s) =
1

s− 2
for �{s} > 2 (4.8.21)

Now consider

I(z0) =

∞∫
0

e−z0ty(t)dt (4.8.22)

Clearly for z0 = 3, we have

I(3) =

∞∫
0

e−3te2tdt =

∞∫
0

e−tdt = 1 (4.8.23)

Notice that this is correctly predicted by Lemma 4.1 since

Y (3) =
1

3− 2
= 1 (4.8.24)

However, if we take z0 = 1, then Y (1) = −1. Yet clearly I(z0) is ∞. This is in
accord with Lemma 4.1 since z0 = 1 does not lie in the region of convergence of the
transform.

✷✷✷

The above lemma is used below to quantify the relationships between zeros and
certain key indicators of the system dynamics.

Lemma 4.2 (Non minimum phase zeros and undershoot). Assume a linear,
stable system with transfer function H(s) having unity d.c. gain and a zero at s = c,
where c ∈ R+. Further assume that the unit step response, y(t), has a settling time
ts (see Figure 4.3 on page 76), i.e. 1 + δ ≥ |y(t)| ≥ 1 − δ (δ � 1), ∀t ≥ ts. Then
y(t) exhibits an undershoot Mu which satisfies

Mu ≥ 1− δ

ects − 1
(4.8.25)

Proof

Define v(t) = 1− y(t), then

V (s) = (1−H(s))
1
s

(4.8.26)
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Figure 4.6. Effect of different zero locations on the step response

We notice that the region of convergence for V (s) is given by �{s} > 0. Thus c
is inside that region and we can apply Lemma 4.1 on page 81 to obtain

V (c) =
1−H(c)

c
=

1
c
=
∫ ∞

0

v(t)e−ctdt (4.8.27)

We then split the integration interval into [0, ts]∪(ts,∞). Consequently (4.8.27)
leads to

∫ ts

0

v(t)e−ctdt+
∫ ∞

ts

|v(t)|e−ctdt ≥ 1
c

(4.8.28)

Also, using the definition for ts we notice that |v(t)| ≤ δ � 1 ∀t ≥ ts. If we
additionally note that

max
t≥0

{v(t)} = Vmax = 1 +Mu > 0 (4.8.29)

then, from (4.8.28), we obtain

1
c
≤
∫ ts

0

Vmaxe
−ctdt+

∫ ∞

ts

δe−ctdt = Vmax
1− e−cts

c
+

δe−cts

c
(4.8.30)

Finally using, (4.8.29) the result follows.
✷✷✷

We further observe that if cts � 1 then (4.8.25) (and recalling that δ � 1)
becomes
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Mu >
1
cts

(4.8.31)

The lemma above establishes that, when a system has non minimum phase
zeros, there is a trade off between having a fast step response and having small
undershoot.

A similar result can be established for a real LHP zero, i.e. when the system has
a real LHP zero with magnitude much smaller than the (real part of the) dominant
system pole. This result is established in the following lemma.

Lemma 4.3 (Slow zeros and overshoot). Assume a linear, stable system with
transfer function H(s) having unity d.c. gain and a zero at s = c, c < 0. Define
v(t) = 1− y(t), where y(t) is the unit step response. Further assume that

A-1 The system has dominant pole(s) with real part equal to −p, p > 0.

A-2 The zero and the dominant pole are related by

η
�
=
∣∣∣∣ cp
∣∣∣∣� 1 (4.8.32)

A-3 The value of δ defining the settling time (see Figure 4.3 on page 76) is chosen
such that there exists 0 < K which yields 3

|v(t)| < Ke−pt ∀t ≥ ts (4.8.33)

Then the step response has an overshoot which is bounded below according to

Mp ≥ 1
e−cts − 1

(
1− Kη

1− η

)
(4.8.34)

Proof

We first have that

V (s) = L [v(t)] = (1 −H(s))
1
s
=
∫ ∞

0

v(t)e−stdt (4.8.35)

3Note this value of K is highly dependent on the dominant pole, i.e. it is tightly linked to p.
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We notice that the region of convergence for V (s) is given by �{s} > −p. Thus
c is inside that region (see (4.8.32)) and we can apply Lemma 4.1 on page 81 to
obtain

1
c
=
∫ ∞

0

v(t)e−ctdt =
∫ ts

0

v(t)e−ctdt+
∫ ∞

ts

v(t)e−ctdt (4.8.36)

Assume now that the minimum value of v(t) in [0; ts] is −Mp and note that
v(t) > −Ke−pt, ∀t > ts. Then, both integrals on the right hand side in equation
(4.8.36) can be substituted by their minimum values to yield

1
c
≥ −Mp

∫ ts

0

e−ctdt−K

∫ ∞

ts

e−(p+c)tdt ⇐⇒

− 1
c
≤ Mp

∫ ts

0

e−ctdt+K

∫ ∞

ts

e−(p+c)tdt (4.8.37)

Then the result (4.8.34) follows on solving the above integrals and using (4.8.32).
✷✷✷

Note that if cts � 1 and Kη � 1 then an approximate lower bound for Mp is
given by

Mp ≥ 1
−cts (4.8.38)

The lemma above establishes that, when a stable system has slow zeros, there
is a trade off between having a fast step response and having small overshoot.

We will employ a similar line of argument to the above, in Chapter 8, when we
study the effect of open loop poles and zeros on the transient response of feedback
control systems.

4.9 Frequency Response

We next study the system response to a rather special input, namely a sine wave.
The reason for doing so is that the response to sine waves also contains rich infor-
mation about the response to other signals. This can be appreciated from Fourier
analysis, which tells us that any signal defined on an interval [to, tf ] can be repre-
sented as a linear combination of sine waves of frequencies 0, ωof , 2ωof , 3ωof , . . . ,
where ωof = 2π/(tf − to) is known as the fundamental frequency. The Principle of
Superposition then allows us to combine the response to the individual sinewaves
to determine the response to the composite waveform.
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Consider a linear stable system described in transfer function form:

H(s) = K

∑m
i=0 bis

i

sn +
∑n−1

k=1 aks
k

(4.9.1)

and let the system input be an exponential, esot. For simplicity we assume that
the poles are distinct and none of them is equal to so. Then the Laplace transform
of the system response can be computed using a partial fraction expansion to yield
the decomposition:

Y (s) =
H(so)
s− so

+ Yh(s) (4.9.2)

where the first term is the response forced by the input (the forced response) and
the second term is the decaying response due to initial conditions (the natural
response). The corresponding time domain response is

y(t) = H(so)esot +
n∑

k=1

Cke
λkt (4.9.3)

where λk, k = 1, 2, . . . , n are the system natural frequencies, i.e. the poles of H(s),
and the C′

ks depend on the initial conditions.
Clearly, the second term on the right hand side of (4.9.3) decays to zero if the

system is stable.
Next note that

sin(ωt) =
1
2j
(ejωt − e−jωt) (4.9.4)

Hence the system response to a sine wave input can be computed by combining the
response to esot with so = jω and to esot with so = −jω.

Note that evaluating H(s) at s = jω yields a complex number, which can
conveniently be represented by its amplitude and phase in polar coordinates as

H(jω) = |H(jω)|ejφ(ω) (4.9.5)

Then, the steady state response to a sine wave input is obtained from (4.9.3) to
(4.9.5)

y(t) =
1
2j
[
H(jω)ejωt −H(−jω)e−jωt

]
(4.9.6)

=
1
2j

[
|H(jω)|ej(ωt+φ(ω)) − |H(jω)|e−j(ωt+φ(ω)

]
(4.9.7)

= |H(jω)| sin(ωt+ φ(ω)) (4.9.8)
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We thus see that

A sine wave input forces a sine wave at the output with the same frequency.
Moreover, the amplitude of the output sine wave is modified by a factor equal
to the magnitude of H(jω) and the phase is shifted by a quantity equal to the
phase of H(jω).

An interesting observation is that if H(jω) is known at least for q nonzero dif-
ferent frequencies, where q = 1+ integer part of [(m+n)/2], then H(s) is uniquely
determined at all other frequencies as well.

Remark 4.3. If the system contains a time delay, i.e. the transfer function is
changed to

H(s) = e−sτ

∑m
i=0 bis

i

sn +
∑n−1

k=1 aks
k

(4.9.9)

then, it can be proven that, equation (4.9.8) becomes

y(t) =

{
0 if t < τ

|H(jω)| sin(ωt+ φ(ω)) +
∑n

k=1 Cke
λk(t−τ) if t ≥ τ

(4.9.10)

where φ(ω) now includes an additional term −τω. The last term in (4.9.10) is
formed by the system natural modes, and the constants Ck depend on the initial
conditions.

✷✷✷

Frequency responses are a very useful tool for all aspects of analysis, synthesis
and design of controllers and filters. Because of their importance, special plots are
used to graph them. They are typically depicted graphically in either magnitude
and phase form (commonly called a Bode diagram) or in the form of a polar plot
(commonly called a Nyquist plot). Much more will be said about Nyquist diagrams
in Chapter 5. We therefore leave this topic until later. We give a brief treatment
of Bode diagrams below.

4.9.1 Bode Diagrams

Bode diagrams consist of a pair of plots. One of these plots depicts the magnitude of
the frequency response as a function of the angular frequency, and the other depicts
the angle of the frequency response, also as a function of the angular frequency.

Usually, Bode diagrams are drawn with special axes:
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• The abscissa axis is linear in log(ω) where the log is base 10. This allows
a compact representation of the frequency response along a wide range of
frequencies. The unit on this axis is the decade, where a decade is the distance
between ω1 and 10ω1 for any value of ω1.

• The magnitude of the frequency response is measured in decibels [dB], i.e. in
units of 20 log |H(jω)|. This has several advantages, including good accuracy
for small and large values of |H(jω)|, facility to build simple approximations
for 20 log |H(jω)|, and the fact that the frequency response of cascade systems
can be obtained by adding the individual frequency responses.

• The angle is measured on a linear scale in radians or degrees.

Software packages such as MATLAB provide special commands to compute the
frequency response and to plot Bode diagrams. However, some simple rules allow
one to sketch an approximation for the magnitude and phase diagrams. Consider a
transfer function given by

H(s) = K

∏m
i=1(βis+ 1)

sk
∏n

i=1(αis+ 1)
(4.9.11)

Then

20 log |H(jω)| = 20 log(|K|)− 20k log |ω|+
m∑
i=1

20 log |βijω + 1| −
n∑
i=1

20 log |αijω + 1| (4.9.12)

∠ (H(jω)) = ∠(K)− k
π

2
+

m∑
i=1

∠(βijω + 1)−
n∑
i=1

∠(αijω + 1) (4.9.13)

We thus see that the Bode diagram of any transfer function can be obtained by
either adding or subtracting magnitudes (in [dB]) and phases of simple factors. We
observe that

• A simple gain K has constant magnitude and phase Bode diagram. The
magnitude diagram is a horizontal line at 20 log |K|[dB] and the phase diagram
is a horizontal line either at 0[rad] (when K ∈ R+) or at π[rad] (when K ∈
R

−).

• The factor sk has a magnitude diagram which is a straight line with slope
equal to 20k[dB/decade] and constant phase, equal to kπ/2. This line crosses
the horizontal axis (0[dB]) at ω = 1.
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• The factor as+1 has a magnitude Bode diagram which can be asymptotically
approximated as follows

◦ for |aω| � 1, 20 log |ajω+1| ≈ 20 log(1) = 0[dB], i.e. for low frequencies,
this magnitude is a horizontal line. This is known as the low frequency
asymptote.

◦ for |aω| � 1, 20 log |ajω + 1| ≈ 20 log(|aω|), i.e. for high frequencies,
this magnitude is a straight line with a slope of 20[dB/decade] which
crosses the horizontal axis (0[dB]) at ω = |a|−1. This is known as the
high frequency asymptote.

◦ the phase response is more complex. It roughly changes over two decades.
One decade below |a|−1 the phase is approximately zero. One decade
above |a|−1 the phase is approximately sign(a)0.5π[rad]. Connecting the
points (0.1|a|−1, 0) and (10|a|−1, 0) by a straight line , gives sign(a)0.25π
for the phase at ω = |a|−1. This is a very rough approximation.

• For a = a1 + ja2, the phase Bode diagram of the factor as+1 corresponds to
the angle of the complex number with real part 1− ωa2 and imaginary part
a1ω.

Example 4.8. Consider a transfer function given by

H(s) = 640
(s+ 1)

(s+ 4)(s+ 8)(s+ 10)
(4.9.14)

To draw the asymptotic behavior of the gain diagram we first arrange H(s) into
the form shown in equation (4.9.11), this leads to

H(s) = 2
(s+ 1)

(0.25s+ 1)(0.125s+ 1)(0.1s+ 1)
(4.9.15)

We thus have one constant factor (K = 2), and four factors of the form as+1.
Using the rules outlined above we obtain the asymptotic magnitude diagram and the
asymptotic phase diagram. Both of these are shown in Figure 4.7 together with the
exact Bode plots.

Remark 4.4. Although some time ago substantial effort was devoted to building
asymptotic approximations of the type outlined above, the appearance of powerful
software packages has made this effort no longer particularly important. Never-
theless, a basic understanding of the impact of poles and zeros on Bode diagrams
frequently provides valuable insight for the control engineer.

4.9.2 Filtering

In an ideal amplifier, the frequency response would be H(jω) = K, constant ∀ω,
i.e. every frequency component would pass through the system with equal gain and
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Figure 4.7. Exact (thick line) and asymptotic (thin line) Bode plots

no phase shift. However, all physical systems and devices have a finite speed with
which they can react and this implies H(jω) cannot be constant for all ω. One
way to interpret H(jω) not being equal to a constant for all ω, is that the system
filters inputs of different frequencies to produce the output. That is, the system
deals with different sine wave components selectively, according to their individual
frequencies. In this context, it is common to distinguish three frequency sets:

• The pass band in which all frequency components pass through the system
with approximately the same amplification (or attenuation) and with a phase
shift which is approximately proportional to ω.

• The stop band, in which all frequency components are stopped. In this band
|H(jω)| is small compared to the value of |H(jω)| in the pass band.

• The transition band(s), which are intermediate between a pass band and a
stop band.

Note that a system can have multiple pass or stop bands. These definitions are
the origin of the traditional filtering terms: low pass, band pass, high pass and band
reject filters.

To further refine these definitions, it is customary to refer to certain quantities:
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• Cut-off frequency ωc. This is a value of ω, such that |H(jωc)| = Ĥ/
√
2,

where Ĥ is respectively

◦ |H(0)| for low pass filters and band reject filters
◦ |H(∞)| for high pass filters
◦ the maximum value of |H(jω)| in the pass band, for band pass filters

• Bandwidth Bw . This is a measure of the frequency width of the pass band
(or the reject band). It is defined as Bw = ωc2 −ωc1, where ωc2 > ωc1 ≥ 0. In
this definition, ωc1 and ωc2 are cut-off frequencies on either side of the pass
band or reject band (for low pass filters, ωc1 = 0).

The above definitions are illustrated on the frequency response of a bandpass
filter shown in Figure 4.8. Here, the lower cut-off frequency is ωc1 = a ≈ 50 [rad/s]
and the upper cut-off frequency is ωc2 = b ≈ 200 [rad/s]. Thus, the bandwidth can
be computed as BW = ωc2 − ωc1 = 150 [rad/s].
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Figure 4.8. Frequency response of a bandpass filter

A system which has constant frequency response amplitude is known as an
all pass filter. The best known all pass filter is a pure time delay. Note that the
corresponding output amplitude response is equal to the input amplitude regardless
of the signal frequency. Rational stable all pass filters have the general form

Hap(s) = Kap
p(−s)
p(s)

(4.9.16)

where Kap is a constant and p(s) is any stable polynomial.

4.9.3 Distortion and Fidelity

When a system has a non ideal frequency response we say it introduces distortion.
To describe the different kinds of distortion that we commonly met in practice,
consider a signal f(t) given by
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f(t) =
nf∑
i=1

Ai sin(ωit+ αi) (4.9.17)

Say that this signal is the input to a linear stable system (e.g. an audio power
amplifier). Then we say that the system processes this signal with fidelity if the am-
plitude of all sine wave components are amplified (or attenuated) by approximately
the same factor and the individual responses have the same time delay through the
system. This requires that the frequency response satisfies

|H(jωi)| =Ho constant for i = 1, 2, . . . , nf (4.9.18)
φ(ωi) =koωi where ko is constant for i = 1, 2, . . . , nf (4.9.19)

Under these conditions, the waveform at the system output is identical to the
one at the input, but delayed by ko. When one or both conditions do not hold, the
wave form at the system output will be different to that of f(t), and the system
is then said to distort the signal. There can be either amplitude distortion (when
(4.9.18) does not hold), phase distortion (when (4.9.19) does not hold) or, both
phase and amplitude distortion (when both (4.9.18) and (4.9.19) do not hold).

The interpretation of this property in terms of filtering is that negligible dis-
tortion occurs if the set of frequencies of interest {ω1, ω2, . . . , ωnf} are well inside
the pass band of the system. Note that pure delays do not introduce distortion.
However rational all pass filters do introduce phase distortion, except at very low
frequencies.

4.10 Fourier Transform

A generalization of the idea of frequency response is encapsulated in Fourier trans-
forms. These give a way of representing broad classes of signals in the frequency
domain. Fourier transforms are also closely linked to Laplace transforms. However,
whereas Laplace transforms are one-sided (i.e. defined for t ∈ [0,∞)), Fourier trans-
forms are two-sided (i.e. defined for t ∈ (−∞,∞)). This difference leads to certain
changes in interpretation. For example, Laplace transforms include initial condition
effects and RHP poles correspond to exponentially increasing signals; however in
Fourier transforms, initial conditions are usually not treated and RHP poles corre-
spond to non causal signals (i.e. signals defined for t ∈ (−∞, 0)). For completeness,
we briefly review the key aspects of Fourier transforms below.

4.10.1 Definition of the Fourier Transform

Consider a continuous time signal f(t), defined for −∞ ≤ t < ∞. Then the Fourier
transform pair associated with f(t) is defined as
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F [f(t)] = F (jω) =
∫ ∞

−∞
e−jωtf(t)dt (4.10.1)

F−1 [F (jω)] = f(t) =
1
2π

∫ ∞

−∞
ejωtF (jω)dω (4.10.2)

F (jw) is referred to as the Fourier transform of f(t). The transform pair is well
defined if the signal f(t) is absolutely integrable, i.e.

∫ ∞

−∞
|f(t)| dt < ∞ (4.10.3)

It is also possible to use a limiting argument to extend the Fourier transform
to certain signals which do not satisfy (4.10.3). This is, for instance, the case for
bounded periodical signals. The Fourier transforms for some common signals are
shown in Table 4.3 and properties of the Transfer are given in Table 4.4

4.10.2 Fourier Transform Applications

In addition to the key property of linearity, further useful properties of this trans-
form are shown in Table 4.4 on page 95. When all these properties are put together,
they can be applied to solve a wide range of system and signal analysis problems.
To illustrate this consider the following example.

Example 4.9. Consider a linear system with input u(t) and output y(t) related by
the model

dy(t)
dt

+ 3y(t) = 2u(t) (4.10.4)

It is also known that u(t) = −0.5 sign(t) 4 and that y(0) = 0. Compute y(t) ∀t.

Solution

If we apply Fourier transform to (4.10.4) we obtain

jωY (jω) + 3Y (jω) = 2U(jω)⇔ Y (jω) =
2

jω + 3
U(jω) (4.10.5)

where U(jω) = −0.5F [sign(t)] = −0.5F [2µ(t)− 1] = −0.5
jω . Then

4Recall that the sign function is defined as -1 for a negative argument and +1 for a positive
argument
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f(t) ∀t ∈ R F [f(t)]

1 2πδ(ω)

δD(t) 1

µ(t) πδ(ω) +
1
jω

µ(t)− µ(t− to)
1− e−jωto

jω

eαtµ(t) �{α} < 0
1

jω − α

teαtµ(t) �{α} < 0
1

(jω − α)2

e−α|t| α ∈ R+ 2α
ω2 + α2

cos(ωot) π (δ(ω − ωo) + δ(ω − ωo))

sin(ωot) jπ (δ(ω + ωo)− δ(ω − ωo))

cos(ωot)µ(t) π (δ(ω − ωo) + δ(ω − ωo)) +
jω

−ω2 + ω2
o

sin(ωot)µ(t) jπ (δ(ω + ωo)− δ(ω − ωo)) +
ωo

−ω2 + ω2
o

e−αt cos(ωot)µ(t) α ∈ R+ jω + α

(jω + α)2 + ω2
o

e−αt sin(ωot)µ(t) α ∈ R+ ωo
(jω + α)2 + ω2

o

Table 4.3. Fourier transform table
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f(t) F [f(t)] Description

l∑
i=1

aifi(t)
l∑

i=1

aiFi(jω) Linearity

dy(t)
dt

jωY (jω) Derivative law

dky(t)
dtk

(jω)kY (jω) High order derivative∫ t

−∞
y(τ)dτ

1
jω

Y (jω) + πY (0)δ(ω) Integral law

y(t− τ) e−jωτY (jω) Delay

y(at)
1
|a|Y
(
j
ω

a

)
Time scaling

y(−t) Y (−jω) Time reversal∫ ∞

−∞
f1(τ)f2(t− τ)dτ F1(jω)F2(jω) Convolution

y(t) cos(ωot)
1
2
{Y (jω − jωo) + Y (jω + jωo)} Modulation (cosine)

y(t) sin(ωot)
1
j2

{Y (jω − jωo)− Y (jω + jωo)} Modulation (sine)

F (t) 2πf(−jω) Symmetry

f1(t)f2(t)
1
2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(jω − a) Frequency shift

Table 4.4. Fourier transform properties. Note that Fi(jω) = F [fi(t)] and
Y (jω) = F [y(t)].
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Y (jω) = − 1
(jω + 3)jω

= − 1
3jω

+
1

3(jω + 3)
= −1

3

(
1
jω

− 1
(jω + 3)

)
(4.10.6)

from where, on applying the inverse Fourier transform, we finally obtain

y(t) = −1
3
sign(t) +

1
3
e−3tµ(t) (4.10.7)

✷✷✷

One of the more attractive features of the Fourier transform is its connection
to frequency response, since (4.10.2) describes f(t) as a linear combination of ex-
ponentials of the form ejωt, where ω ranges continuously from −∞ to ∞. This
connection allows us to interpret the transform as describing the relative frequency
content of a given signal. For example, F (jωe) corresponds to the density of the
component of frequency ωe. Hence, when an input u(t) is applied to a linear system
with model (4.2.1), the output y(t) has a Fourier transform given by

Y (jω) = H(jω)U(jω) (4.10.8)

where H(jω) has the same interpretation as in section §4.9, i.e. the system complex
gain for a sine wave of angular frequency ω.

The reader should resist the temptation arising from the similarity of equations
(4.5.2) and (4.10.8), to conclude that we can find the Fourier transform from the
Laplace transform via a simple variable substitution, s ⇒ jω. This interpretation
only yields correct results for the case when the input is absolutely integrable, i.e.
if it satisfies (4.10.3) and the system is stable (see, for example, the Laplace and
the Fourier transforms for a unit step). This warning can be further understood by
considering an example system with (Laplace) transfer function given by

H(s) =
2

s− 3
(4.10.9)

This implies that the system response to u(t) = δD(t) (with zero initial condi-
tions) is y(t) = 2e3tµ(t). If we simply substitute s by jω in (4.10.9) and then apply
the inverse Fourier transform, the system response to u(t) = δD(t) would seem to
be y(t) = 2e3tµ(−t), i.e. an anticipatory reaction. This error is induced by the fact
that the Fourier transform for 2e3tµ(t) does not exist, since the integral (4.10.1)
does not converge. Actually within the region of convergence, the corresponding
transform corresponds to that of a non causal signal.

A commonly used result in Fourier analysis is Parseval’s Theorem. For com-
pleteness, we present this below:

Theorem 4.1. Let F (jω) and G(jω) denote the Fourier transform of f(t) and
g(t), respectively. Then
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∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F (jω)G(−jω) dω (4.10.10)

Proof

Using the inverse transform formula

∫ ∞

−∞
f(t)g(t) dt =

∫ ∞

−∞

1
2π

[∫ ∞

−∞
F (jω)ejωtdω

]
g(t) dt (4.10.11)

Interchanging the order of integration

∫ ∞

−∞
f(t)g(t)dt =

1
2π

∫ ∞

−∞
F (jω)

[∫ ∞

−∞
ejωtg(t)dt

]
dω (4.10.12)

=
1
2π

∫ ∞

−∞
F (jω)G(−jω) dω (4.10.13)

✷✷✷

A special case arises when f(t) = g(t), then

∫ ∞

−∞
{f(t)}2

dt =
1
2π

∫ ∞

−∞
|F (jω)|2 dω (4.10.14)

Remark 4.5. The reader may easily verify that Parseval’s theorem also applies
when f(t) and g(t) are matrices (vectors) of appropriate dimensions

4.11 Frequently Encountered Models

Many systems that are met in practice can be modeled by relatively simple first
and second order linear systems. It is thus important to be able to recognize these
systems when they occur.

Table 4.5 gives the time and frequency responses of simple linear models. The
reader is encouraged to evaluate some of these responses to verify the results since
familiarity with these responses can be very helpful when diagnosing a control prob-
lem, or for estimating models from which a controller can be designed.

For each system, the table presents the step response and the Bode diagrams.
Only one parameter at a time is varied and all of them are assumed to be positive.
The effect of the variation is shown on each graph with an arrow which points
towards the direction along which the parameter increases its value.

Some qualitative observations from Table 4.5 are
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System Parameter Step response Bode (gain) Bode(phase)

K

τs+ 1
K K

K

−π
2

τ
τ τ

τ

−π
2

ω2
n

s2 + 2ψωns+ ω2
ψ

ψ
ψ

ψ

−π

ωn
ωn

ωn

ωn

−π

as+ 1

(s+ 1)2
a

a

a

a

−π
2

−as+ 1

(s+ 1)2
a a

a

a

− 3π
2

Table 4.5. System models and influence of parameter variations

K

τs + 1
◦ The step response is a simple exponential rise.

◦ The parameter K is the d.c. gain. Increasing K increases the final value
of the step response.

◦ The parameter τ is the time constant. Increasing τ increases the rise
time.

ω2
n

s2 + 2ψωns+ ω2
◦ The step response is oscillatory (for ψ � 1).

◦ The parameter ψ is the damping. Increasing ψ causes the oscillations to
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decay faster.

◦ The parameter ωn is the undamped natural frequency. Increasing ωn
leads to oscillations with a shorter period.

as+ 1
(s+ 1)2

◦ The step response exhibits overshoot which does not oscillate (for a−1 <

1).

◦ The parameter −a−1 is a minimum phase zero. Increasing a increases
the amount of overshoot.

−as+ 1
(s+ 1)2

◦ The step response exhibits undershoot which does not oscillate.

◦ The value a−1 is known as a non-minimum phase zero (NMP). Increasing
a increases the amount of undershoot.

Of course, use of these simple models will usually involve some level of approxi-
mation. This fact needs to be borne in mind when utilizing the models for control
system design. The broader issue of describing modeling errors associated with
approximate linear models is taken up in the next section.

4.12 Modeling Errors for Linear Systems

Section §3.9 introduced the idea of errors between the nominal and calibration
models. If a linear model is used to approximate a linear system, then modeling
errors due to errors in parameters and/or complexity can be expressed in transfer
function form as

Y (s) = G(s)U(s) = (Go(s) +Gε(s))U(s) = Go(s)(1 +G∆(s))U(s) (4.12.1)

where Gε(s) denotes the AME and G∆(s) denotes the MME, introduced in section
§3.9.

AME and MME are two different ways of capturing the same modeling error.
The advantage of the MME is that it is a relative quantity, whereas the AME is an
absolute quantity. This can be seen by noting that

G∆(s) =
Gε(s)
Go(s)

=
G(s)−Go(s)

Go(s)
(4.12.2)

Usually linear models will accurately capture the behavior of a plant in the low
frequency region, i.e. the behavior of the plant when its inputs are constant or
slowly time varying. This is illustrated in the following example.
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Example 4.10. Time delays do not yield rational functions in the Laplace domain.
Thus a common strategy is to approximate the delay by a suitable rational expres-
sion. One possible approximation is

e−τs ≈
(−τs+ 2k

τs+ 2k

)k
k ∈ 〈1, 2, . . . 〉 (4.12.3)

where k determines the accuracy of the approximation.
For this approximation, determine the magnitude of the frequency response of

the MME.

Solution

We have that

G(s) = e−τsF (s) Go(s) =
(−τs+ 2k

τs+ 2k

)k
F (s) (4.12.4)

Hence

G∆(s) = e−τs

(−τs+ 2k
τs+ 2k

)−k

− 1 (4.12.5)

with frequency response magnitude given by

|G∆(jω)| =
∣∣e−jτω − e−j2kφ

∣∣ φ = arctan
ωτ

2k
(4.12.6)

The result is depicted in Figure 4.9, where ωτ is the normalized frequency.
✷✷✷

Some typical linear modeling errors include the following cases.

Numerical inaccuracies in the description of poles and zeros

Consider for instance a plant described by

G(s) =
1

as+ 1
F (s) and Go(s) =

1
(a+ δ)s+ 1

F (s) (4.12.7)

Here there is no error in complexity and no d.c. gain error, but the pole is in
error. Then

Gε(s) =
δs

(as+ 1)((a+ δ)s+ 1)
F (s) and G∆(s) =

δs

as+ 1
(4.12.8)



Section 4.12. Modeling Errors for Linear Systems 101

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Normalized frequency  (ω τ)

 M
ag

ni
tu

de
k=1 

k=3 

k=8 

Figure 4.9. MME for all pass rational approximation of time delays

Note that the effect of the AME vanishes at low frequencies and at high fre-
quencies. The magnitude of the frequency response of the MME is also small at low
frequencies but it grows up to a maximum value equal to δ

a for very high frequencies.
Numerical inaccuracies give rise to very special structures for Gε and G∆. One

of these situations occurs when the real plant has unstable poles. If the unstable
pole is not exactly known, then both the AME and the MME will be unstable.

Example 4.11. Consider a plant with G(s) and Go(s) as in (4.12.7), with a = −1,
δ = 0.2. Then, the AME and MME are given by

Gε(s) =
0.2s

(−s+ 1)(−0.8s+ 1)
F (s) and G∆(s) =

0.2s
−s+ 1

(4.12.9)

The instability of the AME and MME is evident.

✷✷✷

Missing pole

Say that the true plant and its nominal model are given by

G(s) =
1

as+ 1
F (s) and Go(s) = F (s) (4.12.10)

where F (s) is a given transfer function.
Again, there is no d.c. gain error, but

Gε(s) =
−as
as+ 1

F (s) and G∆(s) =
−as
as+ 1

(4.12.11)
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If, as normally happens, |Go(jω)| vanishes at high frequencies, then the AME
again has a band pass type characteristic in the frequency domain. The magnitude
of the frequency response of the MME will again be of high pass type, and for very
large frequency it will tend to 1.

Error in time delay

Say that the true plant and its nominal model are given by

G(s) = e−τsF (s) and Go(s) = e−τosF (s) (4.12.12)

There is no d.c. gain error, and the modeling errors in the frequency domain
are given by

Gε(jω) = 2je−λjω sin(κjω)F (jω) G∆(jω) = 2je−(λ−τo)jω sin(κjω)
(4.12.13)

where

κ =
τo − τ

2
and λ =

τo + τ

2
(4.12.14)

The corresponding magnitudes are

|Gε(jω)| =2
∣∣∣∣sin
(
ωτo
2

(
1− τ

τo

))∣∣∣∣ |F (jω)| (4.12.15)

|G∆(jω)| =2
∣∣∣∣sin
(
ωτo
2

(
1− τ

τo

))∣∣∣∣ (4.12.16)

These expressions, together with the assumption that |F (jω)| vanishes for very
high frequencies (as is the case for most real plants), indicate that the AME also
vanishes when ω → ∞. The situation is different for the MME; this error is very
small for low frequencies, but as ω increases, it oscillates between 0 and 2. The
above expressions also show that the bigger the absolute error is (measured by
|τ − τo|), the sooner (in frequency) the MME becomes significant.

Missing resonance effect

The omission of resonant modes is very common when modeling certain classes of
systems, such as robots arms, antennas and other large flexible structures. This
situation may be described by

G(s) =
ω2
n

s2 + 2ψωns+ ω2
n

F (s) Go(s) = F (s) 0 < ψ < 1

(4.12.17)
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The modeling errors are now given by

Gε(s) =
−s(s+ 2ψωn)

s2 + 2ψωns+ ω2
n

F (s) G∆(s) =
−s(s+ 2ψωn)

s2 + 2ψωns+ ω2
n

(4.12.18)

Under the assumption that |Go(jω)| vanishes for very high frequencies, the AME
effect on the frequency response is of band pass type. By contrast, the MME is high
pass, with a resonant peak which can be very large, depending on the value of the
damping factor ψ. In Figure 4.10 the magnitude of the frequency response for
different cases of ψ are shown.
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Figure 4.10. MME frequency response for omitted resonance, for different values
of the damping factor ψ.

4.13 Bounds for Modeling Errors

In control system design it is often desirable to account for model errors in some way.
Unfortunately, the model errors are rarely known precisely. However, inspection of
the examples in section §4.12 indicates that a common situation is for the MME
to have a magnitude which is small at low frequencies and grows to 1 or 2 at
high frequencies, with missing resonant modes producing peaks and other kinds
of behavior in the transition band. It is thus common to assume some knowledge
about the MME in the form of a bound. A typical specification might be

|G∆(jω)| < ε(ω) (4.13.1)

where ε(ω) is some given positive function of ω.
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4.14 Summary

• Ultimately, all physical systems exhibit some form of nonlinearity.

• Nevertheless, there is a strong incentive to find a model that is

◦ linear

◦ yet sufficiently accurate for the purpose

Incentives include the following properties of linear models:

◦ theory and techniques are significantly simpler and more tractable

◦ there are more closed form solutions as well as easier-to use software tools

◦ superposition holds; for example, the response to simultaneously acting
setpoint changes and disturbances is equal to the sum of these signals
acting individually

◦ a powerful body of frequency domain properties and results holds: poles,
zeros, transfer functions, Bode and Nyquist plots with their associated
properties and results

◦ relative degree, inversion, stability and inverse stability are easier to de-
fine and check

• Means to approximate physical systems by linear models include

◦ transformations, such as change of variable

◦ approximations, such as Taylor series in a neighborhood, black-box iden-
tification, etc.

• These points motivate the basic presumption of linearity used in the next few
chapters; later chapters introduce techniques for systems which are inherently
nonlinear.

• There are two key approaches to linear dynamic models:

◦ the, so-called, time domain, and

◦ the, so-called, frequency domain.

• Although these two approaches are largely equivalent, they each have their
own particular advantages and it is therefore important to have a good grasp
of each.

• In the time domain,

◦ systems are modeled by differential equations

◦ systems are characterized by the evolution of their variables (output etc)
in time
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◦ the evolution of variables in time is computed by solving differential
equations

• Stable time responses are typically characterized in terms of:

Characteristic Measure of

Steady state gain How the system, after transients, amplifies or attenu-
ates a constant signal

Rise time How fast the system reacts to a change in its input

Settling time How fast the system’s transient decays

Overshoot How far the response grows beyond its final value dur-
ing transients

Undershoot How far initial transients grow into the opposite direc-
tion relative to the final value

• In the frequency domain,

◦ modeling exploits the key linear system property that the steady state
response to a sinusoid is again a sinusoid of the same frequency; the sys-
tem only changes amplitude and phase of the input in a fashion uniquely
determined by the system at that frequency

◦ systems are modeled by transfer functions, which capture this impact as
a function of frequency

• Terms used to characterize systems in the frequency domain include

Characteristic Measure of

Pass band Frequency range where the system has minimal impact on the
amplitude of a sinusoidal input

Stop band Frequency range where the system essentially annihilates sinu-
soidal inputs

Transition band Frequency range between a system’s pass- and stop bands

Bandwidth The frequency range of a system’s pass band

Cut-off frequency A frequency signifying a (somewhat arbitrary) border between
a system’s pass- and transition band

• In the frequency domain, systems are typically characterized by
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Characteristic Significance

Frequency re-
sponse plots

Graphical representation of a systems impact on amplitude and
phase of a sinusoidal input as a function of frequency.

Poles The roots of the transfer function denominator polynomial;
they determine stability and, together with the zeros, the tran-
sient characteristics.

Zeros The roots of the transfer function numerator polynomial; they
do not impact on stability but determine inverse stability, un-
dershoot and, together with the poles, have a profound impact
on the system’s transient characteristics

Relative degree Number of poles minus number of zeros; determines whether a
system is strictly proper, biproper or improper

Strictly proper The system has more poles than zeros; it is causal and there-
fore implementable, it has an improper inverse and zero high-
frequency gain

Biproper The system has equal number of poles and zeros; it is imple-
mentable, has a biproper inverse and has a feed-through term,
i.e., a non-zero and finite high-frequency gain

Improper The system has more zeros than poles; it is not causal, cannot
be implemented, has a strictly proper inverse and has infinite
high-frequency gain.

• Particularly important linear models include

◦ gain

◦ first order model

◦ second order model

◦ integrator

◦ a pure time delay (irrational) and its rational approximation

• The importance of these models is due to

◦ them being frequently observed in practice

◦ more complex systems being decomposable into them by partial fraction
expansion

• Evaluating a transfer function at any one frequency yields a characteristic
complex number:

◦ its magnitude indicates the system’s gain at that frequency

◦ its phase indicates the system’s phase shift at that frequency

• With respect to the important characteristic of stability, a continuous time
system is
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◦ stable if and only if the real parts of all poles are strictly negative

◦ marginally stable if at least one pole is strictly imaginary and no pole
has strictly positive real part

◦ unstable if the real part of at least one pole is strictly positive

◦ non-minimum phase if the real part of at least one zero is strictly positive

• The response of linear systems to an arbitrary driving input can be decom-
posed into the sum of two components:

◦ the natural response, which is a function of initial conditions, but inde-
pendent of the driving input; if the system is stable, the natural response
decays to zero

◦ the forced response, which is a function of the driving input, but inde-
pendent of initial conditions

• Equivalent ways of viewing transfer function models include

◦ the Laplace transform of a system’s differential equation model

◦ the Laplace transform of the systems forced response to an impulse

◦ a model derived directly from experimental observation

• In principle, the time response of a transfer function can be obtained by taking
the inverse Laplace transform of the output; however, in practice one almost
always prefers to transform the transfer function to the time domain and to
solve the differential equations numerically.

• Key strengths of time domain models include:

◦ they are particularly suitable for solution and simulation on a digital
computer

◦ they are extendible to more general classes of models, such as nonlinear
systems

◦ they play a fundamental role in state space theory, covered in later chap-
ters

• Key strengths of frequency domain models (transfer functions) include:

◦ they can be manipulated by simple algebraic rules; thus, transfer func-
tions of parallel, series or feedback architectures can be simply computed

◦ properties such as inversion, stability, inverse stability and even a quali-
tative understanding of transients are easily inferred from knowledge of
the poles and zeros

• Time-domain and frequency domain models can be converted from one to the
other.
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• All models contain modeling errors.

• Modeling errors can be described as an additive (AME) or multiplicative
(MME) quantity.

• Modeling errors are necessarily unknown and frequently described by upper
bounds.

• Certain types of commonly occurring modeling errors, such as numerical inac-
curacy, missing poles, inaccurate resonant peaks or time delays, have certain
finger prints.

• One can generally assume that modeling errors increase with frequency, the
MME typically possessing a high-pass character.

4.15 Further Reading
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Doetsch, G. (1971). Guide to the applications of Laplace and Z-Transform. D. van
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Lathi, B. (1965). Signals, Systems and Communication. Wiley, New York.
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Effects of zeros on transient response
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4.16 Problems for the Reader

Problem 4.1. A system transfer function is given by

H(s) =
2

s+ a
(4.16.1)

4.1.1 Determine conditions under which the step response settles faster than the
signal e−4t

4.1.2 Compute the system bandwidth.

Problem 4.2. A system transfer function is given by

H(s) =
−s+ 1
(s+ 1)2

(4.16.2)

Compute the time instant, tu, at which the step response exhibits maximum
undershoot.

Problem 4.3. The unit step response of a system with zero initial conditions is
given by

y(t) = 3− 2e−2t − e−3t ∀t ≥ 0 (4.16.3)

4.3.1 Compute the system transfer function.

4.3.2 Compute the system response to a unit impulse.

Problem 4.4. A nonlinear system has an input-output model given by

dy(t)
dt

+ y(t)
(
1− 0.2 (y(t))2

)
= 2u(t) (4.16.4)

4.4.1 Determine the transfer function for the linearized model, as a function of the
operating point.

4.4.2 Find an operating point for which the above linear model is unstable.

Problem 4.5. A system transfer function has its poles at −2, −2 and −1 ± j1,
and its zeros at 1, −3.
4.5.1 Determine the dominant pole(s).
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4.5.2 If the system d.c. gain is equal to 5, build the system transfer function.

Problem 4.6. A system transfer function is given by

H(s) =
s+ 1 + ε

(s+ 1)(s+ 2)
(4.16.5)

4.6.1 Compute the unit step response.

4.6.2 Analyze your result for ε ∈ [−1, 1].

Problem 4.7. The input-output model for a system is given by

d2y(t)
dt

+ 7
dy(t)
dt

+ 12y(t) = 3u(t) (4.16.6)

4.7.1 Determine the system transfer function.

4.7.2 Compute the unit step response with zero initial conditions.

4.7.3 Repeat with initial conditions y(0) = −1 and ẏ(0) = 2.

Problem 4.8. Assume that the Fourier transform of a signal f(t), is given by

F [f(t)] = F (jω) =

{
0 ∀|ω| > ωc

1 ∀|ω| ≤ ωc
(4.16.7)

Show that if f(t) is the unit impulse response of a linear system, then the system
is noncausal, i.e. the system responds before the input is applied.

Problem 4.9. The transfer function of a linear stable sytem is given by

H(s) =
−s+ 4

s2 + 5s+ 6
(4.16.8)

If the system input is u(t) = 2 cos(0.5t), find the system output in steady state.

Problem 4.10. Determine the signal f(t) which has a Fourier transform given by

F (jω) =
1

ω2 + a2
where a ∈ R (4.16.9)
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Problem 4.11. Find, if they exist, the Fourier transform of the following signals

f1(t) = 2 + cos(2t) f2(t) = (2 + cos(2t))µ(t) f3(t) = µ(t)− µ(t− T )
f4(t) = e−3t cos(0.5t)µ(t) f5(t) = te−t f6(t) = sign(t)

Problem 4.12. Consider the function

Fn(s) =
1

1 + (−js)2n (4.16.10)

4.12.1 Find the poles of Fn(s)

4.12.2 Find a stable Hn(s) such that Hn(s)Hn(−s) = Fn(s)

Problem 4.13. Analyze, for β ∈ R, the frequency response of the AME and the
MME when the true and the nominal models are given by

G(s) =
βs+ 2

(s+ 1)(s+ 2)
and Go(s) =

2
(s+ 1)(s+ 2)

(4.16.11)

respectively.

Problem 4.14. Consider a linear system with true model given by

G(s) = F (s)
ω2
n

s2 + 2ψωns+ ω2
n

(4.16.12)

where 0 < ψ < 1. Determine the MME for the nominal model

Go(s) = F (s)
ω2
no

s2 + 2ψoωnos+ ω2
no

(4.16.13)

in the following situations:

(i) ωno = ωn but ψ �= ψo

(ii) ψ = ψo but ωno �= ωn

Problem 4.15. Consider the structure shown in Figure 2.7 on page 33.
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4.15.1 Find linear transformations h〈◦〉 and f〈◦〉 so as that structure implements
a stable approximate inverse for a system having a model given by

G(s) =
−s+ 4

(s+ 4)(0.1s+ 1)
(4.16.14)

4.15.2 Compute the modeling error with respect to the exact inverse.

Problem 4.16. Consider the following two transfer functions

H1(s) =
0.250

s2 + 0.707s+ 0.250
(4.16.15)

H2(s) =
0.0625

s4 + 1.3066s3 + 0.8536s2 + 0.3266s+ 0.0625
(4.16.16)

4.16.1 Draw their Bode diagrams and verify that both exhibit a low-pass filtering
behavior. Compute the bandwidth for each filter.

4.16.2 Compute the unit step response for both cases, and the indicators defined in
Figure 4.3 on page 76. Compare and discuss.

Problem 4.17. Consider the following transfer functions

H1(s) =
e−s

s+ e−s
; H2(s) =

e−s

s+ 1 + e−s
(4.16.17)

4.17.1 For each case, compute the system poles.

4.17.2 For each case, obtain a plot of the magnitude of the frequency response
versus the frequency. Determine the filtering characteristics.

4.17.3 Use SIMULINK to obtain the system unit step response.

Problem 4.18. Find the impluse and step responses of the following linear trans-
fer functions

G(s) =
1

s2 + 2s+ 1
(4.16.18)

G(s) =
10− s

s2 + 2s+ 1
(4.16.19)

G(s) =
0.1− s

s2 + 2s+ 1
(4.16.20)

G(s) =
1

s2 + 0.2s+ 1
(4.16.21)

Comment on the differences observed.
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Problem 4.19. Calculate the steady state response when a unit step is applied to
the following systems

G(s) =
1

s3 + 3s2 + 3s+ 1
(4.16.22)

G(s) =
s2 + 2s

s3 + 3s2 + 3s+ 1
(4.16.23)

Comment on the differences observed.

Problem 4.20. The step response of a system (initially at rest) is measured to be

y(t) = 1− 0.5e−t − 0.5e−2t (4.16.24)

What is the transfer function of the system.

Problem 4.21. (This is based on a question from an industrial colleague.) The
step response of a system is as sketched below

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(
t)

Time [s]

Figure 4.11. Step response

How can we have overshoot without ringing in the step response? What form do
you think the model has?

Problem 4.22. A parallel connection of 2 systems is shown in the figure

4.22.1 What is the transfer function from u to y?

4.22.2 What are the system poles?
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Figure 4.12. Parallel connection of two systems

4.22.3 What are the system zeros (if any)?

4.22.4 Calculate the systems step response and comment.
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PREVIEW

The previous part of the book dealt with models for systems. These are the elements
in terms of which the control engineer conceptualizes a control loop.

We next turn our attention to the properties of the control loop itself. In par-
ticular, we address issues of sensitivity, stability and loop synthesis. These are the
building blocks of design which will be the central topic of the next part of the
book.
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Chapter 5

ANALYSIS OF SISO
CONTROL LOOPS

5.1 Preview

Control system design makes use of two key enabling techniques: analysis and syn-
thesis. Analysis concerns itself with the impact that a given controller has on a given
system when they interact in feedback while synthesis asks how to construct con-
trollers with certain properties. This chapter covers analysis. For a given controller
and plant connected in feedback it asks and answers the following:

• Is the loop stable?

• What are the sensitivities to various disturbances?

• What is the impact of linear modeling errors?

• How do small nonlinearities impact on the loop?

We also introduce several analysis tools; specifically

• Root locus

• Nyquist stability analysis

5.2 Feedback Structures

Recall the preliminary introduction to feedback control given in Chapter 2. We will
now focus this topic specifically on linear single input single output (SISO) control
systems. We will see that feedback can have many desirable properties such as
the capacity to reduce the effect of disturbances, to decrease sensitivity to model
errors or to stabilize an unstable system. We will also see, however, that ill-applied
feedback can make a previously stable system unstable, add oscillatory behaviour
into a previously smooth response or result in high sensitivity to measurement noise.

119
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E(s)

+

+

+

+

+
C(s)

U(s)

Di(s) xo Do(s)

+

Ym(s)

Dm(s)

Go(s)
R(s)

+

Y (s)

−

Figure 5.1. Simple feedback control system

We begin our analysis of feedback systems with the linear SISO configuration
shown in Figure 5.1. We initially analyze the so-called nominal loop, i.e. the effect
of the controller interacting with the nominal model in feedback; later, in section
§5.9, we will turn to the impact of modeling errors which arise when the controller
is applied to the true system, rather than the model.

In the loop shown in Figure 5.1 we use transfer functions and Laplace transforms
to describe the relationships between signals in the loop. In particular, C(s) and
Go(s) denote the transfer functions of the controller and the nominal plant model
respectively, which can be represented in fractional form as:

C(s) =
P (s)
L(s)

(5.2.1)

Go(s) =
Bo(s)
Ao(s)

(5.2.2)

where P (s), L(s), Bo(s) and Ao(s) are polynomials in s. R(s), U(s), and Y (s)
denote the Laplace transforms of setpoint, control signal and plant output, respec-
tively; Di(s), Do(s) and Dm(s) denote the Laplace transforms of input disturbance,
output disturbance and measurement noise, respectively. We also use xo to denote
the initial conditions of the model.

The following relations hold between the variables in Figure 5.1.
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Y (s) = Go(s)U(s) +Do(s) +Go(s)Di(s) +
f(s, xo)
Ao(s)

(5.2.3)

U(s) = C(s)R(s)− C(s)Y (s)− C(s)Dm(s) (5.2.4)

= C(s)
(
R(s)−Dm(s)−Go(s)U(s)−Do(s)−Go(s)Di(s)− f(s, xo)

Ao(s)

)
(5.2.5)

where f(s, xo) is a linear function of the initial state. The above equations can be
solved to yield:

U(s) =
C(s)

1 +Go(s)C(s)

(
R(s)−Dm(s)−Do(s)−Go(s)Di(s)− f(s, xo)

A(s)

)
(5.2.6)

and

Y (s) =
1

1 +Go(s)C(s)

[
Go(s)C(s)(R(s) −Dm(s)) +Do(s) +Go(s)Di(s) +

f(s, xo)
A(s)

]
(5.2.7)

The closed loop control configuration shown in Figure 5.1, is called a one degree
of freedom (one d.o.f.) architecture. This term reflects the fact that there is only
one degree of freedom available to shape the two transfer functions from R(s) and
Dm(s) to Y (s) and from Do(s) and Di(s) to Y (s). Hence, if the controller transfer
function C(s) is designed to give a particular reference signal response; i.e.

Y (s)
R(s)

=
Go(s)C(s)

1 +Go(s)C(s)
(5.2.8)

then this induces a unique output disturbance response

Y (s)
Do(s)

=
1

1 +Go(s)C(s)
(5.2.9)

without any further design freedom.
Frequently, however, it is desirable to be able to shape the reference and distur-

bance responses separately. This can be achieved by a two degree of freedom (two
d.o.f.) architecture as shown in Figure 5.2. The first degree of freedom is the feed-
back controller C(s), and H(s), the second degree of freedom, is a stable transfer
function which is sometimes called a set point or reference filter.

Similarly to (5.2.7), we see that the two d.o.f. loop is governed by



122 Analysis of SISO control loops Chapter 5

R(s) E(s)

+

+

+

+

+
C(s)H(s)

R(s) U(s) Y (s)

Di(s) xo Do(s)

+

Ym(s)

Dm(s)

Go(s)

+

−

Figure 5.2. Two degree of freedom closed loop

Y (s) =
Go(s)C(s)H(s)
1 +Go(s)C(s)

R(s) +
1

1 +Go(s)C(s)

(
Do(s) +

f(s, xo)
Ao(s)

)

+
Go(s)

1 +Go(s)C(s)
Di(s)− Go(s)C(s)

1 +Go(s)C(s)
Dm(s) (5.2.10)

The transfer function C(s) can be designed to shape the disturbance response
(unchanged from (5.2.7)) and H(s) can be used to shape the reference response
independently, where

Y (s)
R(s)

=
Go(s)C(s)H(s)
1 +Go(s)C(s)

(5.2.11)

Note, however, that even in a two d.o.f. control loop, there remain transfer
functions whose dynamics cannot be shaped independently.

Thus the controller C can be used to shape the response to one of the distur-
bancesDi, Do orDm but once this has been achieved, the remainder are determined.

Also the corresponding controller output response is given by

U(s) =
C(s)H(s)

1 +Go(s)C(s)
R(s)− C(s)

1 +Go(s)C(s)

(
Do(s) +

f(s, xo)
Ao(s)

)

− Go(s)C(s)
1 +Go(s)C(s)

Di(s)− C(s)
1 +Go(s)C(s)

Dm(s) (5.2.12)

which we again see is fixed once H(s) and C(s) have been specified.
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5.3 Nominal Sensitivity Functions

We see from equations (5.2.10) and (5.2.12) that the closed loop response is governed
by four transfer functions which are collectively known as the sensitivity functions.

Using equations (5.2.1) and (5.2.2), these sensitivity functions are seen to be
given by:

To(s)
�
=

Go(s)C(s)
1 +Go(s)C(s)

=
Bo(s)P (s)

Ao(s)L(s) +Bo(s)P (s)
(5.3.1)

So(s)
�
=

1
1 +Go(s)C(s)

=
Ao(s)L(s)

Ao(s)L(s) +Bo(s)P (s)
(5.3.2)

Sio(s)
�
=

Go(s)
1 +Go(s)C(s)

=
Bo(s)L(s)

Ao(s)L(s) +Bo(s)P (s)
(5.3.3)

Suo(s)
�
=

C(s)
1 +Go(s)C(s)

=
Ao(s)P (s)

Ao(s)L(s) +Bo(s)P (s)
(5.3.4)

These functions are given specific names as follows:

To(s) : Nominal complementary sensitivity
So(s) : Nominal sensitivity
Sio(s) : Nominal input disturbance sensitivity
Suo(s) : Nominal control sensitivity

The polynomial Acl
�
= Ao(s)L(s) +Bo(s)P (s) is called the nominal closed loop

characteristic polynomial.
Sensitivity functions are algebraically related. These relations are one of the key

manifestations of trade-offs inherent to a feedback loop, and they can be derived
from the definitions (5.3.1) to (5.3.4). In particular we have

So(s) + To(s) = 1 (5.3.5)

Sio(s) = So(s)Go(s) =
To(s)
C(s)

(5.3.6)

Suo(s) = So(s)C(s) =
To(s)
Go(s)

(5.3.7)
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Using these sensitivities, the closed loop in Figure 5.2 on page 122 is described
by

Y (s) = To(s)
(
H(s)R(s)−Dm(s)

)
+ So(s)

(
Do(s) +

f(s, xo)
Ao(s)

)
+ Sio(s)Di(s)

(5.3.8)

U(s) = Suo(s)
(
H(s)R(s)−Dm(s)−Do(s)−Go(s)Di(s)− f(s, xo)

Ao(s)

)
(5.3.9)

We observe that the effects of initial conditions on plant output and controller
output are respectively given by

So(s)
f(s, xo)
Ao(s)

=
f(s, xo)L(s)

Ao(s)L(s) +Bo(s)P (s)
(5.3.10)

−Suo(s)f(s, xo)
Ao(s)

= − f(s, xo)P (s)
Ao(s)L(s) +Bo(s)P (s)

(5.3.11)

From these equations, and (5.3.1)-(5.3.4), one can now see the fundamental role
played by the polynomial Acl. It determines both the stability and, together with
the individual zeros due to L(s), P (s), Bo(s) and Ao(s), the transient characteristics
of the nominal control loop

Equations (5.3.1) to (5.3.4) can be expressed in more compact form as


Yo(s)
Uo(s)


 =

Go(s)C(s) Go(s) 1 −Go(s)C(s)

C(s) −Go(s)C(s) −C(s) −C(s)




1 +Go(s)C(s)




H(s)R(s)

Di(s)

Do(s)

Dm(s)




(5.3.12)

Example 5.1. A plant is nominally modeled by Go(s) = 4
(s+1)(s+2)2 . The plant

has an output disturbance given by do(t) = k + dv(t) where dv(t) is a zero mean
signal with energy in the band Bd : (0, 4)[rad/s].

A feedback controller C(s) is designed so that

To(s) =
α

(s2 + 1.2ωns+ ω2
n)(τs + 1)2

(5.3.13)

The factor (τs + 1)2 has been introduced to make the controller strictly proper
(check that this choice is sufficient to ensure properness !). Discuss the choice of α
and ωn from the point of view of output disturbance compensation and the magnitude
of the required control effort.
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Solution

We need To(jω) ≈ 1 (which, due to (5.3.5), implies So(jω) ≈ 0) at ω = 0 and in
Bd. To achieve this, we propose the following choices:

• α = ω2
n

• ωn larger than 4[rad/s]. Say ωn = 10[rad/s]

• τ = 0.01 ( which is much smaller than ω−1
n ).

This leads to:

To(s) =
100

(s2 + 12s+ 100)(0.01s2 + 1)
(5.3.14)

We then check the nominal control sensitivity Suo(s). For the above choice of
To, we have

Suo(s) =
To(s)
Go(s)

= 25
(s+ 1)(s+ 2)2

(s2 + 12s+ 100)(0.01s+ 1)2
(5.3.15)

At 3[rad/s] we have that |Suo(jω)| ≈ 20[dB]. This means that if dv(t) has a
sinusoidal component at 3[rad/s], then the controller output would have a component
of the same frequency with an amplitude ten times that of the disturbance.

This could lead to saturation of the input. On reflection we can see that this
problem arises because the output disturbance has a bandwidth which is much larger
than that of the open loop plant.

To reduce control sensitivity in Bd, we see that the only choice available to the
designer is to increase the sensitivity to disturbances in Bd. So a design trade off
is called for.

✷✷✷

5.4 Closed Loop Stability Based on the Characteristic Polynomial

This and subsequent sections covers various tools for analyzing both nominal sta-
bility and robust stability.1

We introduce the following definition:

Definition 5.1 (Internal stability). We say that the nominal loop is inter-
nally stable if and only if all eight transfer functions in equation (5.3.12) are
stable.
1A nominal control loop results from connecting a controller to the nominal model.
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The above definition is equivalent to demanding that all signals in the loop are
bounded for every set of bounded inputs r(t), di(t), do(t) and dm(t). Comparison of
(5.3.12) with (5.3.1) through (5.3.4) shows that the nominal closed loop is internally
stable if and only if the polynomial Ao(s)L(s) + Bo(s)P (s) has stable factors. We
summarize this as follows:

Lemma 5.1. Nominal internal stability
Consider the nominal closed loop depicted in Figure 5.2 on page 122 with the

model and the controller defined by the representation given by equations (5.2.2)
and (5.2.1) respectively. Then the nominal closed loop is internally stable if and
only if the roots of the nominal closed loop characteristic equation

Ao(s)L(s) +Bo(s)P (s) = 0 (5.4.1)

all lie in the open left half plane.

Proof

Straightforward from equation (5.3.12) and the definition of internal stability.
✷✷✷

Note that the idea of internal stability implies more than the stability of the
reference to output transfer function. In addition, one requires that there be no
cancellation of unstable poles between controller and the plant. This is illustrated
by the following example.

Example 5.2. Assume that

Go(s) =
3

(s+ 4)(−s+ 2)
C(s) =

−s+ 2
s

(5.4.2)

It can be seen that To(s) is stable. However the nominal input disturbance sen-
sitivity is unstable since

Sio(s) =
3s

(−s+ 2)(s2 + 4s+ 3)
(5.4.3)

Thus, this system is not internally stable and does not satisfy the conditions of
Lemma 5.1, since Ao(s)L(s) +Bo(s)P (s) = (−s+ 2)(s2 + 4s+ 3).

5.5 Stability and Polynomial Analysis

5.5.1 Problem Definition

Consider the polynomial p(s) defined by

p(s) = sn + an−1s
n−1 + . . .+ a1s+ a0 (5.5.1)
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where ai ∈ R.
The problem to be studied deals with the question of whether that polynomial

has any root with nonnegative real part. Obviously, this question can be answered
by computing the n roots of p(s). However, in many applications, it is of spe-
cial interest to study the interplay between the location of the roots and certain
polynomial coefficients.

Polynomials having all their roots in the closed left plane (i.e. with nonpositive
real parts) are known as Hurwitz polynomials. If we restrict the roots to have
negative real parts, we then say that the polynomial is strictly Hurwitz.

5.5.2 Some Polynomial Properties of Special Interest

From (5.5.1) we have the following special properties.

Property 1 The coefficient an−1 satisfies

an−1 = −
n∑
i=1

λi (5.5.2)

where λ1, λ2, . . . λn are the roots of p(s).

To prove this property, note that p(s) can be written as

p(s) =
n∏
i=1

(s− λi) (5.5.3)

then, on expanding the product in (5.5.3) and on observing the coefficient
accompanying the (n− 1)th power of s, (5.5.2) is obtained.

Property 2 The coefficient a0 satisfies

a0 = (−1)n
n∏
i=1

λi (5.5.4)

This property can also be proved expanding (5.5.3) and examining the con-
stant term.

Property 3 If all roots of p(s) have negative real parts, it is necessary that ai > 0,
i ∈ {0, 1, . . . , n− 1}.
To prove this property, we proceed as follows:
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a) The roots of p(s) are either real or complex and, if some of them are
complex, then these complex roots must appear in conjugate pairs (this is
a consequence of the fact that p(s) is a polynomial with real coefficients)

b) Thus, without loss of generality, we can assume that there exist n1 real
roots and n2 pairs of complex roots. This means that n1 + 2n2 = n.

c) If all those roots have negative real parts they can be described as

λi = −|αi| i = 1, 2, . . . , n1 (5.5.5)
λn1+i = λ∗

n1+n2+i = −|σi|+ jωi i = 1, 2, . . . , n2 (5.5.6)

d) Hence

p(s) =
n1∏
i=1

(s+ |αi|)
n2∏
l=1

((s+ |σl|)2 + ω2
l ) (5.5.7)

where, in the second product, we have grouped the complex pairs in
quadratic factors.

e) From (5.5.7) we observe that p(s) corresponds to the product of first and
second order polynomials, all of which have real and positive coefficients.
Since the coefficients of p(s) are sums of products of the coefficients of
these first and second order polynomials, the property is proved.

Note that this property is necessary in a strictly Hurwitz polynomial, but it
is not sufficient, except for the case n = 1 and n = 2, when this condition is
necessary and sufficient.

Property 4 If any of the polynomial coefficients is nonpositive (negative or zero),
then, one or more of the roots have nonnegative real part.

This property is a direct consequence of the previous property.

5.5.3 Routh’s Algorithm

One of the most popular algorithms to determine whether or not a polynomial is
strictly Hurwitz, is Routh’s algorithm. We will present it here without proof.

We again consider a polynomial p(s) of degree n, defined as

p(s) =
n∑
i=0

ais
i (5.5.8)

The Routh’s algorithm is based on the following numerical array:
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sn γ0,1 γ0,2 γ0,3 γ0,4 . . .

sn−1 γ1,1 γ1,2 γ1,3 γ1,4 . . .

sn−2 γ2,1 γ2,2 γ2,3 γ2,4 . . .

sn−3 γ3,1 γ3,2 γ3,3 γ3,4 . . .

sn−4 γ4,1 γ4,2 γ4,,3 γ4,4 . . .

...
...

...
...

...

s2 γn−2,1 γn−2,2

s1 γn−1,1

s0 γn,1

Table 5.1. Rouths array

where

γ0,i = an+2−2i; i = 1, 2, . . . ,m0 and γ1,i = an+1−2i; i = 1, 2, . . . ,m1

(5.5.9)

with m0 = (n + 2)/2 and m1 = m0 − 1 for n even and m1 = m0 for n odd. Note
that the elements γ0,i and γ1,i are the coefficients of the polynomials arranged in
alternated form.

Furthermore

γk,j =
γk−1,1 γk−2,j+1 − γk−2,1 γk−1,j+1

γk−1,1
; k = 2, . . . , n j = 1, 2, . . . ,mj

(5.5.10)

where mj = max{mj−1,mj−2} − 1 and where we must assign a zero value to
the coefficient γk−1,j+1, when it is not defined in the Routh’s array given in Table
5.1.

Note that the definitions of coefficients in (5.5.10) can be expressed using deter-
minants:

γk,j = − 1
γk−1,1

∣∣∣∣γk−2,1 γk−2,j+1

γk−1,1 γk−1,j+1

∣∣∣∣ (5.5.11)

We then have the main result:

Consider a polynomial p(s) given by (5.5.8) and its associated array as in Table
5.1. Then the number of roots with real part greater than zero is equal to the
number of sign changes in the first column of the array.
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We will next consider some examples.

Example 5.3. Let p(s) = s4 + s3 +3s2 +2s+1. Inspection of the polynomial does
not allow us to say whether or not it is a Hurwitz polynomial. We proceed to use
Routh’s array.

s4 1 3 1

s3 1 2

s3 1 1

s1 1

s0 1

From the array we note that there are no
sign changes in the first column. Accord-
ing to Routh’s criterion, this means that
p(s) is a strictly Hurwitz polynomial.

✷✷✷

Example 5.4. Let p(s) = s5+5s4+12s3+13s2+3s+6. We first note that all the
coefficients of this polynomial are greater than zero, hence we cannnot discard that
this polynomial may be a Hurwitz polynomial. To test this, we build Routh’s array

s5 1 12 3

s4 5 13 6

s3
47

5

9

5

s3
566

47
6

s1 −8160

235

s0 6

From this array we note that there are two
sign changes in the first column. Accord-
ing to Routh’s criterion, this means that
p(s) has two roots with positive real parts.
Hence, p(s) is not a Hurwitz polynomial.

✷✷✷

In using Routh’s array there are sometimes special cases that require extra steps
to be taken. For example, we see that in building the array, we cannot proceed when
one of the elements in the first column is zero. This can be dealt with in the following
way.

Case 1

We first consider the case when the first element in the row associated with sn−k is
zero, but there is at least one other term which is nonzero.

In this case we substitute the term γk,1 by ε, where ε is a very small magnitude
number, with the same sign as that of γk−1,1, i.e. we use either |ε| or −|ε|. Then
the array is completed and the Routh’s criterion is applied to find out whether or
not the polynomial is strictly Hurwitz, for |ε| → 0+.

Example 5.5. Consider the polynomial p(s) = s5 + 3s4 + 2s3 + 6s2 + 3s+ 3. We
then have that the Routh’s array is
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s5 1 2 3

s4 3 6 3

s3 0 2

s3

s1

s0

=⇒

s5 1 2 3

s4 3 6 3

s3 |ε| 2

s3 6− 6
|ε| 3

s1 2 + |ε|2
1−2|ε|

s0 3
We then observe that on making |ε| → 0+ there are two sign changes, i.e. p(s)

is not Hurwitz since it has two roots with positive real parts.

✷✷✷

Case 2

We next consider the case when all the elements in the row associated with sn−k

are zero, i.e. γk,1 = γk,2 = . . . = 0.
In this case, the original polynomial can be factorized by the polynomial pa(s) =

γk−1,1s
n−k+1 + γk−1,2s

n−k−1 + γk−1,3s
n−k−3 + . . . . Note that this is a polynomial

of only even or odd powers of s, where the coefficients correspond to the terms in
the row just above the zero row. Thus, pa(s) and, consequently, p(s) are not strictly
Hurwitz polynomials.

Example 5.6. Consider the polynomial p(s) = s6+5s5+2s4+5s3+4s2+15s+3,
the associated Routh’s array is

s6 1 2 4 3

s5 5 5 15

s4 1 1 3

s3 0 0

s2

s1

s0

Thus, pa(s) = s4 + s2 + 3. Then,
by polynomial division, we obtain
p(s) = pa(s)(s2 + 5s + 1). Note
that the roots of pa(s) are located
at ±0.7849± j1.0564.

✷✷✷

Routh’s algorithm can be applied to the denominator of a transfer function to
determine whether the system is stable or not. However it can also be used to study
the effects of parameter variation on system stability. To illustrate the idea consider
the following example.

Example 5.7. In a feedback control loop say that we have Go(s)C(s) = K
s(s+1)2 .

We want to know which values of K render the closed loop stable.
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We first compute the closed loop characteristic polynomial, which is given by
p(s) = s3 + 2s2 + s+K, and we then build the Routh’s array

s3 1 1

s2 2 K

s1 1− 0.5K

s0 K

We can now see that there are no closed
loop unstable poles if and only if 1 −
0.5K > 0 and K > 0. Combining these
two requirements, we have that the closed
loop is stable if and only if 0 < K < 2.

✷✷✷

Routh’s criterion can also be used to study how fast the system modes decay.
To appreciate this possibility, consider the following example.

Example 5.8. A feedback control loop has an open loop transfer function given by
Go(s)C(s) = K

s(s+4)2 . We want to know whether there exists a range of values for
K such that all closed loop modes decay faster than e−t. In other words, we require
that all closed loop poles have real parts smaller than −1.

The strategy to solve this problem is to consider the vertical line s = −1 as a new
stability limit in a shifted complex plane. If we call this shifted plane the w complex
plane, then in the above example, we simply make the substitution w = s + 1. We
then apply Routh’s test in this new complex plane.

For the above example, we compute the closed loop characteristic polynomial
as p(s) = s3 + 8s2 + 16s + K, and, in the new complex variable this becomes
pw(w) = p(w − 1) = w3 + 5w2 + 3w + K − 9. Then, Routh’s array, for pw(w) is
built leading to

w3 1 3

w2 5 K − 9

w1 4.8− 0.2K

w0 K − 9

We see that to obtain a strictly Hurwitz
pw(w) polynomial, we need that 9 < K <
24. Hence we conclude that this range of
K gives closed loop poles having real parts
smaller than −1 as required.

✷✷✷

5.6 Root Locus (RL)

Another classical tool used to study stability of equations of the type given in (5.4.1)
isroot locus. The root locus approach can be used to examine the location of the
roots of the characteristic polynomial as one parameter is varied. For instance,
assume that the nominal plant model is given by Go(s) and that the controller has
a transfer function described as C(s) = KCa(s), where Ca(s) is a known quotient
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of two monic polynomials in s and K is a positive, but unknown, constant. Then,
the closed loop poles are the roots of

1 +KCa(s)Go(s) = 0 (5.6.1)

The set of all points in the complex plane which satisfy (5.6.1) for some positive
value of K is known as the root locus. This particular problem can be embedded in
the following more general problem.

Consider the following equation

1 + λF (s) = 0 where F (s) =
M(s)
D(s)

(5.6.2)

with λ ≥ 0 and

M(s) = sm + bm−1s
m−1 + . . .+ b1s+ b0 =

m∏
i=1

(s− ci) (5.6.3)

D(s) = sn + an−1s
n−1 + . . .+ a1s+ a0 =

n∏
i=1

(s− pi) (5.6.4)

where the coefficients of the polynomials M(s) and D(s) are real numbers. Then,
the solution to the root locus problem requires us to find the set of all points in the
complex plane which are solutions for (5.6.2) for all nonnegative values of λ.

We observe that the solution of equation (5.6.2) is also the solution to the
equation

D(s) + λM(s) =
n∏
i=1

(s− pi) + λ

m∏
i=1

(s− ci) = 0 (5.6.5)

Prior to modern computers, root locus methods were an important technique
that told the experienced user the impact that one parameter (usually the controller
gain) has on stability and dynamic behavior of the closed loop. Today, the root
locus of any particular problem is easily solved by user friendly software, such
as MATLAB. Nevertheless, understanding the underlying patterns of root locus
behavior, still provides valuable insights. Root locus building rules include

R1 The number of roots in equation (5.6.5) is equal to max{m,n}. Thus, the
root locus has max{m,n} branches.

R2 From equation (5.6.2) we observe that s0 belongs to the root locus (for λ ≥ 0)
if and only if

argF (s0) = (2k + 1)π for k ∈ Z. (5.6.6)
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R3 From equation (5.6.2) we observe that if s0 belongs to the root locus, the
corresponding value of λ is λ0, where

λ0 =
−1

F (s0)
(5.6.7)

R4 A point s0 on the real axis, i.e. s0 ∈ R, is part of the root locus (for λ ≥ 0),
if and only if, it is located to the left of an odd number of poles and zeros (so
that (5.6.6) is satisfied).

R5 When λ is close to zero, then n of the roots are located at the poles of F (s),
i.e. at p1, p2, . . . , pn and, if n < m, the other m − n roots are located at ∞
(we will be more precise on this issue below).

R6 When λ is close to ∞, then m of these roots are located at the zeros of F (s),
i.e. at c1, c2, . . . , cm and, if n > m, the other n −m roots are located at ∞
(we will be more precise on this issue below).

R7 If n > m, and λ tends to ∞, then, n − m roots asymptotically tend to ∞,
following asymptotes which intersect at (σ, 0), where

σ =
∑n

i=1 pi −
∑m

i=1 ci
n−m

(5.6.8)

The angles of these asymptotes are η1, η2, . . . ηn−m, where

ηk =
(2k − 1)π
n−m

; k = 1, 2, . . . , n−m (5.6.9)

R8 If n < m, and λ tends to zero, then, m − n roots asymptotically tend to ∞,
following asymptotes which intersect at (σ, 0), where

σ =
∑n

i=1 pi −
∑m

i=1 ci
m− n

(5.6.10)

The angles of these asymptotes are η1, η2, . . . ηm−n, where

ηk =
(2k − 1)π
n−m

; k = 1, 2, . . . ,m− n (5.6.11)

R9 When the root locus crosses the imaginary axis, say at s = ±jωc, then ωc
can be computed either using the Routh Hurwitz algorithm, or using the fact
that s2 + ω2

c divides exactly the polynomial D(s) + λM(s), for some positive
real value of λ.
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Figure 5.3. Locus for the closed loop poles when the controller zero varies

Example 5.9. Consider a plant with transfer function Go(s) and a feedback con-
troller with transfer function C(s), where

Go(s) =
1

(s− 1)(s+ 2)
and C(s) = 4

s+ α

s
(5.6.12)

We want to know how the location of the closed loop poles change for α moving
in R+.

We first notice that the closed loop poles are the roots of

1 + 4
s+ α

s(s2 + s− 2)
=

s(s2 + s− 2) + 4s+ 4α
s(s2 + s− 2)

= 0 =⇒ s(s2 + s+ 2s) + 4α = 0

(5.6.13)

After dividing by s(s2 + s+ 2s), we find that, equation (5.6.2) applies with

λ = 4α and F (s) =
1

s(s2 + s+ 2)
(5.6.14)

If we use the rules described above we obtain

R1 The root locus has three branches (m = 0 and n = 3).

R4 The negative real axis belongs to the locus.
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R5 For α close to zero, i.e. λ close to zero, the roots are at the poles of F (s), i.e.
at 0,−0.5± j0.5

√
7.

R7 When α tends to ∞, i.e. when λ tends to ∞, the three roots tend to ∞,
following asymptotes which intersect the real axis at (σ, 0) with σ = − 1

3 . The
angle of these asymptotes are π, π/3 and 2π/3. This means that two branches
go to the right half plane.

R9 The characteristic polynomial is s3 + s2 + 2s+ λ. When two of the branches
cross the imaginary axis, then this polynomial can be exactly divided by s2+ω2

c

leading to a quotient equal to s + 1 with a polynomial residue equal to (2 −
ω2
c)s + λ − ω2

c . If we make the residue equal to zero we obtain ωc =
√
2 and

λc = 2.

The above rules allow one to sketch a root locus diagram. This can also be
obtained using the MATLAB command rlocus; the result is shown in Figure 5.3.
A powerful MATLAB environment, rltool, allows a versatile root locus analysis,
including shifting and adding of poles and zeros.

✷✷✷

5.7 Nominal Stability using Frequency Response

A classical and lasting tool that can be used to assess the stability of a feedback
loop is Nyquist stability theory. In this approach, stability of the closed loop is
predicted using the open loop frequency response of the system. This is achieved
by plotting a polar diagram of the productGo(s)C(s) and then counting the number
of encirclements of the (−1, 0) point. We show how this works below.

We shall first consider an arbitrary transfer function F (s) (not necessarily related
to closed loop control).

Nyquist stability theory depends upon mappings between two complex planes:

• The independent variable s

• The dependent variable F

The basic idea of Nyquist stability analysis is as follows:
Assume you have a closed oriented curve Cs in s 2 which encircles Z zeros and

P poles of the function F (s). We assume that there are no poles on Cs .
If we move along the curve Cs in a defined direction, then the function F (s)

maps Cs into another oriented closed curve, CF in F .
We will show below that the number of times that CF encircles the origin in the

complex plane F , is determined by the difference between P and Z. If Go(s)C(s)

2 s and F denote the s- and the F- planes respectively.
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Figure 5.4. Single zero function and Nyquist analysis

is modified, we can observe how the encirclement scenery changes (or how close it
is to changing).

In the sequel, it will be helpful to recall that every clockwise (counterclockwise)
encirclement of the origin by a variable in the complex plane implies that the angle
of the variable has changed by −2π[rad] (2π[rad]).

We first analyze the case of a simple function F (s) = s − c with c lying inside
the region enclosed by Cs. This is illustrated in Figure 5.4, part a).

We see that as s moves clockwise along Cs, the angle of F (s) changes by
−2π[rad], i.e. the curve CF will enclose the origin in F once in the clockwise
direction.

In Figure 5.4, part b), we illustrate the case when c lies outside the region
enclosed by Cs. In this case, the angle of F (s) does not change as s moves around
the curve Cs and thus, no encirclement of the origin in F occurs.

Using similar reasoning, we see that for the function F (s) = (s−p)−1 (where the
pole p lies inside the region determined by Cs) there is an angle change of +2π[rad]
when s moves clockwise along Cs. This is equivalent to saying that the curve CF
encloses the origin in F once in the counterclockwise direction. The phase change
is zero if p is outside the region, leading again to no encirclements of the origin in
F .

Consider now the case where F (s) takes the more general form:

F (s) = K

∏m
i=1(s− ci)∏n
k=1(s− pk)

(5.7.1)

Then any net change in the angle of F (s) results from the sum of changes of the
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angle due to the factors (s− ci) minus the sum of changes in the angle due to the
factors (s− pk). This leads to the following result

Consider a function F (s) as in (5.7.1) and a closed curve Cs in s . Assume
that F (s) has Z zeros and P poles inside the region enclosed by Cs. Then as s
moves clockwise along Cs, the resulting curve CF encircles the origin in F Z-P
times in a clockwise direction.

So far this result seems rather abstract. However, as hinted earlier it has a direct
connection to the issue of closed loop stability. Specifically, to apply this result, we
consider a special function F (s), related to the open loop transfer function of plant,
Go and a controller C(s) by the simple relationship:

F (s) = 1 +Go(s)C(s) (5.7.2)

We note that the zeros of F (s) are the closed loop poles in a unity feedback
control system. Also the poles of F (s) are the open loop poles of plant and controller.

We assume that Go(s)C(s) is strictly proper so that F (s) in (5.7.2) satisfies

lim
|s|→∞

F (s) = 1 (5.7.3)

In the context of stability assessment we are particularly interested in the number
of closed loop poles (if any) that lie in the right half plane. Towards this end,
we introduce a particular curve Cs which completely encircles the right half plane
(RHP) in s in the clockwise direction.

This curve combines the imaginary axis Ci and the return curve Cr (a semi circle
of infinite radius) as shown in Figure 5.5. This choice of Cs is known as the Nyquist
path.

We now determine the closed curve CF in the complex plane F which results
from evaluating F (s) for every s ∈ Cs. Since F (s) satisfies equation (5.7.3), then
the whole mapping of Cr collapses to the point (1, 0) in F . Thus only the mapping
of Ci has to be computed, i.e. we need only to plot the frequency response F (jω),
∀ω ∈ (−∞,∞) in the complex plane F . This is a polar plot of the frequency
response, known as the Nyquist plot.

Since we have chosen F (s) = 1 +Go(s)C(s), then the zeros of F (s) correspond
to the closed loop poles. Moreover, we see that F (s) and Go(s)C(s) share exactly
the same poles, (the open loop poles). We also see that the origin of the complex
plane F corresponds to the point (−1, 0) in the complex plane GoC . Thus
the Nyquist plot for F can be substituted by that of GoC by simply counting
encirclements about the −1 point. The basic Nyquist theorem, which derives from
the previous analysis, is then given by
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s

Cr

Ci
r → ∞

Figure 5.5. Nyquist path

Theorem 5.1. If a proper open loop transfer function Go(s)C(s) has P poles
in the open RHP, and none on the imaginary axis, then the closed loop has Z
poles in the open RHP if and only if the polar plot Go(jω)C(jω) encircles the
point (−1, 0) clockwise N=Z-P times.

From this theorem we conclude that

• If the system is open loop stable, then for the closed loop to be internally
stable it is necessary and sufficient that no unstable cancellations occur
and that the Nyquist plot of Go(s)C(s) does not encircle the point (−1, 0)

• If the system is open loop unstable, with P poles in the open RHP, then
for the closed loop to be internally stable it is necessary and sufficient that
no unstable cancellations occur and that the Nyquist plot of Go(s)C(s)
encircles the point (−1, 0) P times counterclockwise

• If the Nyquist plot of Go(s)C(s) passes exactly through the point (−1, 0),
there exists an ωo ∈ R such that F (jωo) = 0, i.e. the closed loop has
poles located exactly on the imaginary axis. This situation is known as a
critical stability condition.

There is one important remaining issue, namely, how to apply Nyquist theory
when there are open loop poles exactly on the imaginary axis. The main difficulty
in this case can be seen from Figure 5.4 on page 137, part a). If c is located exactly
on the curve Cs, then the change in the angle of the vector s − c is impossible to
determine. To deal with this problem, a modified Nyquist path is employed as shown
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in Figure 5.6. The modification is illustrated for the simple case when there is one
open loop pole at the origin

The Nyquist path Cs is now composed of three curves: Cr, Ca and Cb. The
resulting closed curve CF will only differ from the previous case when s moves along
Cb. This is a semi circle of radius ε, where ε is an infinitesimal quantity (in that
way the encircled region is still the whole RHP, except for an infinitesimal area).

Using the analysis developed above, we see that we must compute the change in
the angle of the vector (s − p) when s travels along Cb with p = 0. This turns out
to be +π[rad], i.e. the factor s−1 maps the curve Cb into a semi-circle with infinite
radius and clockwise direction.

To compute the number and direction of encirclements, these infinite radius
semi-circles must be considered, since they are effectively part of the Nyquist dia-
gram.

This analysis can be extended to include any finite collection of poles ofGo(s)C(s)
on Cs.

The modified form of the Nyquist theorem to accommodate the above changes
is shown in Figure 5.6.

s

Cr

Ca

Cb
ε

Figure 5.6. Modified Nyquist path

The modified form of Theorem 5.1 is

Theorem 5.2 (Nyquist theorem). Given a proper open loop transfer func-
tion Go(s)C(s) with P poles in the open RHP, then the closed loop has Z poles
in the open RHP if and only if the plot of Go(s)C(s) encircles the point (−1, 0)
clockwise N=Z-P times when s travels along the modified Nyquist path.

Remark 5.1. To use the Nyquist theorem to evaluate internal stability, we need to
have the additional knowledge that no cancellation of unstable poles occurs between
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C(s) and Go(s). This follows from the fact that the Nyquist theorem applies only to
the product Go(s)C(s), whereas internal stability depends also on the fact that no
unstable pole-zero cancellation occurs (see Lemma 5.1 on page 126).

5.8 Relative Stability: Stability Margins and Sensitivity Peaks

In control system design, one often needs to go beyond the issue of closed loop
stability. In particular, it is usually desirable to obtain some quantitative measures
of how far from instability the nominal loop is, i.e. to quantify relative stability.
This is achieved by introducing measures which describe the distance from the
nominal open loop frequency response to the critical stability point (−1; 0).

Figure 5.7 shows two sets of relative stability indicators for the case when the
open loop has no poles in the open RHP. Part a) in the figure describes the gain
margin, Mg, and the phase margin, Mf . They are defined as follows:

Mg
�
= −20 log10(|a|) (5.8.1)

Mf
�
= φ (5.8.2)

Thus, the gain margin indicates the additional gain that would take the closed
loop to the critical stability condition. The phase margin quantifies the pure phase
delay that should be added to achieve the same critical condition.

φ

|a|

−1

(a) (b)

−1
η

Go(jω)C(jω) Go(jω)C(jω)

ω = ωp

ω = ωs

Figure 5.7. Stability margins and sensitivity peak

Part (b) in Figure 5.7 defines an alternative indicator for relative stability. We
first recall that a vector from (−1; 0) to Go(jω1)C(jω1), for ω = ω1, corresponds to
1 + Go(jω1)C(jω1), i.e. to |So(jω1)|−1. Thus, the radius, η, of the circle tangent
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to the polar plot of Go(jω)C(jω) is the reciprocal of the nominal sensitivity peak.
The larger the sensitivity peak is, the closer the loop will be to instability.

The sensitivity peak is a more compact indicator of relative stability than the
gain and phase margins. The reader is invited to find an example where the gain
and phase margins are good, but where a very large sensitivity peak warns of a very
delicate stability condition. The converse is not true, since sensitivity performance
implies minimal values for the gain and phase margins. This is precisely described
by the following relationship:

Mf ≥ 2arcsin
(η
2

)
(5.8.3)

Stability margins can also be described and quantified using Bode diagrams.

Frequency (rad/sec)

P
ha

se
 (

de
g)

   
   

   
   

   
   

   
   

 M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

−100

−50

0

50

10
−2

10
−1

10
0

10
1

−300

−250

−200

−150

−100

−50

M
f
 

M
g
 

ω
p
 ω

g
 

Figure 5.8. Stability margins in Bode diagrams

Consider the Bode diagrams in Figure 5.8, then the frequency ωp corresponds
to the frequency at which the magnitude is 0 [dB]. This allows one to compute the
phase margin, Mf as shown in Figure 5.8. The second frequency, ωg, corresponds
to the frequency at which the phase is −180◦. This allows one to compute the gain
margin, Mg, as shown in Figure 5.8.
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5.9 Robustness

So far, we have only considered the effect that the controller has on the nominal
closed loop formed with the nominal model for the plant. However, in practice,
we are usually interested, not only in this nominal performance, but also the true
performance achieved when the controller is applied to the true plant. This is the
so called “Robustness” issue. We will show below that the nominal sensitivities do
indeed tell us something about the true or achieved sensitivities.

5.9.1 Achieved Sensitivities

We contrast the nominal sensitivities derived previously with the achieved (or true)
sensitivities when the controller C(s) is applied to some calibration models, G(s).
This leads to the following calibration sensitivities:

T (s)
�
=

G(s)C(s)
1 +G(s)C(s)

=
B(s)P (s)

A(s)L(s) +B(s)P (s)
(5.9.1)

S(s)
�
=

1
1 +G(s)C(s)

=
A(s)L(s)

A(s)L(s) +B(s)P (s)
(5.9.2)

Si(s)
�
=

G(s)
1 +G(s)C(s)

=
B(s)L(s)

A(s)L(s) +B(s)P (s)
(5.9.3)

Su(s)
�
=

C(s)
1 +G(s)C(s)

=
A(s)P (s)

A(s)L(s) +B(s)P (s)
(5.9.4)

where the transfer function of the calibration model is given by

G(s) =
B(s)
A(s)

(5.9.5)

In the sequel we will again use the words true plant to refer to the calibration
model, but the reader should recall the comments made in section §3.9 regarding
possible reasons why the calibration model may not describe the true plant response.

Note that, since in general G(s) �= Go(s), then To �= T , etc. A difficulty that we
will study later is that G(s) is usually not perfectly known. We thus need to say
something about achieved sensitivities, based only on our knowledge of the nominal
sensitivities, plus the information about the likely model errors. This is addressed
below.

5.9.2 Robust Stability

We are concerned with the case where the nominal model and the true plant differ.
It is then necessary that, in addition to nominal stability, we check that stability



144 Analysis of SISO control loops Chapter 5

is retained when the true plant is controlled by the same controller. We call this
property robust stability.

Sufficient conditions for a feedback loop to be robustly stable are stated in the
following:

Theorem 5.3 (Robust stability theorem). Consider a plant with nominal
transfer function Go(s) and true transfer function given by G(s). Assume that
C(s) is the transfer function of a controller which achieves nominal internal
stability. Also assume that G(s)C(s) and Go(s)C(s) have the same number of
unstable poles. Then a sufficient condition for stability of the true feedback loop
obtained by applying the controller to the true plant is that

|To(jω)||G∆(jω)| =
∣∣∣∣ Go(jω)C(jω)
1 +Go(jω)C(jω)

∣∣∣∣ |G∆(jω)| < 1 ∀ω (5.9.6)

where G∆(jω) is the frequency response of the multiplicative modeling error
(MME).

Proof

Go(jω)C(jω)

−1

Go(jω1)C(jω1)
1 +Go(jω1)C(jω1)

Gε(jω)C(jω)

G(jω)C(jω)

Figure 5.9. Nyquist plot for the nominal and the true loop

We first recall that, by assumption, the nominal loop is stable and that G(s)C(s)
and Go(s)C(s) have the same number of unstable poles. This means that the real
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loop will be stable if and only if the Nyquist plot of G(jω)C(jω) encircles the point
(−1, 0) the same number of times (and in the same direction) as Go(jω)C(jω) does.

We also have that

G(s)C(s) = Go(s)C(s) +Gε(s)C(s) (5.9.7)

i.e. the change in the open loop transfer function is Gε(s)C(s), where Gε(jω) is the
frequency response of the additive modeling error (AME).

Consider now Figure 5.9.
From that figure we see that the same number of encirclements occur if

|Gε(jω)C(jω)| < |1 +Go(jω)C(jω)| ∀ω (5.9.8)

Recalling that Gε(s) = Go(s)G∆(s), we see that (5.9.8) is equivalent to

|G∆(jω)Go(jω)C(jω)|
|1 +Go(jω)C(jω)| < 1 (5.9.9)

This is equivalent to (5.9.6) on using the definition of the nominal complemen-
tary sensitivity.

✷✷✷

Remark 5.2. Theorem 5.3 gives only a sufficient condition for robust stability.
This is illustrated in Example 5.10.

Remark 5.3. Theorem 5.3 also applies to discrete time and sampled data systems
provided that the appropriate frequency response function is used (depending on
whether shift operators or delta operators are used).

Remark 5.4. It is also possible to extend Theorem 5.3 on the preceding page to
the case when G∆(s) is unstable. All that is required is that one keeps track of the
appropriate number of encirclements to guarantee stability of the true system.

Remark 5.5. When applying the robust stability result it is usual that |G∆(jω)| is
replaced by some known upper bound, say ε(ω). The sufficient condition can then
be replaced by |To(jω)ε(ω)| < 1, ∀ω.

✷✷✷

Example 5.10. In a feedback control loop, the open loop transfer function is given
by

Go(s)C(s) =
0.5

s(s+ 1)2
(5.9.10)

and the true plant transfer function is

G(s) = e−sτGo(s) (5.9.11)
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5.10.1 Find the exact value of τ that leads the closed loop to the verge of instability.

5.10.2 Use the robust stability theorem 5.3 on page 144 to obtain an estimate for
that critical value of τ .

5.10.3 Discuss why the result in part 5.10.2 differs from that in part 5.10.1.

Solution

5.10.1 The delay introduces a phase change equal to −ωτ , but it does not affect
the magnitude of the frequency response. Thus, the critical stability condition
arises when this lag equals the phase margin, Mf , i.e. when the delay is given
by

τ =
Mf

ωp
(5.9.12)

where ωp is defined in Figure 5.7 on page 141 and is such that |Go(jωp)| = 1.
This yields ωp = 0.424[rad/s] and Mf = 0.77[rad]. Hence the critical value
for the delay is τ = 1.816[s].

5.10.2 The nominal complementary sensitivity is given by

To(s) =
Go(s)C(s)

1 +Go(s)C(s)
=

0.5
s3 + 2s2 + s+ 0.5

(5.9.13)

and the multiplicative modeling error is

G∆(s) = e−sτ − 1 =⇒ |G∆(jω)| = 2
∣∣∣sin(ωτ

2

)∣∣∣ (5.9.14)

The robust stability theorem states that a sufficient condition for robust sta-
bility is that |To(jω)G∆(jω)| < 1, ∀ω. Several values of τ were tried. Some
of these results are shown in Figure 5.10 on the facing page.

Figure 5.10 on the next page shows that |To(jω)G∆(jω)| < 1, ∀ω for τ ≤ 1.5.

5.10.3 It can be observed that a conservative value of the delay is obtained when the
robust stability theorem is used. This is due to the fact that this theorem sets
a sufficient condition for robust stability, i.e., it is a worst case requirement.

✷✷✷

Further insights into robustness issues can be obtained by relating the nominal
and achieved sensitivity functions. In particular we have

Lemma 5.2. Consider the nominal sensitivities So(s) and To(s) and a plant with
MME G∆(s). Then the achieved sensitivity functions S and T are given by
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Figure 5.10. Magnitude of the frequency response of To(s)G∆(s) for different
values of τ

S(s) = So(s)S∆(s) (5.9.15)
T (s) = To(s)(1 +G∆(s))S∆(s) (5.9.16)
Si(s) = Sio(s)(1 +G∆(s))S∆(s) (5.9.17)
Su(s) = Suo(s)S∆(s) (5.9.18)

S∆(s) =
1

1 + To(s)G∆(s)
(5.9.19)

S∆(s) is called the error sensitivity.

Proof

By direct substitution.
✷✷✷

We see how the performance of the real loop differs from that of the nominal
loop due to modeling errors. This is often called the problem of performance ro-
bustness . From equations (5.9.15) to (5.9.19) it can be seen that the nominal and
achieved performance will not be too different if S∆(jω) is close to 1 + j0 for all
frequencies. We see from equation (5.9.19) that this will hold if the frequency re-
sponse |To(jω)| rolls off before the MME |G∆(jw)| becomes significant, since this
ensures |To(jω)G∆(jω)| � 1

We notice that stability robustness is a less stringent requirement than robust
performance, since, for the former, it suffices to have |To(jω)G∆(jω)| < 1, whereas
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the latter requires |To(jω)G∆(jω)| � 1.
Robust stability and performance introduce additional design trade-offs as we

shall show later.

5.9.3 Linear Control of Nonlinear Plants

The robustness analysis presented above has only considered linear modeling errors.
Of course, in practice, one often has a nonlinear plant and thus the modeling errors
should, more properly, be described by nonlinear operators. As might be expected,
small nonlinear errors can be shown to have a correspondingly small effect on closed
loop performance. Also, it is possible to quantify the size of the nonlinear model
error consistent with maintaining closed loop stability. These issues will be taken
up in Chapter 19 when we address nonlinear control in detail. The more advanced
reader is invited to preview section §19.2 at this stage.

5.10 Summary

• This chapter introduced the fundamentals of SISO feedback control loop anal-
ysis.

• Feedback introduces a cyclical dependence between controller and system:

◦ the controller action affects the systems outputs,

◦ and the system outputs affect the controller action.

• For better or worse, this has a remarkably complex effect on the emergent
closed loop.

• Well designed, feedback can

◦ make an unstable system stable;

◦ increase the response speed;

◦ decrease the effects of disturbances

◦ decrease the effects of system parameter uncertainties, and more.

• Poorly designed, feedback can

◦ introduce instabilities into a previously stable system;

◦ add oscillations into a previously smooth response;

◦ result in high sensitivity to measurement noise;

◦ result in sensitivity to structural modeling errors, and more.

• Individual aspects of the overall behavior of a dynamic system include
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◦ time domain: stability, rise time, overshoot, settling time, steady state
errors, etc.

◦ frequency domain: bandwidth, cut off frequencies, gain and phase mar-
gins, etc.

• Some of these properties have rigorous definitions, others tend to be qualita-
tive.

• Any property or analysis can further be prefixed with the term nominal or
robust ;

◦ nominal indicates a temporarily idealized assumption that the model is
perfect;

◦ robust indicates an explicit investigation of the effect of modeling errors.

• The effect of the controller C(s) = P (s)
L(s) on the nominal model Go(s) =

Bo(s)
Ao(s)

in the feedback loop shown in Figure 5.1 on page 120 is

Y =
GoC

1 +GoC
(R −Dm) +

1
1 +GoC

Do +
Go

1 +GoC
Di

=
BoP

AoL+BoP
(R−Dm) +

AoL

AoL+BoP
Do +

BoL

AoL+BoP
Di

U =
C

1 +GoC
(R −Do −GoDi −Dm) =

AoP

AoL+BoP
(R −Do −Dm)− BoP

AoL+BoP
Di

• Interpretation, definitions and remarks:

◦ The nominal response is determined by four transfer functions.

◦ Due to their fundamental importance, they have individual names and
symbols:

So :=
1

1 +GoC
=

AoL

AoL+BoP
, the nominal sensitivity function;

To :=
GoC

1 +GoC
=

BoP

AoL+BoP
, the nominal complementary sensitivity;

Sio :=
Go

1 +GoC
=

BoL

AoL+BoP
, the nominal input sensitivity;

Suo :=
C

1 +GoC
=

AoP

AoL+BoP
, the nominal control sensitivity

and are collectively called the nominal sensitivities.

◦ All four sensitivity functions have the same poles, the roots ofAoL+BoP .

◦ The polynomial AoL + BoP is also called the nominal characteristic
polynomial.
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◦ Recall that stability of a transfer function is determined by the roots
only.

◦ Hence, the nominal loop is stable if and only if the real parts of the roots
of AoL + BoP are all strictly negative. These roots have an intricate
relation to the controller and system poles and zeros.

◦ The properties of the four sensitivities, and therefore the properties of
the nominal closed loop, depend on the interlacing of the poles of the
characteristic polynomial (the common denominator) and the zeros of
AoL,BoP,BoL, and AoP , respectively.

• Linear modeling errors:

◦ If the same controller is applied to a linear system, G (s), that differs
from the model by G(s) = Go(s)G∆(s), then the resulting loop remains
stable provided that |To(jω)| |G∆(jω)| < 1, ∀ω.

◦ This condition is also known as the small-gain theorem.
◦ Obviously it cannot be easily tested, as the multiplicative modeling error,
G∆, is typically unknown. Usually bounds on G∆(jω) are used instead.

◦ Nevertheless, it gives valuable insight. For example, we see that the
closed loop bandwidth must be tuned to be less than the frequencies
where one expects significant modeling errors.

• Non-linear modeling errors:

If the same controller is applied to a system, Gnl〈◦〉, that not only differs from
the model linearly but that is nonlinear (as real systems will always be to some
extent), then rigorous analysis becomes very hard in general but qualitative
insights can be obtained into the operation of the system by considering the
impact of model errors.
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5.12 Problems for the Reader

Problem 5.1. Consider a feedback control loop of a plant with nominal model
Go(s) = 1

(s+1)2 . Assume that the controller C(s) is such that the complementary
sensitivity is

To(s) =
4

(s+ 2)2
(5.12.1)

5.1.1 Show that the control loop is internally stable.

5.1.2 Compute the controller transfer function, C(s).

5.1.3 If the reference is a unit step, compute the steady state plant input.

Problem 5.2. Consider the same control loop as in Problem 5.1. Compute the
maximum instantaneous error.

Problem 5.3. Consider the following candidates for the open loop transfer func-
tion, Go(s)C(s),

(a)
(s+ 2)
(s+ 1)s)

(b)
e−0.5s

(s+ 1)s
(c)

1
s2 + 4

(d)
4

s(s2 + s+ 1)
(e)

s2 + 4
(s+ 1)3

(f)
8

(s− 1)(s+ 2)(s− 3)

5.3.1 For each case, build the Nyquist polar plot and hence by applying the Nyquist
theorem, determine the stability of the associated closed loop.

5.3.2 For all the cases where the associated loop is stable, compute the stability
margins and the sensitivity peak.

5.3.3 Repeat 5.3.1 and 5.3.2 using Bode diagrams.

Problem 5.4. In a nominal control loop, the sensitivity is given by

So(s) =
s(s+ 4.2)

s2 + 4.2s+ 9
(5.12.2)

Assume that the reference is a unit step and that the output disturbance is given
by di(t) = 0.5 sin(0.2t).

Find an expression for the plant output in steady state.



Section 5.12. Problems for the Reader 153

Problem 5.5. Consider a control loop where C(s) = K.

5.5.1 Build the root locus to describe the evolution of the closed loop poles as K
goes from 0 to ∞ for the following nominal plants

(a)
1

(s+ 1)(s− 2)
(b)

1
(s+ 1)4

(c)
1

s2(s+ 2)

(d)
(−s+ 1)(−s+ 4)
s(s+ 2)(s+ 10)

(e)
s2 + 2s+ 4

(s+ 1)(s+ 6)(s+ 8)
(f)

1
s2 − 4s+ 8

5.5.2 For each case, find the range of values of K, if it exists, such that the nominal
loop is stable.

Problem 5.6. In a nominal control loop

Go(s) =
1

(s+ 4)(s− 1)
and C(s) = 8

s+ α

s
(5.12.3)

Use the Root Locus technique to find out the evolution of the closed loop poles
for α ∈ [0,∞).

Problem 5.7. Consider a system having the following calibration and nominal
models

G(s) = F (s)
1

s− 1
and Go(s) = F (s)

2
s− 2

(5.12.4)

where F (s) is a proper, stable and minimum phase transfer function. Prove that

5.7.1 G∆(−2) = −1

5.7.2 S∆(s)
�
=

1
1 + To(s)G∆(s)

is unstable, having a pole at s = 2, where To(s) is

the complementary sensitivity of an internally stable control loop.

5.7.3 The achieved sensitivity S(s) = S∆(s)So(s) may be stable although S∆(s) is
unstable.

Problem 5.8. Consider a feedback control loop with nominal complementary sen-
sitivity To(s). Assume that, in the true feedback control loop, the measurement
system is not perfect, and that the measured output, Ym(s) is given by

Ym(s) = Y (s) +Gm(s)Y (s) (5.12.5)

where Gm(s) is a stable transfer function.
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5.8.1 Determine an expression for the true complementary sensitivity, T (s), as a
function of To(s) and Gm(s).

5.8.2 Find Gm(s) for the particular case when the measurement is perfect except
for the presence of a pure time delay τ > 0.

5.8.3 Analyze the connection between this type of errors and those originating in
plant modeling errors.

Problem 5.9. Consider a plant with input u(t), output y(t) and transfer function
given by

G(s) =
16

s2 + 4.8s+ 16
(5.12.6)

5.9.1 Compute the plant output for u(t) = 0, ∀t ≥ 0, y(0) = 1 and ẏ(0) = 0.

5.9.2 The same plant, with the same initial conditions is set under feedback control
with r(t) = 0, ∀t ≥ 0. Compute the plant output if the controller is chosen in
such a way that the complementary sensitivity is given by

T (s) =
α2

s2 + 1.3αs+ α2
(5.12.7)

Try different values of α ∈ R+, in particular α � 1 and α � 1.

5.9.3 From the results obtained above, discuss the role of feedback to ameliorate the
effect of initial conditions.

Problem 5.10. Consider a feedback control loop having G(s) = 2
(s+1)(s+2) with

reference with r(t) = µ(t), input disturbance di(t) = A sin(t + α) and a controller
with transfer function

C(s) = 600
(s+ 1)(s+ 2)(s+ 3)(s+ 5)

s(s2 + 1)(s+ 100)
(5.12.8)

5.10.1 Show that the nominal feedback loop is stable.

5.10.2 Explain, using the inversion principle and sensitivity functions, why the
controller in equation (5.12.8) is a sensible choice.
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5.10.3 Assume that the true plant transfer function differs from the nominal model
by a MME which satisfies the following bound:

|G∆(jω)| ≤ ω√
ω2 + 400

(5.12.9)

Analyze the loop from the point of view of robust stability and robust perfor-
mance.

Problem 5.11. Consider a feedback control loop where a controller is synthesized
to achieve a complementary sensitivity To(s). The synthesized controller has a trans-
fer function given by Co(s). However, the implemented controller has a transfer
function given by C1(s) �= Co(s). If

To(s) =
100

s+ 13s+ 100
; Co(s) =

1
s
F (s); C1(s) =

1
s+ α

F (s) (5.12.10)

where F (s) is a rational function with F (0) �= 0 and α > 0, investigate the stability
of the implemented control loop.





Chapter 6

CLASSICAL PID CONTROL

6.1 Preview

In this chapter we review a particular control structure that has become almost
universally used in industrial control. It is based on a particular fixed structure
controller family, the so-called, PID controller family. They have proven to be
robust in the control of many important applications.

The simplicity of these controllers is also their weakness, since it limits the
range of plants that they can control satisfactorily. Indeed, there exists a set of
unstable plants which cannot even be stabilized with any member of the PID family.
Nevertheless, the surprising versatility of PID control (really, PID control simply
means: control with an up to second-order controller) ensures continued relevance
and popularity for this controller. It is also important to view this second-order
setting as a special case of modern design methods, as presented, for example, in
Chapters 7 and 15. This chapter covers the classical approaches to PID design.
This is done due to the historical and practical significance of the methods and
their continued use in industry.

6.2 PID Structure

Consider the simple SISO control loop shown in Figure 6.1.

C(s)
R(s) E(s) Y (s)U(s)

−+
Plant

Figure 6.1. Basic feedback control loop

The traditional expressions for PI and PID controllers can be described by their
transfer functions relating error E(s) = R(s)− Y (s) and controller output U(s) as
follows

157
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CP (s) = Kp (6.2.1)

CPI(s) = Kp

(
1 +

1
Trs

)
(6.2.2)

CPD(s) = Kp

(
1 +

Tds

τDs+ 1

)
(6.2.3)

CPID(s) = Kp

(
1 +

1
Trs

+
Tds

τDs+ 1

)
(6.2.4)

where Tr and Td are known as the reset time and derivative time, respectively.
As seen from (6.2.1) to (6.2.4), the members of this family include, in different

combinations, three control modes or actions: proportional (P), integral (I) and
derivative (D).

Caution must be exercised when applying PID tuning rules, as there are a num-
ber of other parameterizations. Equation (6.2.4) is known as the standard form.
An alternative, series form, is

Cseries(s) = Ks

(
1 +

Is
s

)(
1 +

Dss

γsDss+ 1

)
(6.2.5)

The parallel form is

Cparallel(s) = Kp +
Ip
s
+

Dps

γpDps+ 1
(6.2.6)

Terminology, such as P-gain are not uniquely defined and can refer to either Ks

in (6.2.5), Kp in (6.2.6) or Kp in (6.2.4). It is therefore important to know which of
these parameterizations any one particular technique refers to and, if implemented
in a different form, to transform the parameters appropriately. Before the PID was
recognized as simply a second order controller, PID tuning was viewed in terms of
the P, I and D parameters. Although their impact on the closed loop is far from
independent of each other, their effect was thought as follows:

• Proportional action provides a contribution which depends on the instan-
taneous value of the control error. A proportional controller can control any
stable plant, but it provides limited performance and nonzero steady state
errors. This latter limitation is due to the fact that its frequency response is
bounded for all frequencies.

It has also been traditional to use the expression proportional band (PB) to
describe the proportional action. The equivalence is

PB[%] =
100[%]
Kp

(6.2.7)
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The proportional band is defined as the error required (as a percentage of full
scale) to yield a 100% change in the controller output.

• Integral action, on the other hand, gives a controller output that is pro-
portional to the accumulated error, which implies that it is a slow reaction
control mode. This characteristic is also evident in its low pass frequency
response. The integral mode plays a fundamental role in achieving perfect
plant inversion at ω = 0. This forces the steady state error to zero in the
presence of a step reference and disturbance. The integral mode, viewed in
isolation, has two major shortcomings: its pole at the origin is detrimental to
loop stability and it also gives rise to the undesirable effect (in the presence
of actuator saturation) known as wind-up, which we will discuss in detail in
Chapter 11.

• Derivative action, acts on the rate of change of the control error. Con-
sequently, it is a fast mode which ultimately disappears in the presence of
constant errors. It is sometimes referred to as a predictive mode because of its
dependence on the error trend. The main limitation of the derivative mode,
viewed in isolation, is its tendency to yield large control signals in response to
high frequency control errors, such as errors induced by setpoint changes or
measurement noise. Since implementation requires properness of the transfer
functions, a pole is typically added to the derivative, as evident in equations
(6.2.3) and (6.2.4). In the absence of other constraints, the additional time
constant τD is normally chosen such that 0.1Td ≤ τD ≤ 0.2Td. This constant
is called the derivative time constant; the smaller it is, the larger the frequency
range over which the filtered derivative approximates the exact derivative with
equality in the limit:

lim
τD→0

uPID(t) = Kpe(t) +
Kp

Tr

∫ t

to

e(τ)dτ +KpTd
de(t)
dt

+ i.c. (6.2.8)

The classical argument to choose τD �= 0 was, apart from ensuring that the
controller is proper, to attenuate high frequency noise. The latter point is
illustrated in Figure 6.2, which shows that the filtered derivative approximates
the exact derivative well at frequencies up to 1

τD
[rad/s], but that it has finite

gain at high frequencies, whereas an exact derivative has infinite gain.

Since τD �= 0 was largely seen as a necessary evil, i.e. as a necessary departure
from a pure proportional, integral and derivative action, almost all industrial
PID controllers set τD as a fixed fraction of TD, rather than viewing it as an
independent design parameter in its own right. Since then it has become clear
however, that the time constant of the derivative is an important degree of
freedom available to the designer.
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1

τD
Frequency [rad/s]

20log
KpTd

τD

Figure 6.2. Bode magnitude plot of exact derivative (dashed) and filtered
derivative (solid)

Remark 6.1. Because of frequent misunderstandings we re-iterate that there are
other PID parameterizations than (6.2.4). Some have arisen from the physical im-
plementation of the controller. The series structure of equation (6.2.5), for example
is essentially due to the early physical realization with pneumatic devices.

By comparing (6.2.4), (6.2.5) and (6.2.6) one can derive exact (in some cases
approximate) conversion formulas. The important point is to be aware of the ex-
istence of different parameterizations and, consequently, different definitions of the
P, I and D gains.

6.3 Empirical Tuning

One of the traditional ways to design a PID controller was to use empirical tuning
rules based on measurements made on the real plant. Today we suggest that it is
preferable for the PID designer to employ model based techniques, such as the ones
described in sections §7.3, §15.4 and §15.6.2. If necessary they can be packaged
as simple recipe procedures. Since the classical techniques are still referred to by
practitioners, the following sections review the best known of the classical tuning
methods.

6.4 Ziegler-Nichols (Z-N) Oscillation Method

This procedure is only valid for open loop stable plants and it is carried out through
the following steps

• Set the true plant under proportional control, with a very small gain.

• Increase the gain until the loop starts oscillating. Note that linear oscillation
is required and that it should be detected at the controller output.
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Kp Tr Td

P 0.50Kc

PI 0.45Kc
Pc
1.2

PID 0.60Kc 0.5Pc
Pc
8

Table 6.1. Ziegler-Nichols tuning using the oscillation method

• Record the controller critical gain Kp = Kc and the oscillation period of the
controller output, Pc.

• Adjust the controller parameters according to Table 6.1; there is some con-
troversy regarding the PID parameterization for which the Z-N method was
developed, but the version described here is, to the best knowledge of the
authors, applicable to the parameterization of (6.2.4).

We first observe that the underlying model being obtained in the experiment
is only one point on the frequency response, namely the one corresponding to a
phase equal to −π[rad] and a magnitude equal to K−1

c , since the Nyquist plot for
KpG(jω) crosses the point (−1, 0) when Kp = Kc.

The settings in Table 6.1 were obtained by Ziegler and Nichols who aimed to
achieve an under damped response to a step for those plants for which a satisfactory
model has the form

Go(s) =
Koe

−sτo

νos+ 1
where νo > 0 (6.4.1)

Figure 6.3 shows the step responses of a PI Z-N tuned control loop. Time, in
this figure, has been measured in units of the delay τo, and different ratios x

�
= τo

νo
are considered.

Example 6.1. Consider a plant with a model given by

Go(s) =
1

(s+ 1)3
(6.4.2)

Find the parameters of a PID controller using the Z-N oscillation method. Ob-
tain a graph of the response to a unit step input reference and to a unit step input
disturbance.
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Figure 6.3. PI Z-N tuned (oscillation method) control loop for different values

of the ratio x
�
=

τo
νo
.

Solution

We first compute the critical gain Kc and critical frequency ωc. These values must
satisfy

KcGo(jωc) = −1 ⇐⇒ Kc = −(jωc + 1)3 (6.4.3)

From this equation we obtain Kc = 8 and ωc =
√
3. Hence the critical period is

Pc ≈ 3.63. If we now use the settings in Table 6.1 we obtain:

Kp = 0.6 ∗Kc = 4.8; Tr = 0.5 ∗ Pc ≈ 1.81; Td = 0.125 ∗ Pc ≈ 0.45
(6.4.4)

The derivative mode will be attenuated with a fast pole with time constant τD =
0.1 ∗ Td = 0.045. Thus the final loop transfer function becomes:

Go(s)C(s) = Kp

(Td + τD)s2 + (1 + τD
Tr
)s+ 1

Tr

s(τDs+ 1)(s+ 1)3
=

52.8s2 + 109.32s+ 58.93
s(s+ 22.2)(s+ 1)3

(6.4.5)

Using SIMULINK, the loop was simulated with a unit step reference at t = 0
and a unit step input disturbance at t = 10. The results are shown in Figure 6.4.
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Figure 6.4. Response to step reference and step input disturbance

The response shown in Figure 6.4 exhibits significant overshoot that might be
unacceptable in some applications. However Z-N tuning provides a starting point
for finer tuning. The reader is invited to check, using SIMULINK file pid1.mdl that
Td = 1 provides better performance. Of course, if significant measurement noise is
present, then one should check whether increasing the derivative action still yields
good performance. Similar caution applies regarding saturation in the controller
output. The heuristic nature of these arguments highlights the limitations of tuning
a PID controller in terms of its classical P, I and D tuning parameters.

Remark 6.2. Figure 6.3 shows that Z-N tuning is very sensitive to the ratio of the
delay to the time constant. Another shortcoming of this method is that it requires
that the plant be forced to oscillate; this can be dangerous and expensive. Other
tuning strategies which do not require this operating condition have been developed.
Some of them are discussed below.

Remark 6.3. As mentioned earlier, a key issue when applying PID tuning rules
(such as Ziegler-Nichols settings) is that of which PID structure these settings are
applied to. Some authors claim that Ziegler and Nichols experiments and conclu-
sions were derived using a controller with series structure of the form described in
(6.2.5).

To obtain an appreciation of these differences we evaluate the PID control loop
for the same plant in Example 6.1, but with the Z-N settings applied to the series
structure, i.e. in the notation used in (6.2.5), we have that

Ks = 4.8 Ts = 1.81 Ds = 0.45 γs = 0.1 (6.4.6)

If we next compare equations (6.2.4) and (6.2.5) we have that
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τD = 0.045 Kp = 5.99 Tr = 2.26 Td = 0.35 (6.4.7)

We finally simulate the same reference and disturbance conditions as those in
Example 6.1 on page 161. The results are shown in Figure 6.5.
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Z−N tuning (oscillation method) with different PID structures

Figure 6.5. PID Z-N settings applied to series structure (thick line) and con-
ventional structure (thin line)

Figure 6.5 shows that, in this particular case, no significant difference arises.
However this can vary for other systems to be controlled. Thus, it is always advisable
to check the parameterization of the PID controller where settings from any given
synthesis are going to be implemented.

6.5 Reaction Curve Based Methods

Many plants, particularly the ones arising in the process industries, can be satis-
factorily described by the model in (6.4.1). A linearized quantitative version of this
model can be obtained with an open loop experiment, using the following procedure

1 With the plant in open loop, take the plant manually to a normal operating
point. Say that the plant output settles at y(t) = yo for a constant plant
input u(t) = uo.

2 At an initial time to, apply a step change to the plant input, from uo to uf
(this should be in the range of 10 to 20% of full scale).

3 Record the plant output until it settles to the new operating point. Assume
you obtain the curve shown in Figure 6.6 on the facing page. This curve is
known as the process reaction curve.
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In Figure 6.6 m.s.t. stands for maximum slope tangent.

4 Compute the parameter model as follows

Ko =
yf − yo
uf − uo

; τo = t1 − to; νo = t2 − t1 (6.5.1)

The model obtained can be used to derive various tuning methods for PID
controllers. One of these methods was also proposed by Ziegler and Nichols. In
their proposal the design objective is to achieve a particular damping in the loop
response to a step reference. More specifically, the aim is to obtain a ratio of 4:1 for
the first and second peaks in that response. The suggested parameters are shown
in Table 6.2

Time (sec.)

y
∞
 

y
o
 

t
o
 t

1
 t

2
 

m.s.t. 

Figure 6.6. Plant step response

The parameter setting rules proposed in Table 6.2 are applied to the model
(6.4.1), where we have again normalized time in delay units. Loop responses for a
unit step reference are shown in Figure 6.7 on the next page for different values of
the ratio x = τo

νo
.

Figure 6.7 on the following page reveals the extreme sensitivity of the perfor-
mance to different values of the ratio x. To improve this limitation, Cohen and
Coon carried out further studies to find controller settings which, based on the
same model (6.4.1), lead to a weaker dependence on the ratio delay to time con-
stant. Their findings are shown in Table 6.3.

To compare the settings proposed in Table 6.3 with the settings suggested by
Ziegler and Nichols, the results corresponding to those in Figure 6.7 are shown in
Figure 6.8.

A comparison of Tables 6.2 and 6.3 explains why the controller settings proposed
by Ziegler-Nichols and Cohen-Coon for small values of x are similar. This similarity
is also apparent in the corresponding curves in Figures 6.7 on the next page and 6.8
on page 167. However it is also evident from these figures that Cohen-Coon offers
a more homogeneous response for the same range of values for x.
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Kp Tr Td

P
νo

Koτo

PI
0.9νo
Koτo

3τo

PID
1.2νo
Koτo

2τo 0.5τo

Table 6.2. Ziegler-Nichols tuning using the reaction curve

0 5 10 15
0

0.5

1

1.5

2

Time [t/τ]

P
la

nt
 r

es
po

ns
e

Ziegler−Nichols (reaction curve) for different values of the ratio x= τ/ν
o

x=0.1 

x=0.5 

x=2.0 

Figure 6.7. PI Z-N tuned (reaction curve method) control loop

In any case, the reader must be aware that if one decides to perform PID
empirical tuning, the proposed settings delivered by the strategies above are
only starting points in the process to obtain the right controller. In particular,
we urge reading section §7.3, §15.4 and §15.6.2 which give a modern view of
PID design.
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Kp Tr Td

P
νo

Koτo

[
1 +

τo
3νo

]

PI
νo

Koτo

[
0.9 +

τo
12νo

]
τo[30νo + 3τo]
9νo + 20τo

PID
νo

Koτo

[
4
3
+

τo
4νo

]
τo[32νo + 6τo]
13νo + 8τo

4τoνo
11νo + 2τo

Table 6.3. Cohen-Coon tuning using the reaction curve

0 5 10 15
0

0.5

1

1.5

2

Time [t/τ]

P
la

nt
 r

es
po

ns
e

Cohen−Coon (reaction curve)  for different values of the ratio  x= τ/ν
o
 

x=0.1 

1.0 

x=5.0 

Figure 6.8. PI Cohen-Coon tuned (reaction curve method) control loop

6.6 Lead-lag Compensators

Closely related to PID control is the idea of lead-lag compensation. These ideas are
frequently used in practice, specially when compensators are built with electronic
hardware components. The transfer function of these compensators is of the form:

C(s) =
τ1s+ 1
τ2s+ 1

(6.6.1)

If τ1 > τ2, then this is a lead network and when τ1 < τ2, this is a lag network.
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The straight line approximation to the Bode diagrams for these networks are given
in Figure 6.9 and Figure 6.10 (where τ1 and τ2 differ by a factor of 10 : 1).

The lead compensator acts like an approximate derivation. In particular, we
see from Figure 6.9, that this circuit produces approximately 45◦ phase advance at
ω = 1/τ1 without a significant change in gain. Thus if we have a simple feedback
loop which passes through the −1 point at, say, frequency ω1, then inserting a
lead compensator such that ω1τ1 = 1 will give a 45◦ phase margin. Of course,
the disadvantage is an increase in the high frequency gain which can amplify high
frequency noise.

ω

ω

π
4

20[dB]

|C|dB

∠C(jω)

1
τ2

10
τ2

1
τ1

1
10τ1

Figure 6.9. Approximate Bode diagrams for lead networks (τ1 = 10τ2)

An alternative interpretation of a lead network is obtained on considering its
pole-zero structure. From (6.6.1) and the fact that τ1 > τ2, we see that it intro-
duces a pole-zero pair, where the zero (at s = −1/τ1) is significantly closer to the
imaginary axis than the pole (located at s = −1/τ2).

On the other hand, a lag compensator acts like an approximate integrator. In
particular, we see from Figure 6.10 that the low frequency gain is 20 [dB] higher
than the gain at ω = 1/τ1. Thus, this circuit, when used in a feedback loop, gives
better low frequency tracking and disturbance rejection. A disadvantage of this
circuit is the additional phase lag experienced between 1/10τ2 and 10/τ1.

Hence, 1/τ2 is typically chosen to be smaller than other significant dynamics in
the plant.

From the point of view of its pole-zero configuration, the lag network introduces
a pole (located at s = −1/τ2), which is significantly closer to the imaginary axis
than the zero (located at s = −1/τ1).

In summary, the lead network feature used in design is its phase advance char-
acteristics. The lag network instead is useful due to its gain characteristics at low
frequency.
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Figure 6.10. Approximate Bode diagrams for lag networks (τ2 = 10τ1)

When both effects are required, a lead-lag effect can be obtained by cascading
a lead and a lag compensator.

6.7 Distillation Column

PID control is very widely used in industry. Indeed, one would be hard pressed to
find loops that do not use some variant of this form of control.

Here we illustrate how PID controllers can be utilized in a practical setting by
briefly examining the problem of controlling a distillation column.

Distillation columns are an extremely common unit found in a host of chemical
processes/plants. Their purpose is to separate mixtures of liquids based on the
relative volatility of the components.

For a detailed account of the theory and operation of distillation columns to-
gether with an interactive simulation, the reader is referred to the web site associated
with this book. The example we have chosen here is the pilot plant described on
the web site.

In this example the distillation column is used to separate ethanol from water.
The system is illustrated in Figure 6.11 on the next page.

All the other key variables are controlled leaving two inputs and two outputs.
We choose the reflux flow (u1) to control the mole fraction of ethanol in the top
product (y1) and we choose the reboiler steam flow (u2) to control the composition
of the bottom product. (This is inferred from y2, the bottom plate temperature.)

A locally linearized model for this system is as follows:

[
Y1(s)
Y2(s)

]
=
[
G11(s) G12(s)
G21(s) G22(s)

] [
U1(s)
U2(s)

]
(6.7.1)
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Figure 6.11. Ethanol - water distillation column

where

G11(s) =
0.66e−2.6s

6.7s+ 1
(6.7.2)

G12(s) =
−0.0049e−s

9.06s+ 1
(6.7.3)

G21(s) =
−34.7e−9.2s

8.15s+ 1
(6.7.4)

G22(s) =
0.87(11.6s+ 1)e−s

(3.89s+ 1)(18.8s+ 1)
(6.7.5)

Note that the units of time here are minutes.
Also, note that u1 not only affects y1 (via the transfer function G11) but also

y2 (via the transfer function G21). Similarly u2 effects y2 (via the transfer function
G22) and y1 (via the transfer function G12).

In designing the two PID controllers we will initially ignore the two transfer
functions G12 and G21. This leads to two separate (and non-interacting) SISO
systems. The resultant controllers are:
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C1(s) = 1 +
0.25
s

(6.7.6)

Cs(s) = 1 +
0.15
s

(6.7.7)

We see that these are of PI type.
To test the controllers under more realistic conditions, we apply the controllers

to the calibration model given in (6.7.1) to (6.7.5). The results are shown in Figure
6.12.
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Figure 6.12. Simulation results for PI control of distillation column

In Figure 6.12, a step in the reference (r1) for output y1 is applied at t = 50 and
a step in the reference (r2) for output y2 is applied at t = 250.

It can be seen from the figure that the PID controllers give quite acceptable
performance on this problem. However, the figure also shows something that is very
common in practical applications - namely the two loops interact i.e. a change in
reference r1 not only causes a change in y1 (as required) but also induces a transient
in y2. Similarly a change in the reference r2 causes a change in y2 (as required) and
induces a change in y1. In this particular example, these interactions are probably
sufficiently small to be acceptable. Thus, in common with the majority of industrial
problems, we have found that two simple PID (actually PI in this case) controllers
give quite acceptable performance for this problem. The reader can interactively
try other controllers for this problem on the web site.

Finally, the reader may wonder, if the interactions noticed in the above example
could become a problem if one demanded more (i.e. faster responses) from the
controllers. Under these conditions, the interactions can become an important
factor. The reader is thus encouraged to read on to Parts VI, VII and VIII where
we will show how these kinds of interactions can be rigorously dealt with in control
system design.

✷✷✷
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6.8 Summary

• PI and PID controllers are widely used in industrial control.

• From a modern perspective, a PID controller is simply a controller of up to
second order containing an integrator. Historically, however, PID controllers
were tuned in terms of their P, I, and D terms.

• It has been empirically found that the PID structure often has sufficient flex-
ibility to yield excellent results in many applications.

• The basic term is the proportional term, P, which causes a corrective control
actuation proportional to the error.

• The integral term, I, gives a correction proportional to the integral of the error.
This has the positive feature of ultimately ensuring that sufficient control effort
is applied to reduce the tracking error to zero. However, integral action tends
to have a destabilizing effect due to the increased phase shift.

• The derivative term, D, gives a predictive capability yielding a control action
proportional to the rate of change of the error. This tends to have a stabilizing
effect but often leads to large control movements due to the amplification of
noise by the derivative action.

• Various empirical tuning methods can be used to determine the PID param-
eters for a given application. They should be considered as a first guess in a
search procedure. Attention should also be paid to the PID structure. Sys-
tematic model-based procedures are covered in later chapters.
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6.10 Problems for the Reader

Problem 6.1. Consider the following nominal plant models, Go,

(a)
10

(s+ 1)(s+ 10)

(b)
1

(s+ 1)(s− 2)

(c)
1

(s2 + s+ 1)

(d)
1

(s+ 1)s

Find suitable values for the parameters of a member of the PID family to control
each of these models.

Problem 6.2. Consider the model

Go(s) =
−αs+ 1

(s+ 1)(s+ 2)
(6.10.1)

Use the Cohen-Coon tuning strategy to synthesize a PID controller for different
values of α in the interval [0.1; 20]

Problem 6.3. Discuss whether there exists linear plants which cannot be stabilized
by any PID controller. Illustrate your conclusions with some examples.

Problem 6.4. Consider a plant, open loop stable, with complex dynamics and
input saturation. Assume that you have the experimental set-up simulated in file
pidemp.mdl and you want to tune a PID controller.

Without knowing the model for the plant:

6.4.1 Find the critical gain and the oscillation period. Discuss the use of Osc-u
and Osc-y.

6.4.2 Determine the settings for a PID controller.

6.4.3 Simulate the control loop with the tuned PID controller. Discuss.

Problem 6.5. Consider a plant with nominal model

Go(s) =
−s+ 2
(s+ 2)2

(6.10.2)
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Determine the settings that you would obtain on applying the Ziegler-Nichols
ultimate gain method.

Problem 6.6. Consider a plant with nominal model

Go(s) =
Ke−sτ

Ts+ 1
(6.10.3)

Assume you apply the Cohen-Coon tuning method.

6.6.1 Find the gain and phase margins for different ratios τ/T .

6.6.2 Find the sensitivity peak for different ratios τ/T .

Problem 6.7. Synthesize a PI controller for a plant having a nominal model given
by

Go(s) =
1

s2 + 6s+ 9
(6.10.4)

in such a way that Mg ≥ 10[dB] and Mf ≥ π/4.

Problem 6.8. Consider a plant with nominal model

Go(s) =
−s+ 3

(s+ 3)(s+ 5)
(6.10.5)

6.8.1 Synthesize a PID controller to achieve a complementary sensitivity with band-
width equal to 2 [rad/s].

6.8.2 Compare your result with that obtained using the Cohen-Coon strategy. Use
time domain and frequency domain tests.





Chapter 7

SYNTHESIS OF SISO
CONTROLLERS

7.1 Preview

In Chapter 5 it was shown how feedback control loop performance and stability can
be characterized using a set of four sensitivity functions. A key feature of these
functions is that all of them have poles belonging to the same set, the set of closed
loop poles. Hence, this set determines stability and the natural modes of the closed
loop. A key synthesis question is therefore: given a model, can one systematically
synthesize a controller such that the closed loop poles are in predefined locations?
This chapter will show that this is indeed possible. We call this pole assignment,
which is a fundamental idea in control synthesis.

In this chapter we will use a polynomial description. This evolves naturally from
the analysis in Chapter 5. In a later chapter we will use a state space description.
This will provide a natural transition from SISO to MIMO control systems in later
chapters.

It is also shown how both approaches can accommodate other design require-
ments such as zero steady state tracking errors and disturbance rejection.

Finally, PID controllers are placed into this general framework and it is shown
how they may be synthesized using pole assignment methods.

The question of how to choose a set of values for the closed loop poles to meet
the required performance specifications is, of course, a crucial issue. This is actually
a non-trivial question which needs to be considered as part of the intricate web of
design trade-offs associated with all feedback loops. The latter will be taken up in
the next chapter, where the design problem will be analyzed.

7.2 Polynomial Approach

We recall here the polynomial description of a plant as given in Chapter 4. We will
denote the nominal plant transfer function by

177
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Go(s) =
Bo(s)
Ao(s)

(7.2.1)

7.2.1 General formulation

Consider the nominal loop shown in Figure 5.1 on page 120. We recall that, in the
nominal control loop, the controller and the nominal model transfer functions are
respectively given by:

C(s) =
P (s)
L(s)

Go(s) =
Bo(s)
Ao(s)

(7.2.2)

with

P (s) = pnps
np + pnp−1s

np−1 + . . .+ p0 (7.2.3)

L(s) = lnls
nl + lnl−1s

nl−1 + . . .+ l0 (7.2.4)

Bo(s) = bn−1s
n−1 + bn−2s

n−2 + . . .+ b0 (7.2.5)

Ao(s) = ans
n + an−1s

n−1 + . . .+ a0 (7.2.6)

where we have assumed that the nominal model is strictly proper.
Consider now a desired closed loop polynomial given by

Acl(s) = acncs
nc + acnc−1s

nc−1 + . . .+ ac0 (7.2.7)

We will examine the following question: with the polynomial Acl(s) arbitrarily
specified, does there exist a proper C(s) which results in Acl(s) being the closed loop
characteristic polynomial? To motivate the idea consider the following example.

Example 7.1. Let Go(s) =
Bo(s)
Ao(s)

be the nominal model of a plant with Ao(s) =
s2 + 3s+ 2, Bo(s) = 1 and consider a controller of the form:

C(s) =
P (s)
L(s)

; P (s) = p1s+ p0; L(s) = l1s+ l0 (7.2.8)

We see that Ao(s)L(s) + Bo(s)P (s) = (s2 + 3s+ 2)(l1s+ l0) + (p1s+ p0). Say
that we would like this to be equal to a polynomial s3 + 3s2 + 3s+ 1, then equating
coefficients gives: 


1 0 0 0
3 1 0 0
2 3 1 0
0 2 0 1





l1
l0
p1

p0


 =


1
3
3
1


 (7.2.9)
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It is readily verified that the 4× 4 matrix above is nonsingular, meaning that we
can solve for l1, l0, p1 and p0 leading to l1 = 1, l0 = 0, p1 = 1 and p0 = 1. Hence
the desired characteristic polynomial is achieved by the controller C(s) = (s+1)/s.

✷✷✷

In the above example, we saw that the capacity to assign closed loop poles
depending on the non-singularity of a particular matrix. In the sequel we will
generalize the result. However, to do this, we will need the following mathematical
result regarding coprime polynomials:

Theorem 7.1 (Sylvester’s theorem). Consider two polynomials

A(s) = ans
n + an−1s

n−1 + . . .+ a0 (7.2.10)

B(s) = bns
n + bn−1s

n−1 + . . .+ b0 (7.2.11)

Together with the following eliminant matrix:

Me =




an 0 · · · 0 bn 0 · · · 0
an−1 an · · · 0 bn−1 bn · · · 0

...
...

. . .
...

...
...

. . .
...

a0 a1 · · · an b0 b1 · · · bn
0 a0 · · · an−1 0 b0 · · · bn−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · a0 0 0 · · · a0




(7.2.12)

The A(s) and B(s) are relatively prime (coprime) if and only if det(Me) �= 0.

Proof

If: Assume A(s), B(s) not relatively prime. Then there exists a common root r.
Write

A(s) = (s− r)(a′n−1s
n−1 + . . .+ a′0) (7.2.13)

B(s) = (s− r)(b′n−1s
n−1 + . . .+ b′0) (7.2.14)

(7.2.15)

Eliminating (s− r) gives

A(s)(b′n−1s
n−1 + . . .+ b′0)−B(s)(a′n−1s

n−1 + . . .+ a′0) = 0 (7.2.16)

Equating coefficients on both sides gives
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Meθ = 0 (7.2.17)

where

θT =
[
b′n−1 · · · b′0 −a′n−1 · · · −a′0

]
(7.2.18)

However, has a nontrivial solution if and only if det(Me) = 0.

Only if: By reversing the above argument

✷✷✷

Armed with the above result, we can now generalize Example 7.1 to show that
pole assignment is generally possible, provided some minimal requirements are sat-
isfied.

Lemma 7.1 (SISO pole placement. Polynomial approach). Consider a
one d.o.f. feedback loop with controller and plant nominal model given by (7.2.2)
to (7.2.6). Assume that Bo(s) and Ao(s) are relatively prime (coprime), i.e.
they have no common factors. Let Acl(s) be an arbitrary polynomial of degree
nc = 2n − 1. Then there exist polynomials P (s) and L(s), with degrees np =
nl = n− 1 such that

Ao(s)L(s) +Bo(s)P (s) = Acl(s) (7.2.19)

Proof

Equating coefficients in (7.2.19) yields

S




ln−1

...

...
l0

pn−1

...
p0



=




ac2n−1
...
...
...
...
...
ac0




with S �
=




an 0

an−1
. . . bn−1

. . .
...

. . .
...

. . . . . .

a0 an b0
. . . 0

. . . an−1
. . . bn−1

. . .
...

. . .
...

a0 b0




(7.2.20)
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In view of Sylvester’s theorem (see Theorem 7.1), the matrix S is nonsingular
if and only if the polynomials Bo and A0 are relatively prime. The result follows.

✷✷✷

Two additional cases will now be considered:

Case 1, nc = 2n− 1 + κ, with κ a positive integer

It is easy to see that, in this case, one feasible solution is obtained if we choose
nl = n− 1 + κ. Then

L(s) = Lad(s) + L̄(s) (7.2.21)

Lad(s)
�= sn(ln−1+κs

κ−1 + . . .+ ln) (7.2.22)

L̄(s)
�
= ln−1s

n−1 + . . .+ l0 (7.2.23)

First, the coefficients of Lad(s) can be computed by equating the coefficients
corresponding to the highest κ powers of s in equation (7.2.19). Then Lemma 7.1
on the preceding page can be applied by replacing L(s) by L̄(s) and Acl(s) by
Acl(s)−Ao(s)Lad(s). Thus a solution always exists, provided that Ao(s) and Bo(s)
are coprime.

✷✷✷

Case 2, nc < 2n− 1

In this case there is no solution, except for very special choices of the closed loop
polynomial Acl(s). This can be seen by arguing as follows:

• Since the nominal model is strictly proper and the controller should be at
least biproper1, we have that nl = nc − n.

• Thus, in the limit, we have that np = nl = nc − n. This means that we have
at most m = 2nc − 2n+ 2 controller coefficients to achieve the desired closed
loop polynomial. Note that m = nc + 1 + (nc − 2n + 1), which, given the
assumption for this case (nc − 2n+ 1 < 0), leads to m < nc + 1.

• Equating coefficients in (7.2.19) leads to nc + 1 equations. However, we have
already shown that the number of unknowns is less than nc+1. Thus the set
of equations is, in general, inconsistent.

✷✷✷

Remark 7.1. There is no loss in generality in assuming that the polynomials Ao(s),
L(s) and Acl(s) are monic. In the sequel we will work under that assumption.

1Recall that a rational transfer function is biproper if the numerator and denominator are
polynomials of equal degree.
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✷✷✷

Remark 7.2. Lemma 7.1 establishes the condition under which a solution exists
for the pole assignment problem, assuming a biproper controller. However, when
a strictly proper controller is required, then the minimum degree of P (s) and L(s)
have to be np = n− 1 and nl = n respectively. Thus, to be able to arbitrarily choose
the closed loop polynomial Acl(s), its degree must be equal to 2n.

✷✷✷

Remark 7.3. No unstable pole zero cancellation2 are allowed. This can be argued
as follows. Any cancellation between controller and plant model will appear as a
factor in Ao(s)L(s) and also in Bo(s)P (s). However, for equation (7.2.19) to be
satisfied, it is also necessary that the same factor be present in Acl(s). Since Acl(s)
has to be chosen as a stable polynomial, then this common factor must be stable.
Only in this case, the nominal closed loop is guaranteed to be internally stable, i.e.
the four sensitivity functions will be stable.

✷✷✷

7.2.2 Constraining the solution

In subsequent chapters we will frequently find that performance specifications can
require the controller to satisfy certain additional constraints. Some of these require-
ments can be satisfied in the polynomial pole assignment approach by ensuring that
extra poles or zeros are introduced. We illustrate this by several examples below.

Forcing integration in the loop

A standard requirement is that, in steady state, the nominal control loop should
yield zero control error due to D.C. components in either the reference, input dis-
turbance or output disturbance. For this to be achieved, a necessary and sufficient
condition is that the nominal loop be internally stable and that the controller have,
at least, one pole at the origin. This will render the appropriate sensitivity functions
zero at zero frequency.

To achieve this we choose

L(s) = sL̄(s) (7.2.24)

The closed loop equation (7.2.19) can then be rewritten as

Āo(s)L̄(s) +Bo(s)P (s) = Acl(s) with Āo(s)
�
= sAo(s) (7.2.25)

2In the sequel, unless we say something to the contrary, the expression pole zero cancellation
will denote the cancellation of a plant pole by a controller zero, or vice versa.



Section 7.2. Polynomial Approach 183

The solution to the pole assignment problem can now be considered as an equiv-
alent problem having a model of degree n̄

�
= n+ 1. Previous results might initially

suggest that Acl(s) can be arbitrarily specified if and only if its degree is at least
2n̄− 1 = 2n+ 1. However, a simplification results in this case, since we can allow
the degree of P (s) to be higher by one than that of L̄(s), since the controller will
still be proper. This means that the minimum degree of Acl(s) is 2n.

Forcing pole zero cancellations

Sometimes it is desirable to force the controller to cancel a subset of stable poles
and/or zeros of the plant model. To illustrate how this can be included in the pole
assignment strategy, we consider the special case when only one pole in the nominal
model, say at s = −p, has to be canceled.

To cancel the factor (s + p) in Ao(s), this factor must also be present in P (s).
Equation (7.2.19) then has a solution only if the same factor is present in Acl(s).
To solve equation (7.2.19), the factor (s+ p) can thus be removed from both sides
of the equation.

Extension to multiple cancellations is straightforward.

Remark 7.4. Canceled nominal model poles and zeros will still appear, as poles or
zeros, in some closed loop transfer functions. The discussion above shows that any
cancellation will force the canceled factor to be present in the closed loop polynomial
Acl(s).

To be more precise, any canceled plant model pole will be a pole in the nominal
input sensitivity, Sio(s) and a zero in Suo(s). Also, any canceled plant model zero
will be a pole in the nominal control sensitivity, Suo(s) and a zero in Sio(s).

✷✷✷

The following examples illustrate the polynomial pole assignment technique.

Example 7.2. Consider a nominal model given by

Go(s) =
3

(s+ 1)(s+ 3)
(7.2.26)

The initial unconstrained design requires the degree of Acl(s) to be chosen at
least equal to 3. For example, we could choose Acl(s) = (s2 + 5s + 16)(s + 40).
The polynomials P (s) and L(s) are then of degree 1. The polynomial equation to be
solved is

(s+ 1)(s+ 3)(s+ l0) + 3(p1s+ p0) = (s2 + 5s+ 16)(s+ 40) (7.2.27)

which, on equating coefficients, leads to

l0 = 41 p1 =
49
3

p0 =
517
3

(7.2.28)
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Alternatively, if one desires to constrain the design so that the controller features
integral action, then Acl(s) must be chosen to have degree of at least 4. We also
assume, by way of illustration, that the model pole at s = −1 should be canceled.
The polynomial equation to solve now becomes

s(s+ 1)(s+ 3)(s+ l0) + 3(s+ 1)(p1s+ p0) = (s+ 1)(s2 + 5s+ 16)(s+ 40)
(7.2.29)

After cancelling the common factor (s+1) and on equating coefficients, we finally
obtain

l0 = 42 p1 = 30 p0 =
640
3

=⇒ C(s) =
(s+ 1)(90s+ 640)

3s(s+ 42)
(7.2.30)

✷✷✷

Example 7.3. A plant has a nominal model given by Go(s) = 1
s−1 . The control

aim is to track a sinusoidal reference of 2[rad/s] of unknown amplitude and phase.
Design a controller which stabilizes the plant and which provides zero steady

state control error.

Solution

Polynomial pole assignment will be used. We first consider the order of the poly-
nomial Acl(s) to be specified. The requirement of zero steady error for the given
reference implies that

So(±j2) = 0 ⇐⇒ Go(±j2)C(±j2) = ∞ (7.2.31)

The constraint in equation (7.2.31) can be satisfied for the given plant if and
only if the controller C(s) has poles at ±j2. Thus

C(s) =
P (s)
L(s)

=
P (s)

(s2 + 4)Lad(s)
(7.2.32)

This means that Acl(s) can be arbitrarily specified if its degree is, at least, equal
to 3. We choose Acl(s) = (s2 + 4s + 9)(s + 10). This leads to Lad(s) = 1 and
P (s) = p2s

2 + p1s+ p0.
The pole assignment equation is then

(s− 1)(s2 + 4) + p2s
2 + p1s+ p0 = (s2 + 4s+ 9)(s+ 10) (7.2.33)



Section 7.3. PI and PID Synthesis Revisited using Pole Assignment 185

On expanding the polynomial products and equating coefficients we finally obtain

P (s) = 15s2 + 45s+ 94 =⇒ C(s) =
15s2 + 45s+ 94

s2 + 4
(7.2.34)

For a more numerically demanding problem, the reader may wish to use the
MATLAB program paq.m in the accompanying diskette.

✷✷✷

The idea of making C(±j2) = ∞ in the above example is actually a special
case of the internal model principle . This will be discussed in detail in Chapter
10. The above approach to pole assignment introduces additional dynamics in the
loop. The basic concept behind this approach is that, by using feedback, one is able
to shift the system natural frequencies to arbitrary locations, provided that certain
conditions hold.

To solve the polynomial equation we require that the polynomials Ao and Bo

be coprime. We have given an algebraic reason for that requirement. It is also
possible to give a state space interpretation to this result. In fact, coprimeness of
Ao and Bo turns out to be equivalent to complete reachability and observability
of the associated state space model. We will explore these state space issues in
Chapter 18.

7.3 PI and PID Synthesis Revisited using Pole Assignment

The reader will recall that PI and PID controller synthesis using classical meth-
ods was reviewed in Chapter 6. In this section we place these results in a more
modern setting by discussing the synthesis of PI and PID controllers based on pole
assignment techniques.

Throughout this section we will consider one d.o.f. control loops with PI con-
trollers of the form

CPI(s) = Kp +
KI

s
(7.3.1)

and proper PID controllers of the form

CPID(s) = Kp +
KI

s
+

KDs

τDs+ 1
(7.3.2)

For future reference, we note the following alternative representation of a PID
controller.

Lemma 7.2. Any controller of the form
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C(s) =
n2s

2 + n1s+ no
d2s2 + d1s

(7.3.3)

is identical to the PID controller (7.3.2), where

Kp =
n1d1 − nod2

d2
1

(7.3.4)

KI =
no
d1

(7.3.5)

KD =
n2d

2
1 − n1d1d2 + nod

2
2

d3
1

(7.3.6)

τD =
d2

d1
(7.3.7)

Proof

Straightforward on equating (7.3.2) and (7.3.3).
✷✷✷

As indicated by (7.3.1), designing a PI controller requires the tuning of two
constants, Kp and KI , whereas a PID controller requires the additional two con-
stants KD and τD. Rather than tuning them directly, however, they can also be
automatically synthesized using pole assignment.

If we assume that the plant can be (at least, approximately) modeled by a
second order model, then we can immediately use pole assignment to synthesize a
PID controller. Referring to subsection §7.2.2, we simply choose:

degree Ao(s) =2
degree Bo(s) ≤ 1
degree L̄(s) =1
degree P̄ (s) =2
degree Acl(s) =4

If the plant contains a time delay as in (6.4.1), then we need to obtain an
approximate second order model before we can proceed as suggested above. One
way to do this is to approximate the time delay by a first order all pass system. In
this case, (6.4.1) is approximately modeled as

G(s) =
Ke−sτ

νos+ 1
≈
[

K

νos+ 1

] [− sτ
2 + 1

sτ
2 + 1

]
= Go(s) (7.3.8)

Example 7.4. A plant has a nominal model given by

Go(s) =
2

(s+ 1)(s+ 2)
(7.3.9)
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Synthesize a PID controller which yields a closed loop with dynamics dominated
by the factor s2 + 4s+ 9.

Solution

The controller is synthesized by solving the pole assignment equation, with the fol-
lowing quantities

Acl(s) = (s2 + 4s+ 9)(s+ 4)2; Bo(s) = 2; Ao(s) = s2 + 3s+ 2 (7.3.10)

where the factor (s+4)2 has been added to ensure that the pole assignment equation
has a solution. Note that this factor generates modes which are faster than those
originated in s2 + 4s+ 9.

Solving the pole assignment equation gives

C(s) =
P (s)
sL̄(s)

=
14s2 + 59s+ 72

s(s+ 9)
(7.3.11)

We observe using Lemma 7.2 on page 185 that C(s) is a PID controller with

Kp = 5.67; KI = 8; KD = 0.93; τD = 0.11 (7.3.12)

An important observation is that the solution to this problem has the structure of
a PID controller for the given model Go(s). For a higher order Go(s), the resulting
controller will not be, in general, a PID controller.

✷✷✷

7.4 Smith Predictor

Since time delays are very common in real world control problems, it is important
to examine if one can improve on the performance achievable with a simple PID
controller. This is specially important when the delay dominates the response.

For the case of stable open loop plants, a useful strategy is provided by the
Smith predictor. The basic idea here is to build a parallel model which cancels the
delay, see Figure 7.1. In this figure, we assume that the plant model takes the form:

Go(s) = e−sτ Ḡo(s) (7.4.1)

It can be seen from Figure 7.1 that the design of the controller, C(s), can be
carried out using the undelayed part of the model, Ḡo(s), since the delay has been
cancelled by the parallel model. Thus we can design the controller with a pseudo
complementary sensitivity function, Tzr(s), between r and z which has no delay in
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−
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+
C(s)

Controller

+−

+
Ḡo(s)

Plant

e−sτ Ḡo(s)

Z(s)

R(s) Y (s)U(s)

Figure 7.1. Smith predictor structure

the loop. This would be achieved, for example, via a standard PID block, leading
to:

Tzr(s) =
Ḡo(s)C(s)

1 + Ḡo(s)C(s)
(7.4.2)

In turn, this leads to a nominal complementary sensitivity, between r and y of
the form:

To(s) = e−sτTzr(s) (7.4.3)

Four observations are in order regarding this result:

(i) Although the scheme appears somewhat ad-hoc, it will be shown in Chapter 15
that the architecture is inescapable in so far that it is a member of the set of
all possible stabilizing controllers for the nominal system (7.4.1).

(ii) Provided Ḡo(s) is simple (e.g. having no nonminimum phase zero), then C(s)
can be designed to yield Tzr(s) ≈ 1. However, from (7.4.3), we see that this
leads to the ideal result To(s) = e−sτ .

(iii) There are significant robustness issues associated with this architecture. These
will be discussed in section §8.6.2.

(iv) One cannot use the above architecture when the open loop plant is unstable.

7.5 Summary

• This chapter addresses the question of synthesis and asks:
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Given the model G0(s) =
Bo(s)
Ao(s)

, how can one synthesize a controller, C(s) =
P (s)
L(s) such that the closed loop has a particular property.

• Recall:

◦ the poles have a profound impact on the dynamics of a transfer function;

◦ The poles of the four sensitivities governing the closed loop belong to the
same set, namely the roots of the characteristic equation Ao(s)L(s) +
Bo(s)P (s) = 0.

• Therefore, a key synthesis question is:

Given a model, can one synthesize a controller such that the closed loop poles
(i.e. sensitivity poles) are in pre-defined locations?

• Stated mathematically:

Given polynomials Ao(s), Bo(s) (defining the model) and given a polynomial
Acl(s) (defining the desired location of closed loop poles), is it possible to find
polynomials P (s) and L(s) such that Ao(s)L(s) + Bo(s)P (s) = Acl(s)? This
chapter shows that this is indeed possible.

• The equation Ao(s)L(s) + Bo(s)P (s) = Acl(s) is known as a Diophantine
equation.

• Controller synthesis by solving the Diophantine equation is known as pole
placement. There are several efficient algorithms as well as commercial soft-
ware to do so.

• Synthesis ensures that the emergent closed loop has particular constructed
properties.

◦ However, the overall system performance is determined by a number of
further properties which are consequences of the constructed property.

◦ The coupling of constructed and consequential properties generates trade-
offs.

• Design is concerned with

◦ efficiently detecting if there is no solution that meets the design specifi-
cations adequately and what the inhibiting factors are

◦ choosing the constructed properties such that, whenever possible, the
overall behavior emerging from the interacting constructed and the con-
sequential properties meets the design specifications adequately.

• This is the topic of the next chapter.
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7.7 Problems for the Reader

Problem 7.1. Consider a plant having nominal model Go(s). Assume a one de-
gree of freedom control loop with controller C(s), where

Go(s) =
1

(s+ 1)(s+ 2)
; C(s) =

as+ b

s
(7.7.1)

Find the conditions for a and b under which the nominal feedback loop is stable.

Problem 7.2. The same nominal plant as in Problem 7.1 has to be controlled to
achieve zero steady state error for step disturbances and leading to a closed loop
dominated by three poles at s = −1.
7.2.1 Find a controller transfer function C(s) which satisfies these requirements.

7.2.2 Why is your result special?

Problem 7.3. Find a controller C(s) for the following sets of data.

Bo(s) Ao(s) Acl(s)

1 (s+ 1)(s+ 2) (s2 + 4s+ 9)(s+ 8)

−s+ 6 (s+ 4)(s− 1) (s+ 2)3

s+ 1 (s+ 7)s2 (s+ 1)(s+ 7)(s+ 4)3

Problem 7.4. A plant has a nominal model given by Go(s) = 3
(s+4)(s+2) . Use

polynomial pole placement techniques to synthesize a controller to achieve

• zero steady state errors for constant disturbances

• closed loop modes decaying faster than e−3t

Problem 7.5. Closed loop control has to be synthesized for a plant having nominal
model Go(s) = −s+4

(s+1)(s+4) , to achieve the following goals:

• Zero steady state errors to a constant reference input.

• Zero steady state errors for a sinewave disturbance of frequency 0.25 [rad/s].

• A biproper controller transfer function, C(s).
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Use the pole placement method to obtain a suitable controller C(s).

Problem 7.6. Consider a plant having a nominal model

Go(s) =
8

(s+ 2)(s+ 4)
(7.7.2)

7.6.1 Synthesize a controller C(s) such that the closed loop polynomial is Acl(s) =
(s+ a)2(s+ 5)2, for a = 0.1 and a = 10

7.6.2 Discuss your results regarding the pole-zero structure of C(s).

Problem 7.7. The nominal model for a plant is given by

Go(s) =
1

(s+ 1)2
(7.7.3)

This plant has to be controlled in a feedback loop with one degree of freedom.
Using the polynomial approach, design a strictly proper controller C(s) which

allocates the closed loop poles to the roots of Acl(s) = (s2 + 4s+ 9)(s + 2)k, k ∈ N

(choose an adequate value for k).

Problem 7.8. The nominal model for a plant is given by

Go(s) =
1

(s+ 1)(−s+ 2)
(7.7.4)

Assume that this plant has to be controlled in a feedback loop with one degree of
freedom, in such a way that the closed loop polynomial is dominated by the factor
s2 + 7s+ 25.

Using the polynomial approach, choose an appropriate minimum degree Acl(s)
and synthesize a biproper controller C(s).

Problem 7.9. Consider a linear plant, with input u(t), output y(t) and input
disturbance d(t). Assume that the plant model is given by

Y (s) =
1

s− 3
(U(s) +D(s)) (7.7.5)
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Further assume that the disturbance is a sine wave of frequency 2[rad/s], having
unknown magnitude and phase.

Use the pole assignment approach to synthesize a controller C(s) which allows
zero steady state errors for the given disturbance and a constant set point.

Use the polynomial approach choosing an appropriate closed loop polynomial
Acl(s). (Hint: use MATLAB routine paq.m in the accompanying diskette).

Problem 7.10. Consider a plant with nominal model

Go(s) =
e−0.5s(s+ 5)
(s+ 1)(s+ 3)

(7.7.6)

Build a Smith predictor such that the dominant closed loop poles are located at
s = −2± j0.5.
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PREVIEW

In the previous part of the book, we introduced the basic techniques by which control
system synthesis could be achieved. These are the elements used to manipulate a
controller to achieve given specifications.

It turns out, however, that the performance properties typically covered by spec-
ifications cannot be addressed separately by a design since they form an interwoven
network of trade-offs and constraints. Fast compensation for disturbances for exam-
ple, is not a separate degree of freedom from the common requirement of achieving
insensitivity to modeling errors or conservation of control energy and utilities. Thus
the control engineer needs to ease a feasible solution into this complex web of trade-
offs, compromises and constraints. Doing this in a systematic and deliberate fashion
is what we call control system design.

Design, which is the key task of the control engineer, is based on a thorough
understanding of analysis, synthesis and design limitations. The first two chapters
of this part of the book cover fundamental design limitations in both the time and
frequency domains. The third chapter introduces ideas that are very commonly
employed in practice including feedforward and cascade structures. The final chap-
ter discusses ways of dealing with input saturations and slew rate limits. These are
ubiquitous problems in real world control system design.
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Chapter 8

FUNDAMENTAL
LIMITATIONS IN SISO

CONTROL

8.1 Preview

The results in the previous chapters have allowed us to determine relationships
between the variables in a control loop. We have also defined some key transfer
functions (sensitivity functions) which can be used to quantify the control loop
performance and have shown that, under reasonable conditions, the closed loop
poles can be arbitrarily assigned. However, these procedures should all be classified
as synthesis rather than design. The related design question is: where should I
assign the closed loop poles? These are the kinds of issues we now proceed to study.
It turns out that the question of where to assign closed loop poles is part of the
much larger question regarding the fundamental laws of trade-off in feedback design.
These fundamental laws, or limitations, govern what is achievable, and conversely,
what is not achievable in feedback control systems. Clearly, this lies at the very
heart of control engineering. We thus strongly encourage students to gain some feel
for these issues. The fundamental laws are related, on the one hand, to the nature
of the feedback loop (e.g. whether integration is included or not) and on the other
hand, to structural features of the plant itself.

The limitations that we examine here include

• sensors

• actuators

– maximal movements

– minimal movements

• model deficiencies

• structural issues, including
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– poles in the ORHP
– zeros in the ORHP
– zeros that are stable but close to the origin
– poles on the imaginary axis
– zeros on the imaginary axis

We also briefly address possible remedies to these limitations.

8.2 Sensors

Sensors are a crucial part of any control system design, since they provide the
necessary information upon which the controller action is based. They are the eyes
of the controller. Hence, any error, or significant defect, in the measurement system
will have a significant impact on performance. We recall that, for a nominal plant
Go(s) and a given unity feedback controller C(s), the sensitivity functions take the
form:

To(s) =
Go(s)C(s)

1 +Go(s)C(s)
=

Bo(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

(8.2.1)

So(s) =
1

1 +Go(s)C(s)
=

Ao(s)L(s)
Ao(s)L(s) +Bo(s)P (s)

(8.2.2)

Sio(s) =
Go(s)

1 +Go(s)C(s)
=

Bo(s)L(s)
Ao(s)L(s) +Bo(s)P (s)

(8.2.3)

Suo(s) =
C(s)

1 +Go(s)C(s)
=

Ao(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

(8.2.4)

where Go(s) =
Bo(s)
Ao(s)

and C(s) = P (s)
L(s) .

We will examine 2 aspects of the sensor limitation problem namely noise and
sensor response.

8.2.1 Noise

One of the most common sensor problems is measurement noise. In Chapter 5 it
was shown that the effect of measurement noise in the nominal loop is given by

Ym(s) = −To(s)Dm(s) (8.2.5)
Um(s) = −Suo(s)Dm(s) (8.2.6)

where ym(t) and um(t) are respectively the plant output component and the con-
troller output component due to the measurement noise.

From equation (8.2.5) we can see that the deleterious effect of noise can be
attenuated if |To(jω)| is small in the region where |Dm(jω)| is significant. Thus we
may include:
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Given the fact that noise is typically dominated by high frequencies, measure-
ment noise usually sets an upper limit on the bandwidth of the loop .

8.2.2 Sensor response

Another common limitation introduced by measurement systems arises from the
fact that sensors themselves often have dynamics. As a simple example, most
thermocouples are embedded in a thermocouple well to protect them. However this
well introduces an extra lag into the response and can indeed dominate the system
response. This can be modeled by assuming that the measured output, ym(t), is
related to the true output, y(t), as follows:

Ym(s) =
1

τ1s+ 1
Y (s) (8.2.7)

It might be thought that this limitation can effectively be eliminated by passing
ym(t) through a suitable high pass filter. For instance we might use

Ymf =
τ1s+ 1
τ2s+ 1

Ym(s) τ1 > τ2 (8.2.8)

However if we turn again to the issue of measurement noise we see that the high
pass filter in (8.2.8) will significantly amplify high frequency noise and thus the
upper limit in the bandwidth again appears.

8.3 Actuators

If sensors provide the eyes of control, then actuators provide the muscle. However,
actuators are also a source of limitations in control performance. We will examine
two aspects of actuator limitations. These are maximal movement, and minimal
movement.

8.3.1 Maximal actuator movement

In practice, all actuators have maximal movement constraints in the form of sat-
uration limits on amplitude or slew rate limits. To see how maximal movement
constraints impact on achievable performance, we note that peaks in the control ac-
tion usually occur as a result of large fast changes in either the reference or output
disturbance (input disturbance changes are usually filtered by the plant). Recall
that in a one d.o.f. loop, the controller output is given by

U(s) = Suo(s)(R(s)−Do(s)) where Suo(s)
�
=

To(s)
Go(s)

(8.3.1)
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If the loop bandwidth is much larger than that of the open loop model Go(s), then
the transfer function Suo(s) will significantly enhance the high frequency compo-
nents in R(s) and Do(s). This is illustrated in the following example.

Example 8.1. Consider a plant and closed loop given by

Go(s) =
10

(s+ 10)(s+ 1)
and To(s) =

100
s2 + 12s+ 100

(8.3.2)

Note that the plant and the closed loop bandwidths have a ratio of approximately
10 : 1. This will be reflected in large control sensitivity, |Suo(jω)|, at high frequen-
cies, which, in turn, will yield large initial control response in the presence of high
frequency reference signals or disturbances. This is illustrated in Figure 8.1, where
the magnitude of the control sensitivity and the control output for a unit step output
disturbance are shown.
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Figure 8.1. Effects of a large ratio closed loop bandwidth to plant bandwidth.

✷✷✷

We see in the above example that having a closed loop bandwidth ten times the
open loop bandwidth calls for an initial input signal ten times that of the steady
state value in response to a step demand. This connection between bandwidth and
input size is a very rough rule of thumb. The reader is encouraged to look at the
various case studies on the web site and to change the bandwidth by changing the
controller gain to examine the effect it has on maximum input signal.

Actuators also frequently exhibit a limit on the maximum speed with which they
can change position. This is usually termed a slew rate limit. If present, this will
cause departures from the performance prescribed by a purely linear design.

We can gain a qualitative understanding of the effect of slew rate limiting by
noting that the input is given by
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U(s) = Suo(s)[R(s)−Do(s)] (8.3.3)

Hence, the rate of change of the input is given by

sU(s) = Suo(s)[sR(s)− sDo(s)] =
To(s)
Go(s)

[sR(s)− sDo(s)] (8.3.4)

Thus, if the bandwidth of the closed loop is much larger than that of the plant
dynamics, then the rate of change of the input signal will necessarily be large for
fast changes in r(t) and do(t).

Hence, we conclude that

To avoid actuator saturation or slew rate problems, it will generally be necessary
to place an upper limit on the closed loop bandwidth.

8.3.2 Minimal actuator movement

In subsection 8.3.1, we learned that control loop performance is limited by the max-
imal available movement available from actuators. This is heuristically reasonable.
What is perhaps less obvious is that control systems are often also limited by mini-
mal actuator movements. Indeed, in the experience of the authors, many real world
control problems are affected by this issue.

Minimal actuator movements are frequently associated with frictional effects;
i.e. the actuator sticks. When the actuator is in this mode, integrators (both in
the plant and controller) will wind-up until sufficient force is generated to overcome
the static friction component. The manifestations of the problem are usually a self
sustaining oscillation produced as the actuator goes through a cycle of sticking,
moving, sticking and so on. The oscillation frequency is typically at or near the
frequency where the loop phase shift is 180o.

Example 8.2 (Continuous casting). Consider again the mould level controller
described in section §2.3. It is known that many mould level controllers in industry
exhibit poor performances in the form of self-sustaining oscillations. See for example
the real data shown in the Figure 8.2. Many explanations have been proposed for
this problem. However, at least on the system with which the authors are familiar,
the difficulty was directly traceable to minimal movement issues associated with the
actuator. (The slide gate valve.)

✷✷✷

8.4 Disturbances

Another source of performance limitation in real control systems is that arising from
disturbances. This effect too can be evaluated using the appropriate loop sensitivity
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Figure 8.2. Chart recording showing oscillations in conventional mould level con-
trol system

functions. To be more precise consider the expression already derived in Chapter 5
for the effect of disturbances on the plant output:

Y (s) = Sio(s)Di(s) + So(s)Do(s) (8.4.1)

Assume that the input and output disturbances have significant energy only in
the frequency bands Bwi and Bwo respectively. Then, it is clearly desirable to have
small values for |So(jω)| and |Sio(jω)| in Bwi and Bwo respectively. Since G(s) is
fixed, this can only be achieved provided that So(jω) ≈ 0, and hence To(jω) ≈ 1 in
the frequency band encompassing the union of Bwi and Bwo.

Hence,

To achieve acceptable performance in the presence of disturbances, it will gen-
erally be necessary to place a lower bound on the closed loop bandwidth.

8.5 Model Error Limitations

Another key source of performance limitation is due to inadequate fidelity in the
model used as the basis of control system design. To analyze this problem we need
to distinguish between nominal performance and the true, or achieved, performance.
One usually bases design on the nominal model and then adds the requirement that
the resultant performance should be insensitive to the difference between the true
and the nominal model. This property, defined in Chapter 5, is usually referred to
as robustness.

We have seen in Chapter 5 that these differences can be expressed as differences
between the nominal and the corresponding true sensitivity. A key function to



Section 8.6. Structural Limitations 205

quantify these differences defined in that chapter was the error sensitivity S∆(s),
given by

S∆(s) =
1

1 + To(s)G∆(s)
(8.5.1)

where G∆(s) is the multiplicative modeling error.
Modeling is normally good at low frequencies and deteriorates as the frequency

increases, since then dynamic features neglected in the nominal model become sig-
nificant. This implies that |G∆(jω)| will typically become increasingly significant
with rising frequency.

Hence,

To achieve acceptable performance in the presence of model errors, it will gen-
erally be desirable to place an upper limit on the closed loop bandwidth.

8.6 Structural Limitations

8.6.1 General ideas

In the previous sections, limitations arising from sensors, actuators, disturbances,
and modeling errors have been discussed. All of these aspects have to be considered
when carrying out the nominal control design. However, performance in the nom-
inal linear control loop is also subject to unavoidable constraints which derive
from the particular structure of the nominal model itself.

The aim of this section is to analyze these structural constraints and their effect
on overall performance.

8.6.2 Delays

Undoubtedly the most common source of structural limitation in process control
applications is due to process delays. These delays are usually associated with the
transportation of materials from one point to another.

Clearly, by the time one sees the effect of a disturbance on the output, it takes
a full delay period before it can be cancelled. Thus the output sensitivity function
can, at best, be of the form:

S∗
o (s) = 1− e−sτ (8.6.1)

where τ is the delay.
We have actually seen in section §7.4 that one can approach the above idealized

result by appropriate control system design using a Smith predictor type structure.
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Another difficulty is that of robustness to model errors. If we were to achieve,
the idealized result in (8.6.1), then the corresponding nominal complementary sen-
sitivity would be

T ∗
o (s) = e−sτ (8.6.2)

However, this has a gain of unity for all frequencies. To examine the conse-
quences of this, we recall the error sensitivity given in (8.5.1). We then see that,
if we have any model error (especially in the delay itself) then G�(s) is likely to
grow to near 1 at relatively low frequencies. Indeed, it is readily seen via the ideas
presented in section §4.12, that the relative modeling error will have a magnitude
that approaches 1 at approximately a bandwidth of 1

ητ where η is the fractional
error in the delay. Thus, in practice, one is usually limited by the combined effects
of delays and modeling errors to closed loop bandwidths of the order of 2π

τ .
In summary, we see that process delays have two effects

(i) Delays limit disturbance rejection by requiring that a delay occur before
the disturbance can be cancelled. This is reflected in the ideal sensitivity
S∗
o (s) in (8.6.1).

(ii) Delays further limit the achievable bandwidth due to the impact of model
errors.

Example 8.3 (Thickness control in rolling mills). We recall the example of
thickness control in rolling mills as mentioned in Chapter 1. A schematic diagram
for one stand of a rolling mill is given in Figure 8.3.

In Figure 8.3, we have used the following symbols F (Roll Force), σ(unloaded
roll gap), H(input thickness), V (input velocity), h(exit thickness), v(exit velocity),
hm(measured exit thickness), d(distance from mill to exit thickness measurement).

The distance from the mill to output thickness measurement introduces a (speed
dependent) time delay of (dv ). This introduces a fundamental limit to the controlled
performances as described above.

✷✷✷

We have seen above that delays (where the response does not move for a given
period) represents a very important source of structural limitations in control design.
Based on this, we might conjecture that non-minimum phase behaviour (where the
response initially goes in the wrong direction) may present even harder challenges
to control system design. This is indeed the case as we show in the next section.

8.6.3 Interpolation Constraints

Before reading on, the reader should revise the points made in Chapter 4 on the
impact of zeros on general transfer functions. In order to relate these general prop-
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Figure 8.3. Holdup effect

erties of zeros (as described in Chapter 4) to feedback systems, it is first necessary
to understand the nature and origin of poles and zeros of sensitivity functions.

We recall that the relevant nominal sensitivity functions for a nominal plant
Go(s) =

Bo(s)
Ao(s)

and a given unity feedback controller C(s) = P (s)
L(s) are given below

To(s) =
Go(s)C(s)

1 +Go(s)C(s)
=

Bo(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

(8.6.3)

So(s) =
1

1 +Go(s)C(s)
=

Ao(s)L(s)
Ao(s)L(s) +Bo(s)P (s)

(8.6.4)

Sio(s) =
Go(s)

1 +Go(s)C(s)
=

Bo(s)L(s)
Ao(s)L(s) +Bo(s)P (s)

(8.6.5)

Suo(s) =
C(s)

1 +Go(s)C(s)
=

Ao(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

(8.6.6)

We note that the poles of all these transfer functions are the set ( or, in the case
of pole-zero cancellation, a subset) of the closed loop poles. Although the poles
alone determine the stability of the loop, it is the combined pole-zero pattern that
determines the precise transient performance.

One of the important implications which derive from the closed loop sensitivity
functions is that all uncancelled plant poles and uncancelled plant zeros impose
algebraic or interpolation constraints on the sensitivity functions. In particular, we
have that
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(i) The nominal complementary sensitivity To(s) has a zero at all uncancelled
zeros of Go(s).

(ii) The nominal sensitivity So(s) is equal to one at all uncancelled zeros of
Go(s). (This follows from (i) using the identity So(s) + To(s) = 1.)

(iii) The nominal sensitivity So(s) has a zero at all uncancelled poles of Go(s).

(iv) The nominal complementary sensitivity To(s) is equal to one at all
uncancelled poles of Go(s). (This follows from (iii) and the identity
So(s) + To(s) = 1.)

It is helpful, at this point, to introduce a typical design constraint. In particular
we will assume that the design achieves an exact inverse of the plant model at
zero frequency. This ensures perfect tracking for a fixed set point and rejection of
constant input and output disturbances from the output. To achieve this we require
that L(0) = 0, which leads to

Ao(0)L(0) = 0 ⇔ So(0) = 0 ⇔ To(0) = 1 (8.6.7)

Note that Ao(0) = 0 alone does not lead to full compensation of a constant
input disturbance, since the set of zeros of Sio(s) does not include the plant
poles, hence Ao(0) = 0 does not imply that Sio(0) is zero.

We will proceed to investigate the relationship between plant poles and zeros
and closed loop time responses. The main result of this section will be that plant
open loop poles and zeros, especially those in the right half plane, have a dramatic
and predictable effect on transient performance.

We will begin by recalling Lemma 4.1 on page 81 which relates (exponentially
weighted) integrals of time responses to point values of the corresponding Laplace
transform.

The particular transfer functions of interest here will be the various nominal
sensitivity functions. In order that we will be able to apply Lemma 4.1 on page 81,
we will assume that the closed loop poles lie to the left of −α, for some α > 0,
which is always true for stable closed loop systems. We first examine the effects of
integrators. Actually, to make this topic more interesting for the reader, we can re-
late an anecdote from one of our colleagues whose first job in industry was to design
a one-degree-of-freedom controller to reject a ramp disturbance that also had the
property that the response to a step reference change did not overshoot. Equation
(8.6.12) to be presented below shows that these design specifications violate funda-
mental laws of feed back systems. Clearly a lot of wasted time can be solved by
knowing what is not possible (i.e. to appreciate fundamental design constraints).
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8.6.4 Effect of open loop integrators

Lemma 8.1. We assume that the plant is controlled in a one-degree-of-freedom
configuration and that the open loop plant and controller satisfy:

Ao(s)L(s) = si(Ao(s)L(s))′ i ≥ 1 (8.6.8)
lim
s→0

(Ao(s)L(s))′ = c0 �= 0 (8.6.9)

lim
s→0

(Bo(s)P (s)) = c1 �= 0 (8.6.10)

i.e. the plant-controller combination have i poles at the origin. Then, for a step
output disturbance or step set point, the control error, e(t), satisfies

lim
t→∞ e(t) = 0 ∀i ≥ 1 (8.6.11)

∞∫
0

e(t)dt = 0 ∀i ≥ 2 (8.6.12)

Also, for a negative unit ramp output disturbance or a positive unit ramp refer-
ence, the control error, e(t), satisfies

lim
t→∞ e(t) =

c0
c1

for i = 1 (8.6.13)

lim
t→∞ e(t) = 0 ∀i ≥ 2 (8.6.14)

∞∫
0

e(t)dt = 0 ∀i ≥ 3 (8.6.15)

Proof

We first recall that the control error satisfies

E(s) = So(s)(R(s) −Do(s)) (8.6.16)

The expressions for limt→∞ e(t) are then a consequence of the final value theorem
for Laplace transforms. The integral results follow from Lemma 4.1 on page 81
where h(t) has been replaced by e(t) and z0 = 0.
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✷✷✷

In the case of input disturbances, a similar result holds. However, caution must
be exercised since the numerator of Sio(s) is Bo(s)L(s) rather than Ao(s)L(s) as
was the case for So(s). This implies that integration in the plant does not
impact on the steady state compensation of input disturbances. Thus we
need to modify Lemma 8.1 to the following:

Lemma 8.2. Assume that the controller satisfies:

L(s) = si(L(s))′ i ≥ 1 (8.6.17)
lim
s→0

(L(s))′ = li �= 0 (8.6.18)

lim
s→0

(P (s)) = p0 �= 0 (8.6.19)

the controller alone has i poles at the origin. Then, for a step input disturbance,
the control error, e(t), satisfies

lim
t→∞ e(t) = 0 ∀i ≥ 1 (8.6.20)

∞∫
0

e(t)dt = 0 ∀i ≥ 2 (8.6.21)

Also, for negative unit ramp input disturbance, the control error, e(t), satisfies

lim
t→∞ e(t) =

li
p0

for i = 1 (8.6.22)

lim
t→∞ e(t) = 0 ∀i ≥ 2 (8.6.23)

∞∫
0

e(t)dt = 0 ∀i ≥ 3 (8.6.24)

Proof

In this case, the control error satisfies

E(s) = −Sio(s)Di(s) (8.6.25)

The remainder of the proof parallels that of Lemma 8.1 on the preceding page.
✷✷✷
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Remark 8.1. Note that when the integral of the error vanishes, then it follows that
the error has equal area above and below zero. Hence, overshoot in the plant output
is unavoidable. In particular, it is clearly impossible to design a one d.o.f. feedback
control loop with two integrators in the controller (giving zero steady state error
to a ramp input) which does not overshoot when a step change in the reference is
applied. This explains the impossibility of the design specifications in the anecdote
referred to just before subsection §8.6.4.

8.6.5 More general effects of open loop poles and zeros.

The results above depend upon the zeros of the various sensitivity functions at
the origin. However, it turns out that zeros in the right half plane have an even
more dramatic effect on achievable transient performances of feedback loops. We
will show this below. As a prelude to this, we note that Lemma 4.1 on page 81
applies to general zeros. This fact is exploited below to develop a series of integral
constraints that apply to the transient response of feedback systems having various
combinations of open loop poles and zeros.

Lemma 8.3. Consider a feedback control loop having stable closed loop poles located
to the left of −α for some α > 0. Also assume that the controller has at least one pole
at the origin. Then, for an uncancelled plant zero z0 or an uncancelled plant pole
η0 to the right of the closed loop poles, i.e. satisfying �{z0} > −α or �{η0} > −α
respectively, we have

(i) For a positive unit reference step or a negative unit step output disturbance,
we have

∞∫
0

e(t)e−z0tdt =
1
z0

(8.6.26)

∞∫
0

e(t)e−η0tdt = 0 (8.6.27)

(ii) For a positive unit step reference and for z0 in the right half plane, we have

∞∫
0

y(t)e−z0tdt = 0 (8.6.28)

(iii) For a negative unit step input disturbance, we have
∞∫
0

e(t)e−z0tdt = 0 (8.6.29)
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∞∫
0

e(t)e−η0tdt =
L(η0)
η0P (η0)

(8.6.30)

Proof

The proof depends on the key fact that the open loop poles and zeros that we consider
are in the region of convergence of the transform, i.e. they lie to the right of all
closed loop poles. This implies that, even if e−zot (or e−ηot) is a growing exponential,
the product e(t)e−zot decays asymptotically.

(i) In this case, the control error satisfies

E(s) = So(s)(R(s)−Do(s)) (8.6.31)

with either R(s) = 1
s or −Do(s) = 1

s . We also note that So(z0) = 1, So(η0) =
0. The result then follows from Lemma 4.1 on page 81 where h(t) is replaced
by e(t).

(ii) In this case, the plant output satisfies

Y (s) = To(s)R(s) (8.6.32)

with R(s) = 1
s . We also note that To(z0) = 0. The result then follows from

Lemma 4.1 on page 81 where h(t) is replaced by y(t).

(iii) In this case, the control error satisfies

E(s) = −Sio(s)Di(s) (8.6.33)

with −Di(s) = 1
s . We also note that Sio(z0) = 0, Sio(η0) =

L(η0)
P (η0) . The result

then follows from Lemma 4.1 on page 81 where h(t) is replaced by e(t).

✷✷✷

The above results are important since they provide a link between open loop
plant characteristics and closed loop transient performance. The following quali-
tative observations are a consequence of these results (the reader may first care to
revise subsection §8.6.3).
(i) From equation (8.6.26) we see that, if z0 is a negative real number (i.e. zo

is actually a minimum phase zero), then the error must change sign since it
is initially positive but the integral is negative. This implies that the plant
response must exhibit overshoot. Moreover, the size of the overshoot increases
as the size of the zero decreases. The size of the overshoot is of the order of
(ts|z0|)−1, where ts is the settling time (see Lemma 4.3 on page 84).
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On the other hand, if z0 is a positive real number (i.e. zo is a non minimum
phase zero) then the error need not change sign. However, if z0 is small then
the integral of error will be large and positive. Moreover, for z0 in the right
half plane, we see from equation (8.6.28), that for a step change in the set
point the response must undershoot. This implies that the error will peak
at a value higher than the initial value of unity. Indeed, the peak error and
undershoot magnitude are of the order of (ts|z0|)−1, where ts is the settling
time (see Lemma 4.2 on page 82).

(ii) We see from equation (8.6.27) that any open loop pole which lies to the right
of all closed loop poles must produce a change in sign in the error and hence
overshoot. Furthermore, for a large positive η0, relative to the closed loop
pole locations, the exponential weighting decays fast relative to the closed
loop settling time. Hence to achieve a zero weighted integral for the error it
is necessary that either or both of the following conditions hold: the error
changes sign rapidly at the beginning of the transient or the error has a large
negative value to compensate for the initial positive value.

(iii) We see from equation (8.6.29) that input disturbances will lead to an error
that changes sign and hence overshoots for any real open loop zero that lies
to the right of all closed loop poles.

(iv) There are subtle interactions between the various constraints. For example
the overshoot produced by open loop poles that lie to the right of closed loop
poles can usually be linked to stable zeros that are induced in the controller
by the action of the pole assignment. These kinds of issues are automatically
incorporated in the constraints since they use the fact that the sum of the
numerators of the sensitivity and complimentary sensitivity is equal to the
denominator and hence there is a necessary conjunction of the effect of open
loop poles, open loop zeros and closed loop poles.

The above analysis underlies the following performance trade-offs:

• If the magnitude of the real part of the dominant closed loop poles is greater
than the smallest right half plane zero then large undershoot is inevitable.
This usually means that, in design,

The bandwidth should in practice be set less than the smallest non
minimum phase zero.

• If the magnitude of the real part of the dominant closed loop poles is greater
than the magnitude of the smallest stable open loop zero then significant
overshoot will occur. An alternative is to cancel these zeros in the closed
loop by placing them in the denominator of the controller. However, in that
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case they will appear in the numerator of the input sensitivity. That may
be acceptable since input disturbances may be significantly diminished by
passage through the plant.

• If the magnitude of the real part of the dominant closed loop poles is less
than the magnitude of the largest unstable open loop pole then significant
overshoot will occur or the error will change sign quickly. Thus

It is advisable to set the closed loop bandwidth greater than the real
part of any unstable pole.

• If the magnitude of the real part of the dominant closed loop poles is greater
than the magnitude of the smallest stable open loop pole then overshoot will
again occur. This can be avoided by canceling these poles in the closed loop by
placing them in the numerator of the controller. However, in that case they
will appear in the denominator of the input sensitivity and this is usually
undesirable since it means that the effect of input disturbances will decay
slowly.

• Note that, for the set point response, it is often possible to avoid the deleteri-
ous effect of overshoot produced by stable plant or controller zeros. This can
be achieved by canceling them outside the loop in a two degree of freedom
design which then avoids compromising the disturbance performance.

Some of the issues discussed above are illustrated in the following example.

Example 8.4. Consider a nominal plant model given by

Go(s) =
s− zp

s(s− pp)
(8.6.34)

The closed loop poles were assigned to {−1,−1,−1}. Then, the general controller
structure is given by

C(s) = Kc
s− zc
s− pc

(8.6.35)

Five different cases are considered. They are described in Table 8.1.
The different designs were tested with a unit step reference and, in every case,

the plant output was observed. The results are shown in Figure 8.4.
From these results we can make the following observations

Case 1 (Small stable pole) A small amount of overshoot is evident as predicted by
equation (8.6.26) and (8.6.27).
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Case 1 Case 2 Case 3 Case 4 Case 5
pp = −0.2 pp = −0.5 pp = −0.5 pp = 0.2 pp = 0.5
zp = −0.5 zp = −0.1 zp = 0.5 zp = 0.5 zp = 0.2

Kc 1.47 20.63 −3.75 −18.8 32.5
pc −1.33 18.13 −6.25 −22.0 29.0
zc −1.36 −0.48 −0.53 −0.11 0.15

Table 8.1. Case description

Case 2 (Very small stable zero) Here we see a very large amount of overshoot, as
predicted by equation (8.6.26).

Case 3 (Unstable zero, stable pole) Here we see a significant amount of undershoot.
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Figure 8.4. Plant output, y(t), for five different pole-zero configurations
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This is due to the right half plane zero. We also observe a small amount of
overshoot which is due to the stable pole at −0.5. This is predicted by equation
(8.6.27).

Case 4 (Unstable zero, small unstable pole) We first observe significant undershoot
due to the RHP zero and as predicted by equation (8.6.28). We also observe a
significant overshoot which is due to the unstable pole, as predicted by equation
(8.6.27).

Case 5 (Small unstable zero, large unstable pole) Here the undershoot is produced
by the RHP zero and the overshoot by RHP pole, as predicted by equations
(8.6.28) and (8.6.27) respectively. In this case the overshoot is significantly
larger than in Case 4, due to the fact that the unstable pole is further into the
RHP.

✷✷✷

Another illustration of this circle of ideas is presented in the following example.

Example 8.5. Consider a plant with a one d.o.f. controller and a nominal model
which has a real NMP zero at s = z0 and a real unstable pole at s = η0. Assume
also that the controller has one pole at the origin.

8.5.1 Determine time domain constraints for the controller output u(t) assuming
that the reference is a unit step.

8.5.2 If the controller output is constrained to be in the range [0, Umax], where Umax

is a large positive number, then show that the unstable pole will force u(t) into
saturation for any step reference.

Solution

8.5.1 We first recall that

U(s) = Suo(s)
1
s
=
∫ ∞

0

u(t)e−stdt (8.6.36)

We also recall that every open loop unstable pole is a zero in Suo(s). Then,
on applying Lemma 4.1 on page 81 we have that

∫ ∞

0

u(t)e−z0tdt = Suo(z0)
1
z0

(8.6.37)

∫ ∞

0

u(t)e−η0tdt = Suo(η0)
1
η0

= 0 (8.6.38)
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8.5.2 We note that the vanishing integral in (8.6.38) implies that u(t) must be nega-
tive during nonzero time intervals. This means that the lower saturation limit
will be hit. An additional observation is that this will happen for any bounded
reference.

8.6.6 Effect of imaginary axis poles and zeros

An interesting special case of Lemma 8.3 on page 211 occurs when the plant has
poles or zeros on the imaginary axis. Under these conditions, we have the following

Corollary 8.1. Consider a closed loop system as in Lemma 8.3 on page 211, then
for a unit step reference input:

(a) if the plant G(s) has a pair of zeros at ±jω0, then

∫ ∞

0

e(t) cosω0tdt = 0 (8.6.39)∫ ∞

0

e(t) sinω0tdt =
1
ω0

(8.6.40)

(b) if the plant G(s) has a pair of poles at ±jω0, then

∫ ∞

0

e(t) cosω0tdt = 0 (8.6.41)∫ ∞

0

e(t) sinω0tdt = 0 (8.6.42)

where e(t) is the control error, i.e.

e(t) = 1− y(t) (8.6.43)

Proof

(a) From (8.6.26) we have

∫ ∞

0

e(t)e±jω0tdt =
1

±jω0
(8.6.44)

The result follows on noting that:

cosω0t =
1
2
(
ejω0t + e−jω0t

)
(8.6.45)

sinω0t =
1
2j
(
ejω0t + e−jω0t

)
(8.6.46)
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(b) Immediate from (8.6.27)

✷✷✷

The above constraints are particularly restrictive in the case of open loop imag-
inary axis zeros near the origin (relative to the closed loop bandwidth). This is
illustrated in the following example.

Example 8.6. Consider the set up of Corollary 8.1 on the preceding page part a).
Let us define the exact settling time (assuming it exists) of a system to be

ts = inf
T

{|e(t)| = 0 ; ∀t ≥ T } (8.6.47)

Then from (8.6.40) we have

∫ ts

0

e(t) sinω0tdt =
1
ω0

(8.6.48)

Now, assuming that ts ≤ π

ω0
, we have

∫ ts

0

emax (sinω0) dt ≥
∫ ts

0

e(t) sinω0tdt =
1
ω0

(8.6.49)

where emax is the maximum value of |e(t)| on the interval (0, ts). From (8.6.49)

1
ω0

[1− cosω0ts] emax ≥ 1
ω0

(8.6.50)

or

emax ≥ 1
1− cosω0ts

(8.6.51)

We thus see that, as ω0ts → 0, so emax diverges to ∞ !

✷✷✷

Example 8.7. As a simple numerical example, consider a feedback control loop
with complementary sensitivity transfer function given by

T (s) =
100s2 + 1

s3 + 3s2 + 3s+ 1
(8.6.52)

Note that the closed loop poles are all at −1, while the zeros are at ±j0.1. The
simulation response of e(t) for a unit step input is shown in Figure 8.5 on the next
page

We can see that the maximum error corresponds to more than 2000% undershoot
and 800% overshoot! .
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Figure 8.5. Control error for a feedback loop with unit step reference and imagi-
nary zeros

✷✷✷

In this chapter, the derivation of all design constraints has been based on the lin-
ear nature of the control system, since we have used sensitivity and complementary
sensitivity transfer functions. Thus, a sensible question is whether these constraints
will still apply when other control approaches (nonlinear, adaptive, neural, fuzzy,
etc.) are applied. The answer to that question is not straightforward, except in
some cases. One of them is that of NMP zeros, as shown below.

Consider a linear plant with a nominal model characterized by Go(s) whose
output has to be regulated to a constant value. Assume that G(zo) = 0 for zo ∈ R

+.
Then, for step disturbances and step references, the control (no matter what type)
must generate a plant input of the form

u(t) = u∞ +∆u(t) (8.6.53)

where u∞ is the input final value and ∆u(t) is the necessary transient action to
steer the plant output to the desired set point, i.e., ∆u(∞) = 0. Thus, the Laplace
transform of the plant input converges for all σ = �{s} > 0. One the other hand,
since the minimum control requirement is stability, the Laplace transform of the
plant output also converges for all σ = �{s} > 0. Hence

Y (zo) = G(zo)U(zo) = 0 =
∫ ∞

0

y(t)e−zotdt (8.6.54)

Equation (8.6.54) says that the plant output, y(t), must change sign so that the
integral in [0,∞) vanishes. In other words, (8.6.54) implies that y(t) must evolve
along the opposite direction to that of the desired value, during one (or more) non
zero duration interval. This leads to the terminology of inverse response for the
behavior of NMP systems. This result is the same as (8.6.29). However, there is a
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crucial difference: this time, no specific assumption (linear classical control
or otherwise) has been made regarding the control methodology.

The conclusion is that NMP systems will lead to performance limitations
regardless of the control approach and control architecture being used.
Thus, it can be seen that it is rather important that designers understand these
constraints and not aim to achieve any performance specifications which are in
violation of the fundamental laws of feedback.

8.7 Remedies

We next turn to the question of what remedial action one can take to overcome
the kinds of limitations discussed above. Because these are fundamental limits, one
really only has two options:

(i) live with the limitation but ensure that the design makes the best of the
situation in terms of the desired performance goals; or

(ii) modify the very nature of the problem by changing the system either through

– new sensors

– new actuators, or

– alternative architectural arrangements.

We will expand on point (ii) below

8.7.1 Alternative sensors

If the sensors are a key stumbling block then alternative sensors may be needed.
One idea that has great potential in control engineering is to use other sensors to
replace (or augment) a poor sensor. When other sensors are used together with a
model to infer the value of a missing or poor sensor, we say we have used a virtual
or soft sensor.

Example 8.8 (Thickness control in rolling mills revisited). We illustrate the
use of virtual sensors by returning to Example 8.3. We recall, in that example, that
the delay between the mill and thickness measuring device was the source of a fun-
damental limit in rolling mill thickness performance.

The usual strategy for overcoming this problem is to augment the measurement
hm with a virtual sensor obtained from a model. Two possibilities are

(i) The force, F can be related to the thickness h and the roll gap σ via a simple
spring equation of the form:

F (t) =M(h(t)− σ(t)) (8.7.1)
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(The spring constant, M , is usually called the Mill Modulus.) Since F (t) and
σ(t) can be measured, then an essentially instantaneous estimate of h(t) can
be obtained by inverting (8.7.1), leading to

ĥ(t) =
F (t)
M

+ σ(t) (8.7.2)

This estimator for existing thickness is called a BISRA gauge and is extremely
commonly used in practice.

(ii) Another possible virtual sensor is described below:

It turns out that the strip width is essentially constant in most mills. In this
case, conservation of mass across the roll gap leads to the relationship

V (t)H(t) # v(t)h(t) (8.7.3)

where V,H, v, h denotes the input velocity, input thickness, exit velocity, and exit
thickness respectively.

It is possible to measure V and v using contact wheels on the strip or by laser
techniques. Also, H can be measured up stream of the mill and then delayed ap-
propriately based on the incoming strip velocity. Finally, we can estimate the exit
thickness from:

ĥ(t) =
V (t)H(t)

v(t)
(8.7.4)

This is called a mass flow estimator and uses feedforward from the measured up
stream input thickness.

Again this idea is very commonly used in practice.

✷✷✷

8.7.2 Actuator remedies

If the key limiting factor in control performance is the actuator then one should
think of replacing or resizing the actuator.

Some potential strategies for mitigating the effect of a given poor actuator in-
clude:

(i) One can sometimes model the saturation effect and apply an appropriate
inverse (see Chapter 2) to ensure appropriate control is executed with a poor
actuator. However, this is usually difficult due to the complexity of real world
frictional models.
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(ii) One can sometimes put a high gain control loop locally around the offending
actuator. This is commonly called Cascade Control. As we know, high gain
control tends to reduce the effect of nonlinearities. However, to be able to
benefit from this solution, one needs to be able to measure the position of the
actuator to a high level of accuracy and this may not be feasible. (More will
be said on the subject of cascade control in Chapter 10).

(iii) One can sometimes arrange the hardware so that the actuator limitation is
removed or, at least reduced. Examples include the transition from motor
driven screws in rolling mills (which had backlash problems) to modern hy-
draulic actuators and the use of anti-backlash drives in telescope pointing
systems.

8.7.3 Anti-windup mechanisms

When an actuator is limited in amplitude or slew rate, then one can often avoid
the problem by reducing the performance demands as discussed in section §8.3.1.
However, in other applications it is desirable to push the actuator hard up against
the limits so as to gain the maximum benefit from the available actuator authority.
This makes the best of the given situation. However, there is a down-side associated
with this strategy.

In particular, one of the costs of driving an actuator into a maximal limit is
associated with the problem of integral wind-up. We recall that integrators are
very frequently used in control loops to eliminate steady state errors. However, the
performance of integral action depends on the loop remaining in a linear range.
If an actuator is forced to a hard limit, then the state of the integrator is likely
to build up to a large value. When the input comes out of the limit this initial
condition will cause a large transient. This effect is called wind-up. Much more
will be said about ways to avoid this (and other related problems in Chapter 11).
For the moment it suffices to remark that the core idea used to protect systems
against the negative effects of wind-up is to turn the integrator off whenever the
input reaches a limit. This can either be done by a switch or by implementing the
integrator in such a way that it automatically turns off when the input reaches a
limit. As a simple illustration, consider the loop given in Figure 8.6

If we replace the limiter by a unity gain, then elementary block diagram analysis
shows that the transfer function for e to u is

U(s)
E(s)

=
p1s+ p0

s
(8.7.5)

Thus Figure 8.6 implements a simple PI controller. Note that integral action in
this figure has been achieved by placing positive feedback around a stable transfer
function. If u reaches a limit, then integral action will be temporarily stopped i.e.
anti-wind-up will be achieved. As an illustration of what form the limiter in Figure
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Limiter
e(t) u(t)

p1

+
+

p0
p1(p1s+ p0)

Figure 8.6. Feedback loop with limiter

8.6 might take, we show a particular limiter in Figure 8.7 which when used in Figure
8.6, achieves anti-windup for an input amplitude limit.

input

output

umin

umax

Figure 8.7. Limiter to achieve saturation

An alternative limiter that achieves both slew rate and amplitude limits is shown
in Figure 8.8

∆σmin umin

+ umax∆σmax−
u(t)

e−∆s

+
+û(t)

Figure 8.8. Combined saturation and slew rate limit model



224 Fundamental Limitations in SISO Control Chapter 8

Much more will be said about this topic in Chapter 11.
For the moment, the reader is encouraged to examine the case studies on the web

site to see the impact that anti-wind-up protection has on practical applications.

8.7.4 Remedies for minimal actuation movement

Minimal actuator movements are difficult to remedy. In some applications, it is
possible to use dual-range controllers wherein a large actuator is used to determine
the majority of the control force but a smaller actuator is used to give a fine-trim.
An example of the use of this idea is described in connection with pH control on
the web.

In other applications, we must live with the existing actuator. An example is
given below.

Example 8.9 (Continuous caster revisited). We recall the sustained oscilla-
tion problem due to actuator minimal movements described in Example 8.2.

One cannot use dual-range control in this application because a small-high-
precision valve would immediately clog with solidified steel. A solution we have
used to considerable effect in this application is to add a small high frequency dither
signal to the valve. This keeps the valve in motion and hence minimizes stiction
effects. The high frequency input dither is filtered out by the dynamics of the process
and thus does not have a significant impact on the final product quality. Of course,
one does pay the price of having extra wear on the valve due to the presence of the
dither signal. However, this cost is off-set by the very substantial improvements in
product quality as seen at the output. Some real data is shown in the Figure 8.9.

Figure 8.9. Real data showing effect of adding dither

✷✷✷

8.7.5 Architectual changes

The fundamental limits we have described apply to the given set-up. Clearly, if
one changes the physical system in some way then the situation changes. Indeed,
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these kinds of change are a very powerful tool in the hands of the control system
designer. Of course, before any change is contemplated it is desirable to understand
the source of the limitations - and hence our treatment of fundamental limits as
above.

To illustrate how even small structural changes can have an impact, we recall
that in subsection §8.6.5 we showed that open loop zeros and poles have a profound
and predictable effect on the closed loop performance of a feedback system. In
that section, we only examined a one d.o.f. architecture. Of course, unmeasured
disturbances must always be dealt with in this way since there is no possibility of
introducing an extra degree of freedom. However, it is sometimes helpful to exploit
a second d.o.f. when dealing with reference changes. For example, open loop poles
in the CRHP usually induce slow stable zeros in the controller, and it is these
which lead to the overshoot difficulties in response to a step input. With a two
d.o.f. controller it is possible to cancel these zeros outside the loop. Note that they
remain a difficulty inside the loop and thus contribute to design trade-offs regarding
robustness, disturbance rejection, etc. We illustrate by a simple example.

Example 8.10. Consider the feedback control of plant with nominal model Go(s)
with a PI controller, C(s), where

Go(s) =
1
s
; C(s) =

2s+ 1
s

(8.7.6)

Then, the closed loop poles are at (−1;−1) and the controller has a zero at
s = −0.5. Equation (8.6.12) correctly predicts overshoot for the one d.o.f. design.
However, if we first prefilter the reference by H(s) = 1

2s+1 , then no overshoot occurs
in response to a unit step change in the reference signal. Figure 8.10 shows the plant
output for the one d.o.f. and the two d.o.f. architecture. The key difference is that
no overshoot appears with the two d.o.f. design; this is due to the fact that now the
transfer function from R(s) to E(s) = R(s)− Y (s) has only one zero at the origin.

✷✷✷

8.8 An Industrial Application (Reversing Mill)

Here we study a reversing rolling mill. In this form of rolling mill the strip is
successively passed from side to so that the thickness is successful reduced on each
pass.

For a schematic diagram of a single strand reversing rolling mill, see Figure 8.11.
For this system we define the following variables:

he(t) : exit strip thickness
h̃e : nominal value of he(t)
hi(t) : input strip thickness
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Figure 8.10. Effects of two d.o.f. architecture

ic(t) : electric current in the coiler motor
ĩc : nominal value of ic(t)
iu(t) : electric current in the uncoiler motor
Jc(t) : coiler inertia
J̃c : nominal value of Jc(t)
k : coiler motor torque constant
σ(t) : gap between rolls without load
τi(t) : input strip tension
τe(t) : exit strip tension
ωc(t) : rotational speed of the coiler motor
ω̃c : nominal value of ωc(t)
ωu(t) : rotational speed of the uncoiler motor

The work rolls squeeze the metal so as to achieve a reduction in thickness. A
set of larger diameter rolls (termed backup rolls) are mounted above and below the
work rolls. A hydraulic cylinder is used to vary the vertical location of the backup
roll (in the unloaded position) relative to the frame in which it is mounted. The
vertical location of the backup roll with respect to the frame is termed the unloaded
roll gap. Traditionally the exit thickness, h, of the steel has been controlled by
varying, σ(t).

We have seen in Example 8.3 presented earlier that there are fundamental design
difficulties arising from the delay in measuring the exit thickness. However, these
difficulties can be largely overcome by the use of virtual sensors of the type discussed
in section §8.7.1.

There are also fundamental issues associated with the speed of response of the
actuator which typically will exhibit a slew rate limit. However, modern hydraulic
actuators allow roll gap response times of the order of 5 to 10 [ms]. When this
is combined with the rapid responses obtained from modern virtual sensors, one
is lead to the inevitable conclusion that one should be able to design a feedback
control system to achieve closed loop response times of the order of 5 to 10 [ms].
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Figure 8.11. Rolling mill stand

It is with considerable surprise that one finds that, despite great efforts to come
up with a suitable design, the closed loop response of these systems tends to start
out fast but then tends to hold-up. A typical response to a step input disturbance
is shown schematically in Figure 8.12.

All manner of hypothesis might be made about the source of the difficulty (non-
linear effects, unmodeled slew rate limits etc). The reader may care to pause and
think what he or she believes to be the source of the problem. To give a hint,
the transfer function from roll gap (σ) to exit thickness (h) turns out to be of the
following form (where we have taken a specific real case):

Ghσ(s) =
26.24(s+ 190)(s+ 21± j11)(s+ 20)(s+ 0.5± j86)
(s+ 143)(s+ 162± j30)(s+ 30± j15)(s+ 21± j6)

(8.8.1)

We see (perhaps unexpectedly) that this transfer function has two zeros located
at s = −0.5 ± j86 which are (almost) on the imaginary axis. These zeros arise
from the spring action of the strip between the mill, the uncoiler and the coiler.
The resulting poles are turned into zeros by the action of slip. From the analysis
carried out in Corollary 8.1 on page 217 it follows that there will be fundamental
limitations on the ability of the roll gap input to control the exit thickness of the
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Figure 8.12. Holdup effect

steel. In particular, if one aims to have a fast transient response, then significant
fluctuations must occur which resist the rapid response!

A physical explanation is as follows: If one wishes to reduce the exit thickness,
one needs to push down on the roll gap. The exit thickness then drops. However,
if the exit mill speed is roughly constant (which it is due to the action of another
control loop), then less mass will be transported out of the mill per unit time.
Moreover, due to mass balance considerations, this implies that the entry speed
must drop. Now due to the inertia, the uncoiler cannot change its angular velocity
instantaneously. Thus the effect of reduced mill entry speed will be a drop in
input strip tension. Now, it is also known that strip tension effects the degree
of strip thickness reduction. Hence reduced tension implies an increase in exit
thickness which impedes the original reduction i.e. the thickness response holds up.
The associated dynamics depend on the effective strip spring between uncoiler and
mill. Mathematically, these effects are captured by the near imaginary axis zeros
in (8.8.1).

Since the (near) imaginary axis zeros are at 86 [rad/s], then from (8.6.51) we
see that making the effective settling time much less than about 50 [ms] will lead
to a large error response. (For ts = 50 [ms], ω0ts = 0.68). Thus, even though the
roll gap positioning system might be able to be moved very quickly (7 [ms] time
constraints are typical with modern hydraulic systems), the effective closed loop
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response time is limited to about 50 [ms] by the presence of the imaginary axis
zeros.

To illustrate this effect, consider the plant as given in (8.8.1). Simulations were
carried out with the following three PI controllers. (These were somewhat arbitrarily
chosen but the key point here is that issue the hold-up effect is fundamental. In
particular, no controller can improve the situation at least without some radical
change!)

C1(s) =
s+ 50

s
C2(s) =

s+ 100
s

C3(s) =
s+ 500

s
(8.8.2)

For the example given in (8.8.1) the (open loop) transfer function between the
input thickness Hi(s) = L [hi(t)] and the output thickness He(s) = L [he(t)] (see
Figure 8.11) is given by

Gie(s) =
0.82(s+ 169)(s+ 143)(s+ 109)(s+ 49)(s+ 27)(s+ 24± j7)

(s+ 143)(s+ 162± j30)(s+ 30± j15)(s+ 21± j6)
(8.8.3)

Then, when the rolling mill stand is under feedback control, the nominal transfer
function between input and output thickness is given by To(s)Gie(s), where To(s)
is the complementary sensitivity and Gie(s) is given in (8.8.3). Note that the zeros
of To(s) include those located close to the imaginary axis, i.e. at −0.5± j86.

It is next assumed that a step change of 0.2[mm] occurs, at t = 1 in the input
thickness. The responses are given in Figure 8.13.

As predicted the response time is limited to about 50 [ms]. The key point here
is that the result given in Corollary 8.1 on page 217 shows that the problem is
fundamental and cannot be overcome by any control system design within the
current SISO architecture. A hint as to how the problem might be solved was
given in sub-section §8.7.5 on architectural changes. We will see in Chapter 10 that
it is indeed possible to side-step this fundamental problem but a new architecture
for the control system will be necessitated!

Remark 8.2. It is interesting to note that, in this example, the achievable con-
trol performance is fundamentally limited by the blocking action of the plant zeros.
Moreover, these zeros arise from a physical interaction within the plant.

Remark 8.3. The points made in the previous remark hold generally, i.e. there is
usually a physical reason why certain bad zeros arise. Sometimes it is possible to
shift the zeros by changing the physical layout of the plant.

8.9 Design Homogeneity Revisited

We have seen above that limitations arise from different effects. For example, the
following factors typically place an upper limit on the usable bandwidth
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Figure 8.13. Response to a step change in the strip input thickness

• actuator slew rate and amplitude limits

• model error

• delays

• right half plane or imaginary axis zeros.

This leads to the obvious question: which of these limits, if any, do I need to
consider? The answer is that it is clearly best to focus on that particular issue
which has the most impact. In other words, if the presence of a right half plane
zero limits the bandwidth to point well below the point where model errors become
significant, then there is little gain to be achieved from robustifying the controller
or improving the model. The reader is invited to compare these comments with
those made in section §1.5.10 where the issue of homogeneity was first introduced.

8.10 Summary

• This chapter addresses design issues for SISO feedback loops.
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• It is shown that the following closed loop properties cannot be addressed
independently by a (linear time invariant) controller.

◦ speed of disturbance rejection

◦ sensitivity to measurement noise

◦ accumulated control error

◦ required control amplitude

◦ required control rate changes

◦ overshoot, if the system is open-loop unstable

◦ undershoot, if the system is non-minimum phase

◦ sensitivity to parametric modeling errors

◦ sensitivity to structural modeling errors

• Rather, tuning for one of these properties automatically impacts on the others.

• For example, irrespectively of how a controller is synthesized and tuned, if the
effect of the measurement noise on the output is To(s), then the impact of
an output disturbance is necessarily 1−To(s). Thus, any particular frequency
cannot be removed from both an output disturbance and the measurement
noise as one would require To(s) to be close to 0 at that frequency, whereas
the other would require To(s) to be close to 1. One can therefore only reject
one at the expense of the other, or compromise.

• Thus, a faster rejection of disturbances, is generally associated with

◦ higher sensitivity to measurement noise

◦ less control error

◦ larger amplitudes and slew rates in the control action

◦ higher sensitivity to structural modeling errors

◦ more undershoot, if the system is non-minimum phase

◦ less overshoot if the system is unstable.

• The trade-offs are made precise by the following fundamental laws of trade-off:

(1) So(s) = 1− To(s)
that is, an output disturbance is rejected only at frequencies where
|To(jω)| ≈ 1;

(2) Y (s) = −To(s)Dm(s)
that is, measurement noise, dm(t), is rejected only at frequencies where
|To(jω)| ≈ 0
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(3) Suo(s) = To(s)[G(s)]−1

that is, large control signals arise at frequencies where |To(jω)| ≈ 1 but
|Go(jω)| � 1, which occurs when the closed loop is forced to be much
more responsive than the open loop process.

(4) Sio(s) = So(s)Go(s)
that is, open-loop poles of the process must necessarily either appear as
zeros in So(s) (resulting in overshoot when rejecting output step distur-
bances and additional sensitivity) or, if they are stable, the designer can
choose to accept them as poles in Sio(s) instead (where they impact on
input-disturbance rejection).

(5) S(s) = So(s)S∆(s) where S∆(s) = (1 + To(s)G∆(s))
−1

that is, being responsive to reference changes and against disturbances at
frequencies with significant modeling errors, jeopardizes stability; note
that the relative (multiplicative) modeling error G∆ usually accumulates
phase and magnitude towards higher frequencies.

(6) Forcing the closed loop faster than unstable zeros, necessarily causes
substantial undershoot.

• Observing the fundamental laws of trade-off ensures that inadvertently speci-
fied, but unachievable, specifications can quickly be identified without wasted
tuning effort.

• They also suggest where additional effort is profitable or wasted:

◦ if a design does not fully utilize the actuators and disturbance rejection is
poor due to modeling errors (i.e., the loop is constrained by fundamental
trade-off law 6), then additional modeling efforts are warranted

◦ if, on the other hand, loop performance is constrained by non-minimum
phase zeros and a constraint on undershoot (i.e., the loop is constrained
by fundamental trade-off law 4), then larger actuators or better models
would be wasted.

• It is important to note that the design trade-offs

◦ are fundamental to linear time invariant control

◦ are independent of any particular control synthesis methods used.

• However, different synthesis methods

◦ choose different closed loop properties as their constructed property,

◦ therefore rendering different properties as consequential.
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• Some design constraints, such as the inverse response due to NMP zeros, exist
not only for linear control systems, but also for any other control approach
and architecture.

• Remedies for the fundamental limits do exist but they inevitably require rad-
ical changes, e.g.

◦ seeking alternative senses

◦ seeking alternative actuators

◦ modifying the basic architecture of the plant or controller
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8.12 Problems for the Reader

Problem 8.1. Consider the same conditions as in Lemma 8.2 on page 210.

8.1.1 Prove that for a step input disturbance, and i > 2,

∫ ∞

0

{∫ t

0

e(τ)dτ
}
dt = 0 (8.12.1)∫ ∞

0

te(t)dt = 0 (8.12.2)

8.1.2 Depict constraints (8.12.1) graphically

Problem 8.2. Consider the same conditions as in Lemma 8.3 on page 211, except
for the fact that the pole at s = ηo and the zero at s = zo are multiple.

8.2.1 Prove that for a unit reference step or a unit step output disturbance, the
following holds:

∫ ∞

0

te(t)e−ηotdt = 0 (8.12.3)

8.2.2 Prove that for a unit reference step and zo in the right half plane, the following
holds:

∫ ∞

0

ty(t)e−zotdt = 0 (8.12.4)

Problem 8.3. A plant nominal model includes a NMP zero at s = −z0. The
control specification requires that the control error to a unit step reference satisfies

|e(t)| ≤ e−α(t−t1) α > 0 t > t1 > 0 (8.12.5)

8.3.1 Estimate a lower bound for

Emax
�
= max

t∈[0,t1)
e(t) (8.12.6)
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8.3.2 Analyze the dependence of the computed bound on the parameters α and t1

Problem 8.4. The nominal model for a plant is given by

Go(s) =
5(s− 1)

(s+ 1)(s− 5)
(8.12.7)

This plant has to be controlled in a feedback loop with one degree of freedom.

8.4.1 Determine time domain constraints for the plant input, the plant output and
the control error in the loop. Assume exact inversion at ω = 0 and step like
reference and disturbances.

8.4.2 Why is the control of this nominal plant especially difficult? Discuss.

Problem 8.5. Consider a feedback control loop of a stable plant having a (unique)
NMP zero at s = a (a ∈ R+). Also assume that a proper controller can be designed
such that the complementary sensitivity is given by

To(s) =
−as+ 1

s2 + 1.3s+ 1
(8.12.8)

8.5.1 Compute the unit step response for different values of a in the range 0 ≤ a ≤
20.

8.5.1 For each case compute the maximum undershoot Mu and plot Mu versus a.
Discuss.

Problem 8.6. Consider a plant having a nominal model given by

Go(s) =
12(−s+ 2)

(s+ 3)(s+ 4)2
(8.12.9)

Assume a control loop has to be designed in such a way that the dominant closed
loop poles are the roots of s2 + 1.3ωns+ ω2

n.

8.6.1 Using pole assignment synthesize a controller for different values of ωn.

8.6.2 Test your designs for step reference and step input disturbances.

8.6.3 Compare with the performance of a PID controller tuned following the Cohen-
Coon criterium.
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8.6.4 Analyze the undershoot observed in the response.

Problem 8.7. Consider the feedback control of an unstable plant. Prove that the
controller output, u(t), exhibits undershoot for any step reference, and for any step
output disturbance.

Problem 8.8. Consider two plants having stable nominal models Ga and Gb,
given by

Ga(s) =
−s+ a

d(s)
; Gb(s) =

s+ a

d(s)
(8.12.10)

where a ∈ R+ and d(s) is a stable polynomial. Further assume that these plants
have to be under feedback control with dominant closed loop poles with real part
smaller than −a

Compare the fundamental design limitations for both control loops.

Problem 8.9. Consider the ball and beam experiment discussed on the web site for
the book. This system is known to be non-minimum phase. Explain physically why
this is reasonable. (Hint: consider the centripetal force when the beam is rotated.)

What would you expect to happen to the ball if you rotated the beam suddenly
when the ball is near the end of the beam?

Hence give a physical interpretation to the limitation on response time imposed
by the non-minimum phase zero.





Chapter 9

FREQUENCY DOMAIN
DESIGN LIMITATIONS

9.1 Preview

Chapter 8 showed, via elementary time domain arguments based on the Laplace
transform, that fundamental limitations exist on the achievable performance of lin-
ear control systems. For example, it was shown that real right half plane open
loop plant zeros always lead to undershoot in the reference to output step response.
Moreover, the extent of this undershoot increases as the response time of the closed
loop system decreases. This implies that right half plane plant zeros place an
inescapable upper limit on the achievable closed loop bandwidth if excessive un-
dershoot is to be avoided. Similarly, it was shown that real right half plane open
loop plant poles always lead to overshoot in one degree of freedom feedback sys-
tems. The purpose of the current chapter is to develop equivalent frequency domain
constraints and to explore their interpretations.

The results to be presented here have a long and rich history beginning with the
seminal work of Bode published in his 1945 book on network synthesis. Since that
time the results have been embellished in many ways. In this chapter we summarize
the single input single output results. In Chapter 24 we will extend the results to
the multivariable case.

All of the results follow from the assumption that the sensitivity functions are
analytic in the closed right half plane (i.e. that they are required to be stable). Ana-
lytic function theory then implies that the sensitivity functions cannot be arbitrarily
specified but, indeed, must satisfy certain precise integral constraints.

The necessary background to appreciate these results is elementary analytic
function theory. Since this theory may not have been met by all readers previously
we present a brief review in Appendix ??. The current chapter can be read in one of
two ways. Either, the background mathematics can be taken for granted, in which
case the emphasis will be on the interpretation of the results. Alternatively, and
preferably, the reader can gain a full appreciation by first reviewing the results given
in Appendix ??. The key result is the Cauchy Integral Formula and its immediate
consequences - the Poisson Jensen Formula.

239
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Most of the results to be discussed below are based on cumulative (i.e. integral
or summation) measures of ln |So(jω)| and ln |To(jω)|. Logarithmic functions of
sensitivity magnitudes have a sign change when these magnitudes cross the value
unity. We recall that 1 is a key value in sensitivity analysis.

9.2 Bode’s Integral Constraints on Sensitivity

Bode was the first to establish that the integral of log sensitivity had to be zero (un-
der mild conditions). This meant that, if the sensitivity was pushed down in some
frequency range (|So(jω)| < 1 ⇒ log |So(jω)| < 0) then it had to pop up somewhere
else to retain zero for the integral of the logarithm. Gunther Stein, in a memorable
Bode lecture at an IEEE Conference on Decision and Control, called this, the prin-
ciple of Conservation of Sensitivity Dirt. This image refers to the area under the
sensitivity function being analogous to a pile of dirt. If one shovels dirt away from
some area (i.e. reduces sensitivity in a frequency band), then it piles up somewhere
else (i.e. the sensitivity increases at other frequencies).

The formal statement of the result is as follows:

Lemma 9.1. Consider a one d.o.f. stable control loop with open loop transfer func-
tion

Go(s)C(s) = e−sτHol(s) τ ≥ 0 (9.2.1)

where Hol(s) is a rational transfer function of relative degree nr > 0 and define

κ
�
= lim

s→∞ sHol(s) (9.2.2)

Assume that Hol(s) has no open loop poles in the open RHP. Then the nominal
sensitivity function satisfies:∫ ∞

0

ln |So(jω)|dω =
{

0 for τ > 0
−κπ

2 for τ = 0 (9.2.3)

Proof

We first treat the case τ = 0.
We make the following changes in notation s → z, Hol(s) → l(z) and g(z) =

(1 + l(z))−1

We then observe that

So(z) = (1 + l(z))−1 = g(z) (9.2.4)
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By the assumptions on Hol(s) we observe that ln g(z) is analytic in the closed
RHP, then by Theorem ?? on page ??

∮
C

ln g(z)dz = 0 (9.2.5)

where C = Ci ∪ C∞ is the contour defined in Figure ?? on page ??.
Then

∮
C

ln g(z)dz = j

∫ ∞

−∞
ln g(jω)dω −

∫
C∞

ln(1 + l(z))dz (9.2.6)

For the first integral on the right hand side of equation (9.2.6), we use the
conjugate symmetry of g(z) to obtain

∫ ∞

−∞
ln g(jω)dω = 2

∫ ∞

0

ln |g(jω)|dω (9.2.7)

For the second integral we notice that on C∞, l(z) can be approximated by

a

znr
(9.2.8)

The result follows on using Example ?? on page ??, and on noticing that a =
κ for nr = 1. The extension to the case τ �= 0 is similar using the results in
Example ?? on page ??.

✷✷✷

We conclude from Lemma 9.1 that, independent of the controller design, low sen-
sitivity in certain prescribed frequency bands will result in a sensitivity larger than
one in other frequency bands. Graphically, the above statement can be appreciated
in Figure 9.1.

In Figure 9.1, when the area A1 (=⇒ |So(jω)| < 1) is equal to the area A2

(=⇒ |So(jω)| > 1), then the integral in equation (9.2.3) is equal to zero, (or more
generally, A1 −A2 = κπ

2 ).
In theory, this is not a hard constraint, since it is enough to have |So(jω)| slightly

above one over a large (actually infinite) frequency band. We say in theory since
robustness and noise immunity, among other factors, will require |To(jω)| to be
very small beyond a certain frequency. Thus, due to the fundamental property of
To(jω) + So(jω) = 1, from that frequency onwards, |So(jω)| will make no signifi-
cant contribution to the balance required in equation (9.2.3). This means that, in
practice, the compensation must be achieved within a finite bandwidth. More will
be said on this, later in the chapter.

The above result assumes that the open loop system is stable. The extension to
open loop unstable systems is as follows:
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Figure 9.1. Graphical interpretation of the Bode integral

Lemma 9.2. Consider a feedback control loop with open loop transfer function as
in Lemma 9.1 on page 240 and having unstable poles located at p1, . . . , pN , pure
time delay τ , and relative degree nr ≥ 1. Then, the nominal sensitivity satisfies:

∫ ∞

0

ln |So(jω)| dω = π
N∑
i=1

R{pi} for nr > 1 (9.2.9)

∫ ∞

0

ln |So(jω)| dω = −κπ
2
+ π

N∑
i=1

R{pi} for nr = 1 (9.2.10)

where κ = lims→∞ sHol(s)

Proof

We first treat the case τ = 0
As in Lemma 9.2, we make the changes in notation s → z, Hol(s) → l(z) and

g(s) = (1 + l(z))−1

We first notice that ln g(z) is no longer analytic on the RHP (since the open
loop unstable poles, p1, . . . , pN , become zeros of g(z)) . We then define

g̃(z)
�
= g(z)

N∏
i=1

z + pi
z − pi

(9.2.11)

Thus, ln g̃(z) is analytic in the closed RHP. We can then apply Cauchy’s integral
on the contour C described in Figure ?? on page ?? to obtain
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∮
C

ln g̃(z)dz = 0 =
∮
C

ln g(z)dz +
N∑
i=1

∮
C

ln
z + pi
z − pi

dz (9.2.12)

The first integral on the right hand side can be expressed as

∮
C

ln g(z)dz = 2j
∫ ∞

0

ln |g(jω)|dω +
∫
C∞

ln g(z)dz (9.2.13)

where, using Example ?? on page ??

∫
C∞

ln g(z)dz =

{
0 for nr > 1

jκπ for nr = 1 where κ
�
= limz→∞ zl(z)

(9.2.14)

The second integral on the right hand side of equation (9.2.12) can be computed
as follows

∮
C

ln
z + pi
z − pi

dz = j

∫ ∞

−∞
ln

jω + pi
jω − pi

dω +
∫
C∞

ln
z + pi
z − pi

dz (9.2.15)

We note that the first integral on the right hand side is zero, and using Exam-
ple ?? on page ??, the second integral is equal to −2jπpi. Thus the result follows
on noting that, since g(z) is a real function of z, then

N∑
i=1

pi =
N∑
i=1

�{pi} (9.2.16)

When g(z) = (1 + e−zτ l(z))−1 for τ > 0 then the proof follows along the same
lines as those above using the result in Example ?? on page ??.

✷✷✷

Remark 9.1. The Bode formulae (and related results) assume that the function
under consideration is analytic, not only inside a domain D, but also on its border
C. In control design, there may exist singularities on C, such as integrators or
purely imaginary poles in the controller (aimed at rejecting a particular disturbance,
see Chapter 10). This can be dealt with by using an infinitesimal circular indentation
in C, constructed so as to leave the singularity outside D. For the functions of
interest to us, the integral along the indentation vanishes. This is illustrated in
Example ?? on page ?? for a logarithmic function, when D is the right half plane
and there is a singularity at the origin.

✷✷✷
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9.3 Integral Constraints on Complementary Sensitivity

Equation (9.2.3) refers to the nominal sensitivity. A natural question is whether a
similar result exists for the other three nominal sensitivity functions. An obstacle in
making this extension is that the logarithms of |To(s)| and |Sio(s)| are not bounded
for large |s|, since To(s) and Sio(s) are strictly proper functions (recall that So(s)
is bi-proper). We can circumvent the problem in the case of the complementary
sensitivity function by integrating ω−2 log |To(jω)|.

Again we find that a conservation principle applies. The details are given below:

Lemma 9.3. Consider a one d.o.f. stable control loop with open loop transfer func-
tion

Go(s)C(s) = e−sτHol(s) τ ≥ 0 (9.3.1)

where Hol(s) is a rational transfer function of relative degree nr > 1 satisfying

Hol(0)−1 = 0 (9.3.2)

Furthermore, assume that Hol(s) has no open loop zeros in the open RHP.

Then the nominal complementary sensitivity function satisfies:∫ ∞

0−

1
ω2

ln |To(jω)|dω = πτ (9.3.3)

Proof

Note that

To(s) = (1 +Hol(s)−1esτ )−1 (9.3.4)

Now consider the function

F (s)
�
=

lnTo(s)
s2

(9.3.5)

We note that F (s) is analytical in the closed RHP, except at the origin. We apply
the Cauchy Integral theorem ?? on page ?? to this function. We use the contour
shown in Figure ?? on page ?? with an infinitesimal right circular indentation, Cε,
at the origin. We then have that
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∮
C

lnTo(s)
s2

ds = 0 =
∫
Ci−

lnTo(s)
s2

ds+
∫
Cε

lnTo(s)
s2

ds+
∫
C∞

lnTo(s)
s2

ds (9.3.6)

where Ci− is the imaginary axis minus the indentation Cε, i.e., in the notation of
Figure ??, Ci = Cε ∪Ci− . We can then show, using (9.3.2), that the integral along
Cε is zero. It is also straightforward to prove that the integral along C∞ is equal
to 2πτ . Then, the result (9.3.3) follows on using the conjugate symmetry of the
integrand in (9.3.3).

✷✷✷

Equation (9.3.3) has the same impact as (9.2.3), since it provides similar insights
into design constraints. This can be better seen by noting that

∫ ∞

0−

1
ω2

ln |To(jω)|dω =
∫ ∞

0

ln
∣∣∣∣To
(
1
jv

)∣∣∣∣ dv = πτ (9.3.7)

where v = 1
ω .

Lemma 9.3 has assumed that there are no open loop zeros in the RHP. The result
can be extended to the case when there are RHP zeros as shown in the following
lemma which is analogous to Lemma 9.2 on page 242.

Lemma 9.4. Consider a one d.o.f. stable control loop with open loop transfer func-
tion

Go(s)C(s) = e−sτHol(s) with τ ≥ 0 (9.3.8)

where Hol(s) is a rational transfer function of relative degree nr > 1 and satisfying

Hol(0)−1 = 0 (9.3.9)

Further assume that Hol(s) has open loop zeros in the open RHP, located at
c1, c2, . . . , cM , then

∫ ∞

0

1
ω2

ln |To(jω)|dω = πτ +
M∑
i=1

1
ci

(9.3.10)

Proof

We first define



246 Frequency Domain Design Limitations Chapter 9

T̃o(s)
�
=

M∏
i=1

s+ ci
s− ci

To(s) (9.3.11)

Note that |T̃o(jω)| = |To(jω)| and that s−2 ln T̃o(s) is analytic in the closed RHP,
except at the origin. Thus

∮
C

ln T̃o(s)
s2

ds = 0 =
∫
Ci−

ln T̃o(s)
s2

ds+
∫
Cε

ln T̃o(s)
s2

ds+
∫
C∞

ln T̃o(s)
s2

ds (9.3.12)

where Ci− is the imaginary axis minus the indentation Cε, i.e., in the notation of
Figure ?? on page ??, Ci = Cε ∪ Ci− . We can then show, using (9.3.9) that the
integral along Cε is zero. Note also that

∫
C∞

ln T̃o(s)
s2

ds =
∫
C∞

lnTo(s)
s2

ds+
M∑
i=1

∫
C∞

1
s2

ln
(
s+ ci
s− ci

)
ds (9.3.13)

The first integral on the right hand side vanishes, and the second one can be
computed from

∫
C∞

1
s2

ln
(
s+ ci
s− ci

)
ds = − 1

ci

∫
Cδ

ln
(
1 + φ

1− φ

)
dφ (9.3.14)

where s = ci
φ and Cδ is an infinitesimal counterclockwise semi circle. The result

follows on using the fact that ln(1 + x) → x for |x| → 0.
✷✷✷

We see from (9.3.10) that the presence of (small) right half plane zeros makes
the trade-off in the allocation of complementary sensitivity in the frequency domain
more difficult. Also note from (9.3.10) that the zeros combine as the sum of the
reciprocal of zeros (similar to parallel resistors for Electrical Engineering readers).

9.4 Poisson Integral Constraint on Sensitivity

The result given in Lemma 9.2 on page 242 shows that the larger the real part
of unstable poles, the more difficult the sensitivity compensation is. However, at
least theoretically, the compensation can still be achieved over an infinite frequency
band.

When the effect of NMP zeros is included, then the constraint becomes more pre-
cise, as shown below using the Poisson-Jensen formula (see Lemma ?? on page ??).

In the sequel we will need to convert transfer functions, f(s), having right half
plane zeros (at ck ; k = 1, · · · ,m) and/or right half plane poles (at pi ; i = 1, · · · N)
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into functions such that ln(f(s)) is analytic in the right half plane. A trick we will
use is to express f(s) as the product of functions which are non-minimum phase and
analytic in the RHP, times the following Blaschke products (or times the inverses
of these products):

Bz(s) =
M∏
k=1

s− ck
s+ c∗k

Bp(s) =
N∏
i=1

s− pi
s+ p∗i

(9.4.1)

Indeed, this technique has already been employed in establishing Lemma 9.2 on
page 242 and Lemma 9.4 - see equations (9.2.11) and (9.3.11) .

We then have the following lemma which relates a (weighted) integral of ln |So(jω)|
to the location of both right half plane zeros and poles of the open loop transfer
function.

Lemma 9.5 (Poisson integral for So(jω)). Consider a feedback control loop with
open loop NMP zeros located at c1, c2, . . . , cM , where ck = γk + jδk and open loop
unstable poles located at p1, p2, . . . , pN . Then the nominal sensitivity satisfies

∫ ∞

−∞
ln |So(jω)| γk

γ2
k + (δk − ω)2

dω = −π ln |Bp(ck)| for k = 1, 2, . . .M

(9.4.2)

and, for a real unstable zero, i.e. δk = 0, equation (9.4.2) simplifies to

∫ ∞

0

ln |So(jω)| 2γk
γ2
k + ω2

dω = −π ln |Bp(ck)| for k = 1, 2, . . .M (9.4.3)

where Bp(s) is the Blaschke product defined in (9.4.1).

Proof

We first recall that any open loop NMP zero must be a zero in To(s) and thus

To(ck) = 0 ⇐⇒ So(ck) = 1 ⇐⇒ lnSo(ck) = 0 (9.4.4)

Also note that So(s) is stable, but non minimum phase, since its numerator vanishes
at all open loop unstable poles. We remove the unstable poles using the Blaschke
product by defining [So(s)]smp as follows:

So(s) = [So(s)]smpBp(s) (9.4.5)
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where [So(s)]smp is stable and minimum phase.
The result (9.4.2) then follows from the application of Lemma ?? on page ??, by

taking z = s, g̃(s) = [So(s)]smp and g(s) = So(s).
Equation (9.4.3) results from (9.4.2) on using the fact that δk = 0 and the

conjugate symmetry of So(jω).
✷✷✷

We note that − ln |Bp(ck)| > 0, and that it grows unbounded as one of the open
loop NMP zeros approaches one of the open loop unstable poles.

Equation (9.4.2) says that no matter how the controller is designed, a weighted
compensation of low and high sensitivity regions has to be achieved. We note that
the weighting function decays with frequency, meaning that this compensation has
to be essentially achieved over a finite frequency band. We see from (9.4.2) that the
weighting function in these integrals is

W (ck, ω)
�
=

γk
γ2
k + (δk − ω)2

(9.4.6)

We also observe that

∫ ∞

−∞
W (ck, ω)dω = π (9.4.7)

Furthermore, we can define a weighted length of the frequency axis

2
∫ ωc

0

W (ck, ω)dω = 2 arctan
(
ωc − δk

γk

)
+ 2 arctan

(
δk
γk

)
�
= Ω(ck, ωc) (9.4.8)

Note that if ω2 > ω1 ≥ 0, then

2
∫ ω2

ω1

W (ck, ω)dω = Ω(ck, ω2)− Ω(ck, ω1) (9.4.9)

Also, for a real NMP zero, i.e. δk = 0 we have that

Ω(ck, ωc) = 2 arctan
(
ωc
γk

)
(9.4.10)

Ω(ck,∞) = 2 lim
ωc→∞ arctan

(
ωc
γk

)
= π (9.4.11)

This can be interpreted as giving a length (measure) of π to the frequency axis.
To gain a more complete understanding of the result given in Lemma 9.5 on the

preceding page , we consider two special cases. For simplicity we assume real NMP
zeros, i.e. δk = 0.
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Example 9.1. Say that a design specification requires that |So(jω)| < ε < 1 over
the frequency band [0, ωl]. We seek a lower bound for the sensitivity peak Smax.

To obtain that bound we use Lemma 9.5 and the above definitions. Then, on
splitting the integration interval [0,∞) into [0, ωl] ∪ (ωl,∞), we obtain

2
∫ ∞

0

ln |So(jω)|W (ck, ω)dω = 2
∫ ωl

0

ln |So(jω)|W (ck, ω)dω +

2
∫ ∞

ωl

ln |So(jω)|W (ck, ω)dω

= −π ln |Bp(ck)|

(9.4.12)

We then substitute the upper bounds for |So(jω)| in both intervals. Using (9.4.8)-
(9.4.11) we obtain

2
∫ ∞

0

ln |So(jω)|W (ck, ω)dω = −π ln |Bp(ck)| (9.4.13)

< ln(ε)
∫ ωl

0

2W (ck, ω)dω + lnSmax

∫ ∞

ωl

2W (ck, ω)dω

(9.4.14)

= ln(ε)Ω(ck, ωl) + (π − Ω(ck, ωl)) lnSmax (9.4.15)

which leads to

lnSmax >
1

π − Ω(ck, ωl)
[|π ln |Bp(ck)||+ |(ln ε)Ω(ck, ωl)|] (9.4.16)

where we have used the fact that |Bp(ck)| < 1 (⇐⇒ ln(|Bp(ck)|) < 0 for every
ck > 0.

Discussion

(i) Consider the plot of sensitivity versus frequency shown in Figure 9.2. Say we
were to require the closed loop bandwidth to be greater than the magnitude
of a right half plane (real) zero. In terms of the notation used above, this
would imply ωl > γk. We can then show that there is necessarily a very
large sensitivity peak occurring beyond ωl. To estimate this peak, assume
that ωl = 2γk and ε = 0.3. Then, without considering the effect of any
possible open loop unstable pole, the sensitivity peak will be bounded
below by (see equation (9.4.16) )

lnSmax >
1

π − Ω(ck, 2ck)
[|(ln 0.3)Ω(ck, 2ck)|] (9.4.17)
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Figure 9.2. design specification for |So(jω)|

Then, on using (9.4.10) we have that Ω(ck, 2ck) = 2 arctan(2) = 2.21, leading
to Smax > 17.7. Note that this in turn implies that the complementary
sensitivity peak will be bounded below by Smax − 1 = 16.7.

(ii) The observation made in (i) is consistent with the analysis carried out in
section §8.6.5. In both cases the conclusion is that the closed loop bandwidth
should not exceed the magnitude of the smallest NMP open loop zero. The
penalty for not following this guideline is that a very large sensitivity peak
will occur, leading to fragile loops (non robust) and large undershoots and
overshoots.

(iii) In the presence of unstable open loop poles, the problem is compounded
through the presence of the factor | ln |Bp(ck)||. This factor grows without
bound when one NMP zero approaches an unstable open loop pole.

✷✷✷

Example 9.2. Consider the plots given in Figure 9.3. Say that, in addition to
the requirement in the previous example, we ask that |To(jω)| be less than ε for all
frequencies larger than ωh, where ωh > ωl and 0 < ε � 1. This condition normally
originates from the need to ensure noise immunity and robustness to modeling errors
(see Chapter 5).

We again seek a lower bound for the sensitivity peak.
We first note that the requirement that |To(jω)| < ε implies |So(jω)| < 1 + ε

since So(s) + To(s) = 1.
Following the same approach used in the previous example, we split the integra-

tion interval [0,∞) into [0, ωl] ∪ (ωl, ωh] ∪ (ωh,∞).
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Figure 9.3. Design specifications for |So(jω)| and |To(jω)|

2
∫ ∞

0

ln |So(jω)|W (ck, ω)dω = 2
∫ ωl

0

ln |So(jω)|W (ck, ω)dω +

2
∫ ωh

ωl

ln |So(jω)|W (ck, ω)dω + 2
∫ ∞

ωh

ln |So(jω)|W (ck, ω)dω

= −π ln |Bp(ck)| (9.4.18)

We next susbstitute, for each interval, |So(jω)| by its maximum value, as follows

max |So(jω)| =



ε ω ∈ [0, ωl]
Smax ω ∈ [ωl, ωh]
1 + ε ω ∈ [ωh, ∞]

(9.4.19)

On performing these substitutions and on using equations (9.4.8) and (9.4.9),
we obtain

lnSmax >
1

Ω(ck, ωh)− Ω(ck, ωl)
[|π ln |Bp(ck)||+ |(ln ε)Ω(ck, ωl)|

− (π − Ω(ck, ωh)) ln(1 + ε)]
(9.4.20)

✷✷✷

We can see that, in addition to the trade-offs illustrated in the previous exam-
ple, a new compromise emerges in this case. Sharp transitions in the sensitivity
frequency response, i.e. ωl close to ωh, will contribute to large sensitivity peaks.
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9.5 Poisson Integral Constraint on Complementary Sensitivity

Analogous to the results given in section §9.4 we can develop constraints but for
complementary sensitivity.

The result corresponding to Lemma 9.5 is

Lemma 9.6 (Poisson integral for To(jω)). Consider a feedback control loop with
delay τ ≥ 0 and having open loop unstable poles located at p1, p2, . . . , pN , where
pi = αi + jβi and open loop zeros in the open RHP, located at c1, c2, . . . , cM .

Then the nominal complementary sensitivity satisfies∫ ∞

−∞
ln |To(jω)| αi

α2
i + (βi − ω)2

dω = −π ln |Bz(pi)|+ ταi for i = 1, 2, . . .N

(9.5.1)

Proof

The above result is an almost straightforward application of Lemma ?? on page ??.
If the delay is non zero then, ln |To(jω)| does not satisfy the bounding condition
(iv) in Lemma ??. Thus we first define

T̄o(s) = To(s)esτ =⇒ ln |T̄o(jω)| = ln |To(jω)| (9.5.2)

The result then follows on applying Lemma ?? on page ?? to T̄o(s) and on
recalling that

ln(To(pi)) = 0 i = 1, 2, . . . , N (9.5.3)

✷✷✷

The consequences of this result are illustrated in the following example. For
simplicity, we assume that the unstable pole is real, i.e. βi = 0.

Example 9.3. Say that the design requirement is that |To(jω)| < ε < 1 for all
frequencies above ωh. See Figure 9.3 again. This requirement defines a closed loop
bandwidth and could originate from robustness and noise immunity considerations.
We seek a lower bound for the sensitivity peak Tmax. This peak will lie in the
frequency region below ωh.

Lemma 9.6 can be used to obtain the bound. We split the integration interval
[0,∞] into [0, ωh] ∪ (ωh,∞). Then, from equation (9.5.1) we have that
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∫ ∞

0

ln |To(jω)| 2αi
α2
i + ω2

dω = −π ln |Bz(αi)|+ ταi

=
∫ ωh

0

ln |To(jω)| 2αi
α2
i + ω2

dω +
∫ ∞

ωh

ln |To(jω)| 2αi
α2
i + ω2

dω

< Ω(αi, ωh) ln Tmax + (ln ε)(π − Ω(αi, ωh)) (9.5.4)

where the functions Ω(◦, ◦) were defined in (9.4.6) to (9.4.11).
Rearranging terms in (9.5.4), we obtain

lnTmax >
1

Ω(αi, ωh)
[π| ln |Bz(αi)||+ ταi + | ln ε|(π − Ω(αi, ωh)] (9.5.5)

Discussion

(i) We see that the lower bound on the complementary sensitivity peak is larger
for systems with pure delays, and the influence of a delay increases for unstable
poles which are far away from the imaginary axis, i.e. large αi.

(ii) The peak, Tmax, grows unbounded when a NMP zero approaches an unstable
pole, since then | ln |Bz(pi)|| grows unbounded.

(iii) Say that we ask that the closed loop bandwidth be much smaller than the
magnitude of a right half plane (real) pole. In terms of the notation used
above, we would then have ωh � αi. Under these conditions, Ω(pi, ωh) will
be very small, leading to a very large complementary sensitivity peak. We
note that this is consistent with the results in section §8.6.5 based on time
domain analysis. There it was shown that, when this condition arises, large
overshoot appears.

✷✷✷

The existence of large sensitivity peaks has a time domain interpretation, namely,
that the transient response of the closed loop includes large deviations and slow tran-
sients. In the frequency domain, this undesirable feature will usually be reflected
in small stability margins.

The results presented above establish design trade offs originating from the
nature of feedback systems in the presence of NMP zeros and unstable open loop
poles. Of course similar constraints arise from poles and zeros in the controller.
If one wishes to have constraints which hold independent of the controller, then
equality signs in equations (9.2.9), (9.2.10) , (9.4.2), (9.4.3) and (9.5.1), should be
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changed to ≥ signs, since the right terms in these equations should also include the
effect of unstable poles or NMP zeros resulting from the controller.

One of the general conclusions which can be drawn from the above analysis is
that the design problem becomes more difficult for large unstable open loop poles
and small NMP zeros. The notions of large and small are relative to the magnitude
of the required closed loop bandwidth.

Remark 9.2. The accompanying diskette includes two MATLAB routines, smax.m
and tmax.m to compute lower bounds for the sensitivity and complementary sen-
sitivity assuming certain bandwidth specifications.

✷✷✷

9.6 Example of Design Trade-offs

To illustrate the application of the above ideas we will consider the inverted pen-
dulum example. This is a class-room example, but similar dynamics apply to a
rocket “sitting” on its booster thrust. We will consider two scenarios - one where
the angle of the pendulum is measured and one where this extra measurement is
not available.

Example 9.4 (Inverted pendulum without angle measurement). Consider
the system as shown in Figure 9.4.

y(t)

M

m

l

f(t)

θ(t)

Figure 9.4. Inverted pendulum

Details of the modeling of this system were given in Chapter 3. We recall that
by applying classical mechanics methods we obtain the following (nonlinear) model
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ÿ(t) =
1

λm + sin2 θ(t)

(
f(t)
m

+ (θ̇(t))2l sin θ(t)− g sin θ(t) cos θ(t)
)

(9.6.1)

θ̈(t) =
1

lλm + sin2 θ(t)

(−f(t)
m

cos θ(t) − (θ̇(t))2l cos θ(t) sin θ(t) + (1 + λm)g sin θ(t)
)

(9.6.2)

where λm = M/m and g is the acceleration due to gravity.
If the above nonlinear model is linearized around the operating point θQ = 0,

yQ = 0 and fQ = 0, we obtain the following transfer function from input u to out
position y.

Y (s)
F (s)

= K
(s− b)(s+ b)

s2(s− a)(s+ a)
(9.6.3)

where

K =
1
M

; b =
√

g

l
; a =

√
(1 + λm)g

lλm
(9.6.4)

We observe that there is a NMP zero, located at s = b which is to the left of the
unstable pole, located at s = a. This induces a control design conflict since, on the
one hand, the closed loop bandwidth should be less than b, but on the other hand
it should be larger than the largest unstable pole, i.e. larger than a. To quantify
the effects of this unresolvable conflict, we set M = m = 0.5 [kg], l = 1 [m] and
approximate g ≈ 10 [m/s2]. These choices lead to

Y (s)
F (s)

= 2
(s−√

10)(s+
√
10)

s2(s−√
20)(s+

√
20)

(9.6.5)

The presence of the NMP zero and the unstable pole lead to sensitivity peaks
with lower bounds that can be computed with the theory presented above. Consider
the schematic plots of sensitivity and complimentary sensitivity given in Figure 9.3.
In particular, recall the definitions of ω�, ωh and ε. We consider various choices
for ω� and ωh with ε = 0.1

• ωl =
√
10 and ωh = 100. Then equation (9.4.16) predicts Smax ≥ 432. In

this case, ωh is much larger than the unstable pole, thus the large value for
the bound results from ωl =

√
10 being too close to the NMP zero.

• When ωl = 1 and ωh = 100, we have from (9.4.16) that Smax ≥ 16.7, which
is significantly lower than the previous case (although still very large), since
now, ωl is much smaller than the NMP zero.
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• If ωl = 1, and ωh =
√
20 we obtain from (9.5.5) that Tmax ≥ 3171, which is

due to the fact that ωh is too close to the unstable pole.

• If ωl = 1, and ωh = 3 we obtain from (9.5.5) that Tmax ≥ 7.2×105. This huge
lower bound originates from two facts: firstly, ωh is lower than the unstable
pole, and secondly, ωl and ωh are very close.

We can see from sensitivity arguments presented above that the control of an
inverted pendulum when only the cart position is measured is extremely difficult
(and probably nearly impossible in practice). An alternative justification for this
claim based on root locus arguments is given on the web site.

The web site also derives the following controller:

C(s) =
p3s

3 + p2s
2 + p1s+ po

ss + )2s2 + )1s+ )o
(9.6.6)

where
po = −74.3
p1 = −472.8
p2 = 7213.0
p3 = 1690.5
)o = −8278.9
)1 = −2682.3
)2 = 41.5

This controller results in the sensitivity and complementary sensitivity plots
given in Figure 9.5.
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Figure 9.5. Sensitivities for the inverted pendulum

Of course, the plots in Figure 9.5 show very large peaks indicating that the design
is very sensitive to noise, disturbance, model error etc. It can easily be checked that,
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for this particular design (using ε = 0.1) where ωl ≈ 0.03 and ωh ≈ 60. In this case,
equation (9.4.16) predicts Smax ≥ 6.34 and equation (9.5.5) predicts Tmax ≥ 7.19.
Inspection of Figure 9.5 shows that these lower bounds are indeed exceeded by this
particular design. The key point here is that these kinds of difficulties are inherent
in the problem and cannot be circumvented by any control system design. (The
reader is invited to look at the associated step responses on the web site and to try
his or her own hand at designing a better SISO controller. The reader can perhaps
appreciate the difficulty of the problem by trying to balance a broom on one’s finger
when one’s eyes are closed!)

✷✷✷

Remark 9.3. The reader may feel that the difficulty encountered in the above ex-
ample is easily resolved by building some virtual sensor for the missing angle mea-
surements. This may well be a useful strategy to help in the design of the control
law. However, at the end of the day, the resultant controller will be driven only by
u and y i.e. it reduces to a SISO feedback loop. Thus identical sensitivity issues
apply!

The reader may feel that these arguments contradict the spectacular success we
had in section §8.7.1 where we suggested the use of a vertical sensor to estimate the
exit thickness in a rolling mill. The essential difference is that, in the latter case,
we used an additional measurement (force) to infer thickness i.e. we changed the
basic architecture of the control problem. This is not achieved in the case of the
inverted pendulum when we try to estimate θ using y since no new measurements
are involved.

✷✷✷

9.7 Summary

• One class of design constraints are those which hold at a particular frequency.

• Thus we can view the law S(jω) = 1−T (jω) on a frequency by frequency basis.
It states that no single frequency can be removed from both the sensitivity,
S(jω), and complementary sensitivity, T (jω).

• There is, however, an additional class of design considerations, which results
from so called frequency domain integral constraints.

• This chapter explores the origin and nature of these integral constraints and
derives their implications for control system performance:

◦ the constraints are a direct consequence of the requirement that all sen-
sitivity functions must be stable

◦ mathematically, this means that the sensitivities are required to be ana-
lytic in the right half complex plane
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◦ results from analytic function theory then show, that this requirement
necessarily implies weighted integrals of the frequency response necessar-
ily evaluate to a constant

◦ hence, if one designs a controller to have low sensitivity in a particular
frequency range, then the sensitivity will necessarily increase at other
frequencies-a consequence of the weighted integral always being a con-
stant; this phenomenon has also been called the water bed effect (pushing
down on the water bed in one area, raises it somewhere else).

• These trade-offs show that systems become increasingly difficult to control as

◦ Unstable zeros become slower
◦ Unstable poles become faster
◦ Time delays get bigger
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Notation Constraints Interpretation

pi RHP poles Z ∞

0

ln|So(jω)|dω = π

NX

i=1

Re{pi}
Areas of sensitivity below 1(i.e.
ln|So| < 0) must be matched by areas
of sensitivity above 1.

ci RHP zeros

Z ∞

0

ln|To(jω)|
ω2

dω =

NX

i=0

1

ci

Areas of complementary sensitivity be-
low 1 must be matched by areas of com-
plementary sensitivity above 1.

W (ck, ω) weighting function
Bp(ck) Blaschke product

2

Z ∞

0

ln|So(jω)|W (ck, ω)dω = −πln|Bp(ck)|

The above sensitivity trade-off is fo-
cused on areas near RHP zeros.

W (pi, ω) weighting function
Bz(pi) Blaschke product

2

Z ∞

0

ln|To(jω)|W (pi, ω)dω = −πln|Bz(pi)|

The above complementary sensitivity
trade-off is focused on areas near RHP
poles.

Table 9.1. Integral constraints for SISO systems
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9.9 Problems for the Reader

Problem 9.1. Consider a feedback control loop where

Go(s)C(s) =
9

s(s+ 4)
(9.9.1)

9.1.1 Verify Lemma 9.1 on page 240 by directly computing the integral in (9.2.3).

9.1.2 Repeat for GoC(s) =
17s+ 100
s(s+ 4)

Problem 9.2. Consider a feedback control loop for a plant with nominal model
Go(s), and complementary sensitivity To(s), where

Go(s) =
2(s+ 1)

(−s+ 1)(s+ 2)
(9.9.2)

To(s) =
ω2
n(αs+ 1)

s2 + 1.3ωns+ ω2
n

(9.9.3)

9.2.1 Find α such that the loop is internally stable.

9.2.2 Using the formulae developed in this chapter, estimate lower bounds for the
sensitivity peak, for ωn = 0.1, 10, 100.

9.2.3 Compare with the exact values.

Problem 9.3. The nominal model for a plant is given by

Go(s) =
5(s− 1)

(s+ 1)(s− 5)
(9.9.4)

This plant has to be controlled in a feedback loop with one degree of freedom.
Assume exact inversion at ω = 0 and step like reference and disturbances.

9.3.1 Assume that the loop must satisfy

|So(jω)| < 0.2 for ω ≤ 2 |To(jω)| < 0.2 for ω ≥ 8
(9.9.5)

Using the results presented in this chapter (and the provided MATLAB rou-
tines smax.m and tmax.m) , obtain the best estimate you can for a lower
bound on the nominal sensitivity peak and the complementary sensitivity peak.
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9.3.2 Why is the control of this nominal plant specially difficult? Discuss.

Problem 9.4. Assume that in a one d.o.f. control loop for a plant with nominal
model given by Go(s), unstable and non minimum phase, a biproper controller is
designed. Derive frequency domain constraints for the nominal control sensitivity,
Suo.



Chapter 10

ARCHITECTURAL ISSUES IN
SISO CONTROL

10.1 Preview

The analysis in previous chapters has focused on feedback loop properties and feed-
back controller synthesis. In this chapter we will extend the scope of the analysis
to focus on two further important aspects, namely: exact compensation of certain
types of deterministic disturbances and exact tracking of particular reference signals.
We will show that, compared to relying solely on feedback, the use of feedforward
and or cascade structures offers advantages in many cases. We also generalize the
idea of integral action to more general classes of disturbance compensators.

10.2 Models for Deterministic Disturbances and Reference Sig-
nals

Throughout this chapter we will need to refer to certain classes of disturbances
and reference signals. The particular signals of interest here are those that can be
described as the output of a linear dynamic system having zero input and certain
specific initial conditions. The simplest example of such a signal is a constant, which
can be described by the model:

ẋd = 0 ; xd(0) given (10.2.1)

The generalization of this idea includes any disturbance that can be described
by a differential equation of the form:

dqdg(t)
dtq

+
q−1∑
i=0

γi
didg(t)
dti

= 0 (10.2.2)

The above model leads to the following expression for the Laplace transform of
the disturbance:

263
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Dg(s) =
Nd(s)xd(0)

Γd(s)
(10.2.3)

where Γd(s) is the disturbance generating polynomial defined by

Γd(s)
�
= sq +

q−1∑
i=0

γis
i (10.2.4)

This polynomial corresponds to the denominator of the Laplace transform of
dg(t), and it can be factored according to the modes present in the disturbance. We
illustrate by a simple example.

Example 10.1. A disturbance takes the following form

dg(t) = K1 +K2 sin(3t+K3) (10.2.5)

where K1,K2 and K3 are constants. Then the generating polynomial is given by

Γd(s) = s(s2 + 9) (10.2.6)

Note that K1, K2 and K3 are related to the initial state, xd(0), in the state space
model.

We also characterize reference signals in a similar way to that used for distur-
bances, i.e. we assume that the reference originates as the output of a dynamic
system having zero input and certain specific initial conditions. This means that
the reference satisfies a homogeneous differential equation of the form:

dqr(t)
dtq

+
q−1∑
i=0

γi
dir(t)
dti

= 0 (10.2.7)

The above model leads to:

R(s) =
Nr(s)xr(0)

Γr(s)
(10.2.8)

where Γr(s) is the reference generating polynomial defined by

Γr(s)
�
= sq +

q−1∑
i=0

γis
i (10.2.9)
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R(s)

+ −

U(s)
C(s)

+

Dg(s)

+ Y (s)
Go2(s)Go1(s)

Figure 10.1. Control loop with a generalized disturbance

This polynomial corresponds to the denominator of the Laplace transform of
r(t), and it can be factored according to the modes present in the reference. For
future use we factor Γr(s) as

Γr(s) = Γor(s)Γ
∞
r (s) (10.2.10)

where Γor is a polynomial with roots strictly inside the LHP and Γ∞
r (s) is a poly-

nomial with roots in the closed RHP, located at s = εi, for i = 1, 2, . . . , ne. For
simplicity, we assume in the sequel that these roots are distinct.

10.3 Internal Model Principle for Disturbances

10.3.1 Disturbance entry points

In previous chapters we distinguished between input and output disturbances so as
to highlight the issues arising from the point at which disturbances enter the loop.
Here we will adopt a unified description encompassing both input and output distur-
bances. Specifically, for a nominal model Go(s) with input U(s) and output Y (s),
we will assume that the disturbance Dg(s) acts on the plant at some intermediate
point, i.e. we model the output as follows:

Y (s) = Go2(s)(Go1(s)U(s) +Dg(s)) where Go(s) = Go1(s)Go2(s)
(10.3.1)

This set up is depicted in Figure 10.1
The input disturbance case is included by setting Go1(s) = 1, and Go(s) =

Go2(s). The output disturbance case is covered by considering Go2(s) = 1, and
Go(s) = Go1(s).
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10.3.2 Steady state disturbance compensation

We note that for the generalized disturbance description given above, and assuming
closed loop stability, the nominal model output and controller output are given
respectively by

Y (s) = So(s)Go2(s)Dg(s) (10.3.2)

U(s) = −SuoGo2(s)Dg(s) =
To(s)
Go1(s)

Dg(s) (10.3.3)

From equation (10.3.2) we observe that the effect of the disturbance on the model
output vanishes asymptotically when one (or both) of the following conditions are
satisfied:

• dg(t) → 0 as t → ∞
• The polynomial Γd(s) is a factor in the numerator of So(s)Go2(s)

The first case is not interesting from the viewpoint of steady state performance,
although it will be considered in the context of transient performance.

When the roots of Γd(s) lie in the closed RHP, then only the second condition
guarantees zero steady state error due to the disturbance. This requirement can be
met if the factors of Γd(s) are in the denominator of the controller C(s) and/or in
the denominator of Go1(s). Note that for an input disturbance, i.e. Go1(s) = 1, the
only valid alternative is that Γd(s) be a factor in the denominator of C(s).

We observe that when Γd(s) is a factor in the denominator of C(s), then the
unstable components of dg(t) will be asymptotically compensated in both the nom-
inal feedback loop and in the true loop, provided that the nominal loop is robustly
stable. The reason for this strong property is that So(s) will vanish at the unstable
roots of Γd(s), and this, combined with the robust stability property, ensures that
S(s) also vanishes at those roots.

We may thus conclude:

Steady state disturbance compensation requires that the generating polynomial
be included as part of the controller denominator. This is known as the Internal
Model Principle, (IMP). The roots of the generating polynomial, in particular
the unstable ones, impose the same performance trade-offs on the closed loop
as if these poles were part of the plant.

When the IMP is used, To(s), and T (s) are equal to one at the roots of Γd(s).
Thus, from equation (10.3.3) we see that the controller output u(t) will, in general,
contain the disturbances modes.

The IMP can be explicitly enforced during the synthesis stage. We examine one
way in which this can be achieved below.
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10.3.3 Pole assignment

Recall the theory presented in section §7.2. For a nominal plant model and controller
as given in (7.2.2), i.e. Go(s) =

Bo(s)
Ao(s)

and C(s) = P (s)
L(s) , we have that the IMP can

be enforced if we factor L(s) as Γd(s)L̄(s). This leads to a pole assignment equation
of the form:

Ao(s)Γd(s)L̄(s) +Bo(s)P (s) = Acl(s) where L(s) = Γd(s)L̄(s)
(10.3.4)

If the degree of Ao(s) is n, then Acl(s) can be arbitrarily specified if and only
its degree is, at least, 2n − 1 + q. Note that in subsection §7.2.2, this idea was
introduced for the special case Γd(s) = s.

We illustrate the procedure by the following example.

Example 10.2. Consider a nominal model Go(s) = 3
s+3 and an input disturbance

dg(t) = K1 +K2 sin(2t+K3). It is required to build a controller C(s) such that the
IMP is satisfied for this class of disturbances.

We first note that q = 3, Γd(s) = s(s2 + 4) and n = 1. This means that Acl(s)
should at least be of degree nc = 4. Say we choose Acl(s) = (s2 + 4s + 9)(s + 5)2.
We then have that the controller should have the form

C(s) =
β3s

3 + β2s
2 + β1s+ β0

s(s2 + 4)
(10.3.5)

The corresponding pole assignment equation becomes

s(s2 + 4)(s+ 3) + 3(β3s
3 + β2s

2 + β1s+ β0) = (s2 + 4s+ 9)(s+ 5)2 (10.3.6)

leading to β3 = 14
3 , β2 = 74

3 , β1 = 190
3 and β0 = 75 (use paq.m).

Equation (10.3.2), when applied to this example, leads to

Y (s) =
3s(s2 + 4)
Acl(s)

Dg(s) =
3Ng(s)
Acl(s)

(10.3.7)

where Ng(s) is the numerator polynomial of Dg(s). We have also used the fact
that Go2(s) = Go(s). Notice, however, the trade-off price that must be paid to
achieve perfect cancellation of this particular disturbance: the disturbance generating
polynomial will necessarily appear as zeros of the sensitivity function and impact on
step output disturbance response and complementary sensitivity accordingly.

An interesting observation is the following. Assume that, for this input dis-
turbance, we had the following transfer functions for the nominal model and the
controller.
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Go(s) =
3
s

and C(s) =
β3s

3 + β2s
2 + β1s+ β0

(s+ 3)(s2 + 4)
(10.3.8)

Note that the transfer function of the combined plant and controller, i.e. Go(s)C(s),
has the same poles as above but now the factor s appears in Go(s) rather than in
C(s).

The closed loop polynomial, Acl(s), and the nominal sensitivity, So(s), remain
unchanged. However, now Go2(s) = 3

s , and thus

Y (s) =
3(s+ 3)(s2 + 4)

Acl(s)
Dg(s) =

3(s+ 3)Ng(s)
sAcl(s)

(10.3.9)

From here it is evident that the constant mode of the disturbance remains in the
output, leading to nonzero steady state error. This is due to the fact that the IMP
is satisfied for the disturbances mode originating in the factor s2 +4, but not in the
factor s.

✷✷✷

10.3.4 Industrial application: roll eccentricity compensation in
rolling mills

A common technique used for gauge control in rolling mills (see §8.7.1) is to infer
thickness from roll force measurements. This is commonly called a BISRA gauge.
However these measurements are affected by roll eccentricity. We can explain why
eccentricity effects the thickness by a physical argument as follows: Normally an
increased force means the exit thickness has increased (thus pushing the rolls apart).
However, if the rolls are eccentric then when the largest radius passes through the
roll gap, the force increases, but the exit thickness actually decreases. Hence a
change in force is misinterpreted when eccentricity components are present.

A very common strategy for dealing with this problem is to model the eccen-
tricity components as multiple sinusoids (ten sine waves per roll are typically used;
with four rolls, this amounts to forty sinusoids). These sinusoids can be modeled
as in (10.2.4), where

Γd(s) =
m∏
i=1

(s2 + ω2
i ) (10.3.10)

The Internal Model Principle can then be used to remove the disturbance from
the exit gauge. One such scheme is a patented technique known as AUSREC which
was developed, in collaboration with others, by one of the authors of this book.

The reader is referred to the Rolling Mill example given on the book’s web site.
There, it is shown how this form of controller is a very effective tool for dealing with
the roll eccentricity issue.
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10.4 Internal Model Principle for Reference Tracking

For reference tracking, we consider the two degree of freedom architecture shown in
Figure 5.2 on page 122 with zero disturbances. Then tracking performance can be
quantified through the following equations:

Y (s) = H(s)To(s)R(s) (10.4.1)
E(s) = R(s)− Y (s) = (1−H(s)To(s))R(s) (10.4.2)
U(s) = H(s)Suo(s)R(s) (10.4.3)

The block with transfer function H(s) (which must be stable, since it acts in
open loop) is known as the reference feedforward transfer function. This is usually
referred to as the second degree of freedom in control loops.We will now address
the issues of steady state and transient performance in this architecture.

If we are to use the internal model principle for reference tracking, then it
suffices to set H(s) = 1 and then to include the reference generating polynomial
in the denominator of C(s)Go(s). This leads to So(εi) = 0 where εi = 1, . . . nr
are the poles of the reference generating polynomial. This in turn implies that the
achieved sensitivity, S(εi) = 0 for εi = 1, . . . nr. Hence the achieved complementary
sensitivity satisfies T (εi) = 1 and from (10.4.2) we have that for H(s) = 1, that

lim
t→∞ e(t) = 0 (10.4.4)

We can summarize this as follows:

To achieve robust tracking, the reference generating polynomial must be in the
denominator of the product C(s)Go(s), i.e. the Internal Model Principle also
has to be satisfied for the reference. When the reference generating polyno-
mial and the disturbance generating polynomial share some roots, then these
common roots need only be included once in the denominator of C(s) to simul-
taneously satisfy the IMP for both the reference and disturbance.

10.5 Feedforward

The use of the IMP, as outlined above, provides complete disturbance compensation
and reference tracking in steady state. However, this leaves unanswered the issue
of transient performance, i.e. how the system responds during the initial phase of
the response following a change in the disturbance or reference signal.

We have seen that steady state compensation holds independent of the precise
plant dynamics, provided that the closed loop is stable. However, the transient
response is a function of the system dynamics and is thus subject to the inherent



270 Architectural Issues in SISO Control Chapter 10

performance trade-offs that we have studied elsewhere. In particular, the transient
response is influenced by the zeros of the transfer function between the disturbance
or reference injection point and the output, the poles of the transfer function be-
tween the output and the disturbance or reference injection point, and the location
of the closed loop poles.

The transient performance can be influenced in various ways. The most obvious
way is to change the location of the closed loop poles by changing the controller.
However, in some cases, it may be possible to directly measure the disturbances
or reference signals. Judicious use of these measurements in the control structure
gives us additional mechanisms for affecting the transient performance.

We will discuss reference feedforward and disturbance feedforward.

10.6 Reference Feedforward

We can use a two-degree-of-freedom architecture for reference tracking. We recall
the equations describing this architecture for reference signals given in equation
10.4.1 to 10.4.3. The essential idea of reference feedforward is to use H(s) to invert
To(s) at certain key frequencies i.e. so that H(s)To(s) = 1 at the poles of the
reference model (i.e. at εi; i = 1, . . . , ne). Note that, by this strategy, one can
avoid using high gain feedback to bring To(εi) to 1. This would have advantages
with respect to robust stability. On the other hand, if we use H(s) to achieve
H(εi)To(εi) = 1, then the performance on the real plant will be sensitive to difference
between the nominal sensitivity, To(s), and the true or achieved sensitivity. This,
in turn, implies sensitivity to differences between the true plant and the nominal
model, Go(s).

Example 10.3. Consider a plant having a nominal model given by

Go(s) =
2

s2 + 3s+ 2
(10.6.1)

The control goal is to cause the plant output to follow, as closely as possible, a
reference given by

r(t) = K1 sin(t) +K2 + ra(t) (10.6.2)

where K1 and K2 unknown constants and ra(t) is a signal with energy in the fre-
quency band [0, 5][rad/s]. It is also assumed that due to presence of measurement
noise, the closed loop bandwidth cannot exceed 3[rad/s].

It is required to design a control system to achieve zero steady state control error
and good dynamic tracking.

We first note that the reference has energy concentrated at ω = 1[rad/s] and
ω = 0[rad/s]. It also has energy distributed in the band [0, 5][rad/s]. (Note that
this lies outside the allowed closed loop bandwidth, hence a two-degree-of-freedom
architecture will be needed.)
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We also need to pay attention to relative degree issues since C(s) and H(s) must
be proper.

The design requirements can be summarized as follows

(i) The bandwidth of To must be at most 3[rad/s].

(ii) The bandwidth of HTo should be at least 5[rad/s].

(iii) The feedback controller transfer function C(s) must have poles at s = 0 and
at s = ±j[rad/s]

We first synthesize the feedback controller using polynomial pole placement. We
note that the closed loop polynomial must then be chosen of minimum degree equal
to 6 to force poles at 0,±j1 into C(s). For simplicity we choose to cancel the plant
model poles.

Thus we choose

C(s) =
P (s)
L(s)

=
(s2 + 3s+ 2)(β2s

2 + β1s+ β0)
s(s2 + 1)(s+ α)

(10.6.3)

The closed loop polynomial is chosen as Acl(s) = (s2+3s+2)(s2+3s+4)(s+1)2.
This choice is made by trial and error so as to limit the closed loop bandwidth to
3[rad/s]; this constraint forces slow poles into Acl(s). Note also that the factor
s2+3s+2 has been introduced in Acl(s) to force the cancellation of open loop poles.

After simplifying the factor s2 + 3s+ 2 the pole placement equation reduces to

s(s2 + 1)(s+ α) + 2(β2s
2 + β1s+ β0) = (s2 + 3s+ 4)(s+ 1)2 (10.6.4)

This leads to

α = 5; β2 = 5; β1 = 3; β0 = 2 (10.6.5)

from where we obtain

To(s) =
10s2 + 6s+ 4

(s2 + 3s+ 4)(s+ 1)2
(10.6.6)

We next design the reference feedforward block H(s)to achieve an overall refer-
ence tracking bandwidth of, at least, 5[rad/s]. Since the relative degree of To(s) is
2, this is also the minimum relative degree for H(s)To(s), otherwise H(s) would be
improper. Say we choose

H(s)To(s) =
1

(0.01s+ 1)2
(10.6.7)
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which then exceeds the required 5[rad/s] bandwidth. This leads to

H(s) =
(s2 + 3s+ 4)(s+ 1)2

(10s2 + 6s+ 4)(0.01s+ 1)2
(10.6.8)

✷✷✷

Remark 10.1. A key issue in the two d.o.f. architecture is that, although it deals
successfully with the bandwidth limitation arising from modeling errors and mea-
surement noise, it does not solve the problem of bandwidth limitation arising from
possible input saturation. This can be appreciated from equation (10.4.3).

10.7 Disturbance feedforward

We next show how feedforward ideas can be applied to disturbance rejection.
A structure for feedforward from a measurable disturbance is shown in Figure

10.2. Note that this is precisely the configuration used early in the book §2.3 in the
mould level example to compensate for changes in casting rate.

+

+

Dg(s)

Go2(s)
+ − +

C(s)
+

Gf (s)

Go1(s)
Y (s)U(s)R(s)

Figure 10.2. Disturbance feedforward scheme

From Figure 10.2 we observe that the model output and the controller output
response, due to the disturbance, are given by:

Yd(s) = So(s)Go2(s)(1 +Go1Gf (s))Dg(s) (10.7.1)
Ud(s) = −Suo(s)(Go2(s) +Gf (s))Dg(s) (10.7.2)

The proposed architecture has the following features

(i) The feedforward block transfer function Gf (s) must be stable and proper,
since it acts in open loop.

(ii) Equation (10.7.1) indicates that, ideally, the feedforward block should invert
part of the nominal model, i.e.

Gf (s) = −[Go1(s)]−1 (10.7.3)
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(iii) Since usually Go1(s) will have a low pass characteristic, we should expect
Gf (s) to have a high pass characteristic.

The use of disturbance feedforward is illustrated in the following example.

Example 10.4. Consider a plant having a nominal model given by

Go(s) =
e−s

2s2 + 3s+ 1
Go1(s) =

1
s+ 1

Go2(s) =
e−s

2s+ 1
(10.7.4)

We will not discuss the feedback controller. (It actually uses a Smith predictor
architecture - see section§7.4.)

We assume that the disturbance dg(t) consists of infrequently occurring step
changes. We choose −Gf (s) as an approximation to the inverse of Go1(s), i.e.

Gf (s) = −K s+ 1
βs+ 1

(10.7.5)

where β allows a trade off to be made between the effectiveness of the feedforward
versus the size of the control effort. Note that K takes the nominal value 1.

A SIMULINK simulation was carried out, for a loop with unit step reference at
t = 1 and unit step disturbance at t = 5. Typical results are shown in Figure 10.3
for β = 0.2 and K = 0 (no feedforward) and K = 1 (full feedforward).

It can be seen from the figure that feedforward clearly improves the transient
performance.
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Figure 10.3. Control loop with (K = 1) and without (K = 0) disturbance feed-
forward

An interesting observation is that, in many cases, disturbance feedforward is
beneficial even if only a static Gf (s) is used, i.e. exact inversion of Go1(s) is only
achieved at ω = 0. The reader is encouraged to try this and other choices for Gf (s)
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and evaluate the effects of those choices on, for instance, u(t). The SIMULINK
scheme for this example corresponds to file distff.mdl.

Since ideal disturbance feedforward requires inversion, the main difficulties arise
when Go1(s) has delays or NMP zeros since this cannot be inverted. On the other
hand, disturbance feedforward is specially helpful in certain plants, like the one in
this example, where Go2(s) includes a significant time delay, while Go1(s) does not.
This occurs frequently in the process industries.

Disturbance feedforward can also be used in nonlinear plants, as illustrated in
the following example.

Example 10.5. Consider a plant where the relationship between the input u(t),
disturbance dg(t) and output y(t) is given by the model

y(t) = Go2〈dg(t) + w(t)〉 with w(t)
�
= Go1〈u(t)〉 (10.7.6)

where Go2〈◦〉 is a linear, time invariant operator, and Go1〈◦〉 is a nonlinear operator
such that

dw(t)
dt

+ (2 + 0.2u(t))w(t) = 2u(t) (10.7.7)

Assume that we want to use the disturbance feedforward architecture shown in
Figure 10.2. Determine a suitable Gf .

Solution

The ideal choice for Gf is a nonlinear operator such that

Go1〈Gf 〈dg(t)〉〉 = −dg(t) i.e. Gf 〈dg(t)〉 = G−1
o1 〈−dg(t)〉 (10.7.8)

Thus

Gf 〈dg(t)〉 = G−1
o1 〈−dg(t)〉 =

[
d[dg(t)]

dt
+ 2dg(t)

]
1

−2 + 0.2dg(t)
(10.7.9)

However this operator cannot be implemented, since pure derivatives are required.
To remove that constraint, a fast transient is introduced, i.e.

τ
dGf 〈dg(t)〉

dt
+Gf 〈dg(t)〉 =

[
d[dg(t)]

dt
+ 2dg(t)

]
1

−2 + 0.2dg(t)
(10.7.10)

where τ � 1.
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The operator defined in equation (10.7.10) is used to compute the disturbance
feedforward error, ef(t), defined as

ef (t)
�
= dg(t) + w(t) = dg(t) +Go1 ⊗Gf 〈dg(t)〉 (10.7.11)

This examples illustrates how disturbance feedforward can be used in connection
with nonlinear models. However caution must be exercised, since stability of the
feedforward mechanism depends on the magnitude of the signals involved. In this
example, if dg(t) gets closer to 10, saturation may occur, since then, the term −2+
0.2dg(t) grows unbounded.

Another issue of relevance in this architecture is the fact that disturbance mea-
surement may include noise which would have a deleterious effect in the loop per-
formance. This is illustrated in the following example

Example 10.6. Consider a plant with a generalized disturbance (as in Figure 10.1
on page 265), where

Go1(s) =
1

s+ 1
; Go2(s) = e−2s; Dg(s) =

24α
s(s+ 3)(s+ 8)

(10.7.12)

where α is an unknown constant.

10.6.1 Design disturbance feedforward, assuming that the bandwidth of the comple-
mentary sensitivity cannot exceed 3[rad/s].

10.6.2 Assume now that the closed loop bandwidth is unconstrained. If one uses only
one d.o.f., would it be possible to obtain similar performance to that obtained
through the above feedforward design?

10.6.3 Assume that measurement noise in the band [2, 20][rad/s] is injected when
measuring the disturbance. Discuss the effect of this noise on the plant output.

Solution

10.6.1 The disturbance feedforward block Gf (s) should be an approximation to the
negative of the inverse of Go1(s). Due to the fact that the disturbance has
significant energy in the frequency band [0, 8][rad/s], we need to have a good
inverse in that band. Say, we choose

Gf (s) = −10(s+ 1)
s+ 10

(10.7.13)

We will not describe the design of the feedback controller C(s) since this is
not relevant to the current discussion. (Actually the simulations use a Smith
controller structure - see section §7.4.)
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Q(s)

2s2 + 6s+ 4

s2 + 3s+ 4

Go1(s)

1
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−

e−2s

Dg(s)

+

R(s)
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V (s)
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Go2(s) Go1(s)

−10(s + 1)

(s+ 10)

24

(s+ 3)(s+ 8)

unit
step

Y (s)

Figure 10.4. First and third d.o.f. design

The performance of the loop is shown in Figure 10.5. In this figure the plant
output is shown for a unit step reference at t = 1[s] and a disturbance (with
α = 1) which starts at t = 10[s].

10.6.2 No. Because of the plant delay, the first two seconds of any disturbance change
will appear without attenuation at the plant output. The reader is invited to
confirm this by deleting the feedforward block in the SIMULINK diagram (in
file dff3.mdl), corresponding to Figure 10.4.

10.6.3 The feedforward block with transfer function Gf (s) has a high pass character-
istics with a gain ranging from 10[dB] at ω = 3[rad/s] up to almost 19[dB]
at ω = 20[rad/s]. This will significantly amplify the disturbance measurement
noise.
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Figure 10.5. First and third d.o.f. performance
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Remark 10.2. Disturbance feedforward is sometimes referred to as the third degree
of freedom in a control loop.

10.8 Industrial Applications of Feedforward Control

Feedforward control is generally agreed to be the single most useful concept in
practical control system design beyond the use of elementary feedback ideas. Clearly
if one can measure up-stream disturbances, then by feeding these forward, one
can take anticipatory control action which pre-empts the disturbance affecting the
process. The power of this idea has been illustrated in the classroom example
given in Figure 10.3. A word of warning is that feedforward depends on the use of
open loop inverses and hence is susceptible to the impact of model errors. Thus one
usually needs to supplement feedforward control by some form of feedback control so
as to correct any miscalculation involved in the anticipatory control action inherent
in feedforward.

Another use of feedforward control is to enlist other control inputs to help one
achieve desirable control performance. Indeed, this is the first step towards multi-
input multi-output control (a topic that will be addressed in full in Parts VI, VII
and VIII). As an illustration of the power of feedforward control, we present the
following industrial case study.

10.8.1 Hold-up effect in reversing mill revisited

Consider again the Rolling Mill problem discussed in section §8.8. There we saw
that the presence of imaginary axis zeros were a fundamental limitation impeding
the achievement of a rapid response between unloaded roll gap position and exit
thickness. We called this the hold-up effect. The physical cause of the problem
is thickness-tension interactions. To verify this claim the rolling mill model was
changed so that the tension remained constant. This is physically impossible to
achieve but can be done in simulation to test the hypothesis. The hold-up effect
disappears when there are no tension interactions. Also, as was argued in Chapter
8 the difficult cannot be overcome without a radical change in the architecture of
the control system since the defect holds true for any single-input single-output
controller no matter how designed! However, if we go beyond the single-input
single-output architecture, then one may be able to make progress. A clue to how
this might be achieved is provided by the fact that there are actually three inputs
available (roll gap, coiler current and uncoiler current). Moreover, the imaginary
axis zeros only appear between the unloaded roll gap and the exit thickness. Hence,
it seems feasible that one may be able to utilize the other inputs in some kind of
feedforward arrangement to avoid the hold-up effect.

Motivated by this idea, we will describe a feedforward and feedback control
scheme which is aimed at minimizing tension fluctuations.

To formulate the idea, we note that there is conservation of mass across the roll
gap. This implies that
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he(t)ve(t) = hi(t)vi(t) (10.8.1)

where he(t), hi(t), ve(t) and vi(t) are the exit thickness, input thickness, exit velocity
and input velocity respectively. We note that the exit velocity is held (roughly)
constant by another control system acting on the rolls. Hence (10.8.1) can be
expressed in incremental form as

(hoe +∆he(t)) voe = (hoi +∆hi(t)) (voi +∆vi(t)) (10.8.2)

where hoe, v
o
e , h

o
i and voi are the nominal values. Also,

hoev
o
e = hoi v

o
i (10.8.3)

It is also known that, in the absence of tension fluctuations, the exit thickness
is related to the roll gap position by a static relationship of the form:

∆he(t) = c1∆σ(t) + c2∆hi(t) (10.8.4)

where c1, c2 are constants related to the stiffness of the mill and ∆σ(t) is the change
in the gap between the rolls without load.

Substituting (10.8.4), (10.8.3) into (10.8.2) and ignoring second order terms gives

∆vi(t) =
1
hoi

[voe∆he(t)− voi∆hi(t)] (10.8.5)

=
1
hoi

[c1vo0∆σ(t) + c2v
o
e∆hi(t)− voi∆hi(t)]

Analysis of the physics of the problem indicates that tension fluctuations occur
because the uncoiler rotational speed does not keep up with changes in the input
velocity. This is avoided, if we can make the percentage change in the roll angular
velocity the same as the percentage change in input velocity, i.e. we require

∆vi(t)
voi

=
∆ωu(t)
ωo
u

(10.8.6)

where ωu denotes the uncoiler angular velocity. Hence from (10.8.5) we require

∆ωu =
wo
u

voi h
o
i

[c1vo0∆σ(t) + c2v
o
e∆hi8t)− voi∆hi(t)] (10.8.7)
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Figure 10.6. Feedforward controller for reversing mill

Now a simple model for the uncoiler dynamics is

Ju
dωu(t)
dt

= Kmiu(t) (10.8.8)

where iu(t) is the uncoiler current, Ju is the uncoiler inertia and Km the motor
torque constant.

Substituting (10.8.8) into (10.8.7), we finally see that tension fluctuations would
be avoided by choosing

iu(t) =
Juω

o
u

voi h
o
iKm

[
c1v

o
0

dσ(t)
dt

+ c2v
o
0

dhi(t)
dt

− voi
dhi(t)
dt

]
(10.8.9)

Equation (10.8.9) is a feedforward signal linking (the derivatives of) the unloaded
roll gap position, σ(t), and the input thickness, hi(t), to the uncoiler current.

This design has been tested on a practical mill and found to achieve a significant
reduction in the hold-up effect. The core idea is now part of several commercially
available thickness control systems. The idea is shown schematically in Figure 10.6.

10.9 Cascade Control

Next we turn to an alternative architecture for dealing with disturbances. The core
idea is to feedback intermediate variables that lie between the disturbance injection
point and the output. This gives rise to so called, cascade control .

A motivating example is shown in Figure 10.7. In this example, we assume that
we want to control a variable y(t) by manipulating the flow rate q(t). The simplest
architecture for achieving this is the one shown in part a) of Figure 10.7. Note that
the controller output commands the valve opening. However, in this case, changes
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r(t) +
−

ym(t) qm(t)
C1(s)

a) b)
q(t)

ps(t)

supply
pressure

+ − ym(t)

r(t)

u(t) u(t)

q(t)ps(t)

+ −
C2(s)C(s)

Figure 10.7. Example of application of cascade control

in the supply pressure ps(t) will yield different flow rates for the same value of u(t),
thus affecting the control goal.

An alternate cascade architecture is shown in part b) of Figure 10.7. A second
loop has been introduced to control the flow rate q(t). This loop requires the
measurement of q(t), denoted by qm(t) in the figure. Note that the first controller
output provides the reference for the second loop.

The generalization of this idea has the structure shown in Figure 10.8

+
C1(s)

+ +

Go2(s)

Go1(s)C2(s) Gb(s)Ga(s)

Dg(s)

+

−−

R(s) U1(s) Y (s)

Figure 10.8. Cascade control structure

In this architecture there are two control loops, a primary loop with a primary
controller, C1(s), and a secondary loop with a secondary controller, C2(s). The
secondary controller is designed to attenuate the effect of the disturbance, before it
significantly affects the plant output y(t).

The main benefits of cascade control are obtained

(i) when Ga(s) contains significant nonlinearities that limit the loop performance;
or
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(ii) when Gb(s) limits the bandwidth in a basic control architecture.

The second scenario above occurs when Gb(s) has NMP zeros and/or pure time
delays, as shown in chapter 8. Then the advantages of the secondary loop become
apparent. These advantages can be quantified on noting, from Figure 10.8 on the
facing page, that C1(s) must be designed to control an equivalent plant with input
U1(s), output Y (s) and disturbance Dg(s), i.e.

Y (s) = Go2(s)So2(s)Dg(s) + C2(s)Go(s)So2(s)U1(s); Go(s) = Go1(s)Go2(s)
(10.9.1)

where So2(s) is the sensitivity function for the secondary loop. Note also that,
if we denote by To2(s) the complementary sensitivity in the secondary loop, then
equation (10.9.1) can be rewritten as

Y (s) = Go2(s)So2(s)Dg(s) +Gb(s)To2(s)U1(s) (10.9.2)

We can then compare this with the model for the original plant, as appears in
the loop shown of Figure 10.1 on page 265, where

Y (s) = Go2(s)Dg(s) +Go(s)U(s) (10.9.3)

From this comparison, we see that, in the cascade architecture, the disturbance
which C1(s) has to deal with, is pre-compensated by the secondary loop sensitivity.
Thus a better transient in the disturbance rejection might be expected.

Once the secondary controller C2(s) has been designed, the primary controller
C1(s) can be designed so as to deal with the equivalent plant with transfer function

Goeq
�
= Gb(s)To2(s) (10.9.4)

The benefits of this architecture are significant in many applications. An exam-
ple is next presented to quantitatively illustrate these benefits.

Example 10.7. Consider a plant having the same nominal model as in example
10.4 and assume that the measurement for the secondary loop is the input to Go2(s),
then

Go1(s) =
1

s+ 1
; Go2(s) =

e−s

2s+ 1
; Ga(s) = 1; Gb(s) = Go2(s) =

e−s

2s+ 1
(10.9.5)

We first choose the secondary controller to be a PI controller where
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C2(s) =
8(s+ 1)

s
(10.9.6)

This controller has been chosen to obtain satisfactory disturbance compensation
in the secondary loop. The complementary sensitivity in the secondary loop is then
given by

To2(s) =
8

s+ 8
(10.9.7)

and the primary controller sees an equivalent plant with transfer function

Goeq(s) =
8e−s

2s2 + 17s+ 8
(10.9.8)

The primary controller can now be designed. Here again we use a Smith predictor
controller - see section §7.4.

The disturbance compensation performance is evaluated for a unit step distur-
bance. The results are shown in Figure 10.9. A unit step reference was applied at
t = 1. Then at t = 4, a unit step disturbance occurs. We can now compare these
results with those shown in Figure 10.3 on page 273. Cascade control is clearly bet-
ter than the basic one-degree-of-freedom control configuration, and comparable with
that obtained with feedforward.
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Figure 10.9. Disturbance rejection with a cascade control loop.

✷✷✷

The main features of cascade control are
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(i) Cascade control is a feedback strategy.

(ii) A second measurement of a process variable is required. However the distur-
bance itself does not need to be measured. Indeed, the secondary loop can be
interpreted as having an observer to estimate the disturbance.

(iii) Measurement noise in the secondary loop must be considered in the design,
since it may limit the achievable bandwidth in this loop.

(iv) Although cascade control (in common with feedforward) requires inversion,
it can be made less sensitive to modeling errors by using the advantages of
feedback.

✷✷✷

Remark 10.3. Many practical control problems depend upon regulating a flow vari-
able by using a valve. One solution is to assume knowledge of the valve character-
istics and simply use the control law to open the valve to some position (which via
the valve characteristics leads to the desired flow). However, this solution will be
significantly affected by valve imperfections (stiction, smooth nonlinearities etc) and
pressure changes (in the fluid whose flow is being regulated). This suggests a hi-
erarchical control architecture in which the principal control law calls for a desired
flow and then a secondary controller achieves this flow by a secondary loop in which
the real flow is measured. (Compare the two architectures given in Figure 10.7).
The cascade controller architecture is usually preferable to the one degree of free-
dom architecture. Of course, the negative side of the solution is that one needs to
measure the actual flow resulting from the control action. In some applications this
cannot be easily achieved. Recall, for example, the Mould Level Controller discussed
in section §8.3.2 where it is not really feasible to measure the flow of steel.

✷✷✷

10.10 Summary

• This chapter focuses the discussion of the previous chapter on a number of
special topics with high application value:

◦ internal disturbance models: compensation for classes of references and
disturbances.

◦ feedforward

◦ cascade control

◦ two-degree of freedom architectures

• Signal models
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◦ Certain classes of reference or disturbance signals can be modeled explic-
itly by their Laplace transform:
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Signal Type Transform

Step
1
s

Ramp
a1s+ 1

s2

Parabola
a2s

2 + a1s+ 1
s3

Sinusoid
a1s+ 1
s2 + ω2

◦ Such references (disturbances) can be asymptotically tracked (rejected)
if and only if the closed loop contains the respective transform in the
sensitivity S0.

◦ This is equivalent to having imagined the transforms being (unstable)
poles of the open-loop and stabilizing them with the controller.

◦ In summary, the internal model principle augments poles to the open
loop gain function Go(s)C(s). However, this implies that the same design
trade-offs apply as if these poles had been in the plant to begin with.

◦ Thus internal model control is not cost free but must be considered as
part of the design trade-off considerations.

• Reference feedforward

◦ A simple but very effective technique for improving responses to setpoint
changes is prefiltering the setpoint (Figure 10.10).

◦ This is the so called the two-degree-of-freedom (two d.o.f.) architecture
since the prefilter H provides an additional design freedom. If, for ex-
ample, there is significant measurement noise, then the loop must not be
designed with too high a bandwidth. In this situation, reference tracking
can be sped up with the prefilter.

◦ Also, if the reference contains high-frequency components (such as step
changes, for example), which are anyhow beyond the bandwidth of the
loop, then one might as well filter them so not to excite uncertainties
and actuators with them unnecessarily.

◦ It is important to note, however, that design inadequacies in the loop
(such as poor stability or performance) cannot be compensated by the
prefilter. This is due to the fact that the prefilter does not affect the loop
dynamics excited by disturbances.
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GoCH
+

−

Figure 10.10. Two degree of freedom architecture for improved tracking

• Disturbance feedforward

The trade-offs regarding sensitivities to reference, measurement noise, input-
and output disturbances as discussed in the previous chapters refer to the case
when these disturbances are technically or economically not measurable.

Measurable disturbances can be compensated for explicitly (Figure 10.11),
thus relaxing one of the trade-off constraints and giving the design more flex-
ibility.

+

−
C Go1

+

−
+

+

Gf
Dg

Go2

Figure 10.11. Disturbance feedforward structure

• Cascade Control

◦ Cascade control is a well-proven technique applicable when two or more
systems feed sequentially into each other (Figure 10.12 on the facing
page).

◦ All previously discussed design trade-offs and insights apply.

◦ If the inner loop (C2 in Fig. 10.12) were not utilized, then the outer
controller (C1 in Fig. 10.12) would- implicitly or explicitly- estimate y1 as
an internal state of the overall system (Go1Go2). This estimate, however,
would inherit the model-uncertainty associated with Go2. Therefore,
utilizing the available measurement of y1 reduces the overall uncertainty
and one can achieve the associated benefits.
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+ +

− −

y2(t)
C1 C2

y1(t)
Go1 Go2

Figure 10.12. Cascade control structure

10.11 Further Reading

Internal model principle

Francis, B. and Wonham, W. (1976). The internal model principle of control theory.
Automatica, 12:457–465.

Feedforward and cascade

Shinskey, F. (1998). Process control systems: application, design and adjustment.
McGraw Hill Book Company, New York, 3rd. edition.

Stephanopoulos, G. (1984). Chemical process control: an introduction to theory
and practice. Prentice Hall, Englewood Cliffs, N.J.
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10.12 Problems for the reader

Problem 10.1. Compute the disturbance generating polynomial, Γd(s), for each
of the following signals.

(a) 3 + t (b) 2 cos(0.1t+ π/7)

(c) 3
(
sin 1.5t

)3 (d) e−0.1t cos(0.2t)

Problem 10.2. In a feedback control loop of a minimum phase and stable plant,
the reference and disturbances are combinations of sinewaves of frequencies 0, 1 and
2 [rad/s]. A set of possible complementary sensitivity transfer function includes:

(a)
9

s2 + 4s+ 9
(b)

25s4 + 175s3 + 425s2 + 425s+ 150
s5 + 25s4 + 180s3 + 425s2 + 429s+ 150

(c)
4s2 + 20s+ 16

s3 + 4s2 + 21s+ 16
(d)

30s3 + 420s2 + 1680s+ 1920
s4 + 31s3 + 424s2 + 1684s+ 1920

Analyze for each candidate whether the IMP is satisfied for all three frequencies.

Problem 10.3. Consider a plant having a nominal model given by

Go(s) =
−s+ 8

(s+ 2)(s+ 4)
(10.12.1)

Sinthesize a controller to satisfy the IMP for ω = 0 and ω = 2 [rad/s].

Problem 10.4. Consider a plant with input u(t), disturbance dg(t), output y(t)
and nominal model given by

Y (s) = Gb(s)V (s); where V (s) = Ga(s) (Dg(s) +Go1(s)U(s))

and where v(t) is a measurable plant variable.
For the plant given by

Ga(s) = e−0.2s; Gb(s) =
e−0.5s

s+ 1
; Go1(s) =

1
s+ 1

(10.12.2)
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the nominal complementary sensitivity must satisfy

To(s) =
4e−0.7s

s2 + 3s+ 4
(10.12.3)

It is also known that the disturbance is a signal with abrupt changes.

10.4.1 Design a control loop including the first d.o.f (i.e. a feedback controller) and
the third degree of freedom (i.e. disturbance feedforward). Hint: use Smith
controllers.

10.4.2 Repeat the design, but using cascade control (measuring v(t)) instead of
the third d.o.f. You should aim to obtain the prescribed To and to achieve
a degree of disturbance compensation as close as possible to that obtained in
your solution to 10.4.1.

Problem 10.5. Consider Figure 10.2 on page 272, where the plant has a model
given by

Go1(s) =
2

s− 2
and Go2(s) =

1
s+ 1

(10.12.4)

The reference is a constant signal and the disturbance satisfies dg(t) = Kd +
dv(t), where Kd is constant and dv(t) is a signal with energy in the frequency band
[0, 4][rad/s].

Design the first (feedback controller C(s)) and third (disturbance feedforward
Gf (s)) d.o.f.. Pay special attention to the unstable nature of Go1(s) (this is not an
issue as simple as it might appear at first sight).

Use the SIMULINK file distffun.mdl to evaluate your design.

Problem 10.6. Consider the cascade structure shown in Figure 10.8 on page 280,
where

Go1(s) = 1; Ga(s) =
1
s
; Gb(s) =

e−s

s+ 1
(10.12.5)

Assume that the reference is constant and the disturbance dg(t) is as in Prob-
lem 10.5.

Design the primary and secondary controllers, under two different structural
constraints for the secondary controller:

(i) C2(s) must have a pole at the origin.
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(ii) C2(s) has to be stable, i.e. all its poles must be in the open LHP.

Compare both designs. Discuss.

Problem 10.7. Consider a feedback control loop with reference feedforward for a
plant with nominal model given by

Go(s) =
s+ 2

(s+ 1)(s+ 3)
(10.12.6)

The reference signal has significant energy only in the frequency band [0, 10].
However, due to noise constraints, the closed loop bandwidth is restricted to 3[rad/s].

Design the feedback controller, C(s), and the reference feedforward transfer func-
tion, H(s), such that good tracking is achieved.

Problem 10.8. Closed loop control has to be synthesized for a plant having nom-
inal model Go(s) = −s+4

(s+1)(s+4) , to achieve the following goals:

(i) Zero steady state errors to a constant reference input.

(ii) Zero steady state errors for a sinewave disturbance of frequency 0.25[rad/s].

(iii) A biproper controller transfer function, C(s).

Use a pole placement method to obtain a suitable controller C(s).

Problem 10.9. Consider a plant with nominal model

Go(s) =
2

(−s+ 1)(s+ 4)
(10.12.7)

Design a one d.o.f. control such that the feedback control loop tracks step ref-
erences in the presence of measurement noise with energy in the frequency band
[5, 50][rad/s].



Chapter 11

DEALING WITH
CONSTRAINTS

11.1 Preview

An ubiquitous problem in control is that all real actuators have limited authority.
This implies that they are constrained in amplitude and/or rate of change. If one
ignores this possibility then serious degradation in performance can result in the
event that the input reaches a constraint limit. This is clearly a very important
problem. There are two ways of dealing with it:

(i) reduce the performance demands so that a linear controller never violates the
limits, or

(ii) modify the design to account for the limits

Option (i) above is the most common strategy. However, this implies that either
the actuator was oversized in the first place or one is unnecessarily compromising
the performance. Anyway, we will see below that option (ii) is quite easy to achieve.

This chapter gives a first treatment of option (ii) based on modifying a given
linear design. This will usually work satisfactorily for modest violations of the
constraint (up to say 100%). If more serious violations of the constraints occur then
we would argue that the actuator has been undersized for the given application.

We will also show how the same ideas can be used to avoid simple kinds of state
constraint.

Here we assume that the control laws are bi-proper and minimum phase. This
will generally be true in SISO systems. Bi-properness can be achieved by adding
extra zeros if necessary. Techniques that do not depend on those assumptions will
be described in Chapter 18.

Also, in a later chapter (Chapter 23) we will describe another technique for
dealing with control and state constraints based on constrained optimal control
theory. These latter techniques are generally called “model predictive control”
methods and can be thought of as more general versions of the ideas presented
here.

291
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11.2 Wind-Up

One very common consequence of an input hitting a saturation limit is that the
integrator in the controller (assuming it has one) will continue to integrate whilst
the input is constrained. This means that the state of the integrator can reach
an unacceptable high value leading to poor transient response. We illustrate by a
simple example.

Example 11.1. Consider the following nominal plant model:

Go(s) =
2

(s+ 1)(s+ 2)
(11.2.1)

Say that the target complementary sensitivity is

To(s) =
100

s2 + 13s+ 100
(11.2.2)

It is readily seen that this is achieved with the following controller

C(s) =
50(s+ 1)(s+ 2)

s(s+ 13)
(11.2.3)

A unit step reference is applied at t = 1 and a negative unit step output disturbance
occurs at t = 10. The plant input saturates when it is outside the range [−3, 3]. The
plant output y(t) is shown in Figure 11.1.
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Figure 11.1. Loop performance with (thick line) and without (thin line) satu-
ration at the plant input

We observe from Figure 11.1 that the plant output exhibits undesirable transient
behavior which is inconsistent with the linear nominal bandwidth of approximately
10[rad/s]. This deficiency originates from the saturation, since a unit step in the
reference produces an instantaneous demanded change of 50 in the controller output
and hence saturation occurs, which a linear design procedure for C(s) does not take
into account.
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✷✷✷

A simple ad-hoc mechanism for dealing with wind-up in PI controllers was de-
scribed in section §8.7.3. We will show how this can be generalized below.

11.3 Anti-Windup Scheme

There are many alternative ways of achieving protection against wind-up. All of
these methods rely on making sure that the states of the controller have two key
properties; namely

(i) the state of the controller should be driven by the actual (i.e. constrained)
plant input;

(ii) the states of the controller should have a stable realization when driven by
the actual plant input.

This is particularly easy to achieve when the controller is biproper and minimum
phase. Say that the controller has transfer function C(s), then we split this into
the direct feedthrough then C∞ and a strictly proper transfer function C̄(s); i.e.

C(s) = c∞ + C̄(s) (11.3.1)

Then consider the feedback loop shown in Figure 11.2.

u(t)e(t)
c∞

−+

[C(s)]−1 − c−1
∞

A

Figure 11.2. Feedback form of biproper controller

The transfer function from e(t) to u(t) in Figure 11.2 is readily seen to be

U(s)
E(s)

=
c∞

1 + ([C(s)]−1 − c−1∞ )c∞
(11.3.2)

=
c∞

[C(s)]−1c∞
= C(s)

Also, since [C(s)]−1 is stable (we are assuming for the moment that C(s) is
minimum phase), then we see that the bottom block (driven by u(t)) in Figure 11.2



294 Dealing with Constraints Chapter 11

is stable. It also contains all of the dynamics of the controller. Hence conditions (i)
and (ii) listed above are satisfied.

We now redraw Figure 11.2 as in Figure 11.3.

c∞

[C(s)]−1 − c−1∞

+

−

desired input

actual input

Figure 11.3. Desired and actual plant input

In the case of a limited input, all we now need to do is to ensure that the correct
relationship is achieved between the desired and actual input in Figure 11.2. If we
denote by û(t) the desired input and u(t) the actual input, then saturation and slew
rate limits can be described as follows.

Saturation

u(t) = Sat〈û(t)〉 �
=




umax if û(t) > umax,

û(t) if umin ≤ û(t) ≤ umax,

umin if û(t) < umin.

(11.3.3)

where û(t) is the unconstrained controller output and u(t) is the effective plant
input.

Slew rate limit

u̇(t) = Sat〈 ˙̂u(t)〉 �
=




σmax if ˙̂u(t) > σmax,

˙̂u(t) if σmin ≤ ˙̂u(t) ≤ σmax,

σmin if ˙̂u(t) < σmin.

(11.3.4)

Slew rate limits can be modeled as shown in Figure 11.4, where an Euler ap-
proximation has been used to model the derivative.
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û(t)
∆σmax

u(t)
∆σmin

delay

−

+

+
+

∆[s]

e−∆s

Figure 11.4. Slew rate limit model

Combined saturation and slew rate limits can be modeled as in Figure 11.5.

∆σmin umin

+ umax∆σmax−
u(t)

e−∆s

+
+û(t)

Figure 11.5. Combined saturation and slew rate limit model

Saturation and slew rate limits may also apply to variables internal to the plant.
In this case, they are known as state saturation and state slew rate limits respec-
tively. These issues will be explored later in this chapter.

Comparing Figure 11.3 with Figure 11.2, we see that all we need to do to ensure
that the lower block in Figure 11.3 is driven by the actual input, is to place the
appropriate limiting circuit at point A in Figure 11.2.

This leads to the final implementation as in Figure 11.6 where Lim denotes the
appropriate limiting circuit (saturation, slew rate limit or both).

To illustrate the efficacy of the scheme, we repeat Example 11.1 on page 292.

Example 11.2. Consider the same plant as in example 11.1 with identical refer-
ence and disturbance conditions. However, this time we implement the control loop
as in Figure 11.6 on the next page.

On running a simulation, the results are shown in Figure 11.7, where the plant
output has been plotted.
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G(s)
y(t)

+

[C(s)]−1 − c−1∞

Lim Lim
u(t)

c∞
+

r(t) e(t) û(t)

−−

Figure 11.6. Simplified anti wind-up control loop (C form)
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Figure 11.7. Loop performance with anti wind-up controller (thick line) com-
pared to performance achieved with no anti wind-up feature (thin
line). The latter corresponding to the thick line in Figure 11.1.

Figure 11.7 illustrates the dramatic improvement achieved by use of the proposed
anti wind-up scheme.

The SIMULINK file qawup.mdl contains the schematic used in this simulation.
Note that the decomposition of C(s) was carried out using the utility MATLAB
program awup.m (included in the accompanying diskette).

✷✷✷

Another example having slew rate limits is described next.

Example 11.3. Consider a plant having a linear model given by

Y (s) = e−s

(
1

(s+ 1)2
U(s) +Dg(s)

)
(11.3.5)
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where U(s) and Dg(s) are the Laplace transforms of the plant input and a generalized
disturbance.

Assume that a PI controller with KP = 0.5 and Tr = 1.5[s], has been tuned
for the linear operating range of this model, i.e. ignoring any nonlinear actuator
dynamics.

If the input u(t) cannot change at a rate larger than 0.2[s−1], verify that im-
plementation of the controller as in Figure 11.6 provides better performance than
ignoring this slew rate limitation.

Solution

We build a control loop with the controller structure shown in Figure 11.6 on the
preceding page, with Lim replaced by the slew rate limiter in Figure 11.4.

c∞ = Kp = 0.5; [C(s)]−1 − c−1
∞ = − 1

Kp(Trs+ 1)
= − 2

(1.5s+ 1)
(11.3.6)

A simulation was run with r(t) = µ(t− 1) and dg(t) = µ(t− 20).
The results of the simulation are shown in Figure 11.8
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Figure 11.8. Performance of a PI control loop when no slew rate limitation exists
(1), with slew rate limitation but no compensation (2) and with
anti wind-up for slew rate limitation (3)

In Figure 11.8, the curve labelled 1, describes the performance of the nominal
design (no slew rate limitation). Curve 2 describes the control performance for the
plant with slew rate limitation, but a linear controller. Finally, curve 3 describes the
loop performance for the slew rate limited plant and the anti wind-up PI controller.
The comparison of curves 2 and 3 verifies the advantage of using the non linear
implementation for the controller with anti wind-up protection.

The reader can evaluate robustness of the scheme and other design ideas using
the SIMULINK file slew1.mdl.
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11.3.1 Interpretation in terms of conditioning

We next give an alternative motivation for the structure developed in the last sec-
tion. This alternative point of view is called conditioning. Here we ask the following
question: What conditioned set-point r would have avoided producing an input û
beyond the limits of saturation in the first place?

In this subsection we will show that the anti wind-up strategy developed above
is equivalent to conditioning, so that u(t) = û(t) at all times. Consider a controller
having input e(t) and output u(t). We assume that C(s) is biproper and can hence
be expanded in terms of its strictly proper and feed-through terms as

C(s) = C(s) + c∞ (11.3.7)

where C(s) is strictly proper and c∞ �= 0 is the high frequency gain.
Let us assume that we have avoided saturation up to this point in time by

changing e(t) to e(t). Then, at the current time, we want to choose e so that

C〈e〉 = usat = Sat〈C〈e〉+ c∞e〉 = C〈e〉+ c∞e (11.3.8)

Clearly this requires that we choose e as

e = c−1
∞
[
Sat〈C〈e〉+ c∞e〉 − C e

]
(11.3.9)

This can be represented as in Figure 11.9.

e(t)α

−
Sat〈.〉c∞

e(t)

+

+

γ

usat(t)

β

C(s)

+
c−1
∞

Figure 11.9. Conditioning equivalent for the anti wind-up controller

To show that this is equivalent to the previous design, we note that in Figure 11.9

γ(t) = c−1
∞ C〈usat(t)− γ(t)〉 ⇔ c∞γ(t) = C〈usat(t)〉 − C〈γ(t)〉 (11.3.10)
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From where, on using (11.3.7), we finally obtain

γ(t) = −c∞(C−1 − c−1
∞ )〈usat(t)〉 (11.3.11)

Also

β(t) = c∞e(t)− γ(t) = c∞
(
e(t)− (C−1 − c−1

∞ )〈usat(t)〉
)

(11.3.12)

and

usat(t) = Sat〈β(t)〉 (11.3.13)

and so using (11.3.12), we finally obtain

usat(t) = Sat
〈
c∞
(
e(t)− (C−1 − c−1

∞ )〈usat(t)〉
)〉

(11.3.14)

Hence the scheme in Figure 11.9 implements the same controller as that in Figure
11.6.

11.4 State Saturation

As a further illustration of the application of anti-windup procedures, we next show
how they can be applied to maintain state limits.

Say we wish to place a constraint on an internal variable z(t) (we obviously
assume that this constraint does not impede the plant output from reaching the
value prescribed by the reference, in steady state). There may be many practical
reasons why this may be highly desirable. For instance, we may be interested that
a given process variable (or its rate of change) is bounded.

We consider a plant with nominal model given by

Y (s) = Go(s)U(s); Z(s) = Goz(s)U(s) (11.4.1)

We assume we are either able to measure z(t) or estimate it from the available
data u(t) and y(t), using some form of virtual sensor, i.e. we use an observer to
construct an estimate ẑ(t) for z(t). This virtual sensor will depend on the input
u(t) and y(t), and hence can be expressed using Laplace transforms as:

Ẑ(s) = T1z(s)U(s) + T2z(s)Y (s) (11.4.2)

We will now show how this estimate can be used to develop a strategy to achieve
state constraints based on switching between two controllers. One of these con-
trollers (the prime controller) is the standard controller aimed at achieving the
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main control goal, i.e. that the plant output y(t) tracks a given reference, say ry(t).
The task for the secondary controller is to keep the variable z(t) within prescribed
bounds. This is achieved by use of a secondary closed loop aimed at the regulation
of the estimated state, ẑ(t), using a fixed set point.

Our strategy will be to switch between the primary and secondary controller.
However, it can be seen that there is a strong potential here for wind-up since one
of the two controllers will at any one time will be running in open loop. We will
thus implement this in ant-windup form.

For simplicity of presentation, we assume that a bound is set upon |z(t)|, i.e.
that z(t) is symmetrically bounded.

The general structure of the proposed control scheme is shown in Figure 11.10
on the facing page.

This strategy has the following features:

(i) The switching between the two controllers operates according to a policy based
on the value of |z(t)|. The switching is performed by the block W〈.〉

(ii) Both controllers have been implemented as in Figure 11.6. Thus, the prime
(linear) controller has a transfer function, Cy(s), given by

Cy(s) =
cy∞

1 + cy∞Hy(s)
; Hy(s) = [Cy(s)]−1 − c−1

y∞ (11.4.3)

Analogously, the secondary (linear) controller has a transfer function, Cz(s),
given by

Cz(s) =
cz∞

1 + cz∞Hz(s)
; Hz(s) = [Cz(s)]−1 − c−1

z∞ (11.4.4)

Both controllers are designed so as to achieve satisfactory performance in the
control of y(t) and z(t) respectively. We also assume that Cy(s) and Cz(s)
are minimum phase biproper transfer functions. This implies that Hy(s) and
Hz(s) are stable transfer functions.

(iii) Plant input saturation may be accounted for, through the block Sat〈◦〉. Anti
wind-up protection is given to both controllers, by ensuring that each dynamic
block (i.e. Hy(s) andHz(s)) is driven by the true plant input, no matter which
controller is active in controlling the real plant.

One can envisage different strategies for specifying the switching law. Two
possibilities are considered below.
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ẑ(t)

rz

ry(t)
cy∞

cz∞

y(t)
Sat〈.〉

Abs〈.〉

Plant

Sign〈.〉

W〈.〉

Virtual

+ +

Figure 11.10. Switching strategy for state saturation

11.4.1 Substitutive switching with hysteresis

A simple approach is to transfer the generation of the real plant input, u(t), from
one controller to the other, in such a way that, at any time, u(t) is determined by
either uy(t) or uz(t).

If we aim to keep |z(t)| bounded by a known constant zsat > 0, then this
approach can be implemented using a switch with hysteresis, where the switching
levels, zl and zh, are chosen as 0 < zl < zh < zsat.

When the state controller is in charge, the loop is driven by a set point zsp,
given by

zsp(t) = sign〈z(t)〉rz where 0 < rz < zl < zsat (11.4.5)

In this scheme, the secondary controller Cz(s) takes over from the primary
controller Cy(s) when |z(t)| grows beyond zh. The control reverts to the original
controller Cy(s) when |z(t)| falls below zl. We observe that this latter transition is
made possible by the choice (11.4.5).
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11.4.2 Weighted switching

A switching strategy which is an embellishment of the one described in subsection
§11.4.1 is described next. It also relies on the use of the switching levels zl and zh,
but with the key difference that now the (unsaturated) plant input u(t) is a linear
combination of uy(t) and uz(t), i.e.

u(t) = Sat〈λuz(t) + (1 − λ)uy(t)〉 (11.4.6)

where λ ∈ [0, 1] is a weighting factor. One way of determining λ would be:

λ =




0 for |z(t)| ≤ zl

|z(t)| − zl
zh − zl

for zh > |z(t)| ≥ zl

1 for |z(t)| > zh

(11.4.7)

This strategy is illustrated in the following example.

Example 11.4. Consider a plant with a model as in (11.4.1), where

Go(s) =
16

(s+ 2)(s+ 4)(s+ 1)
; Goz(s) =

16
(s+ 2)(s+ 4)

(11.4.8)

The reference is a square wave of unity amplitude and frequency 0.3[rad/s]. It
is desired that the state z(t) does not go outside the range [−1.5; 1.5]. Furthermore,
the plant input saturates outside the range [−2; 2].

For this plant, the primary and secondary controller are designed to be

Cy(s) =
90(s+ 1)(s+ 2)(s+ 4)
16s(s2 + 15s+ 59)

; Cz(s) =
16(3s+ 10)(s+ 4)

s(s+ 14)
(11.4.9)

The basic guidelines used to develop the above designs is to have the secondary
control loop faster than the primary control loop, so that the state z(t) can be quickly
brought within the allowable bounds.

The virtual sensor for z(t) is actually based on a linear observer designed to have
poles to the left of −10 (see Chapter 18). After some simple trials, the following
parameters were chosen for the switching strategy.

zl = 1.2; zh = 1.5; zsp = 0.9; (11.4.10)
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Figure 11.11. Process variable z(t) with state control saturation (zc) and with-
out state control saturation (zu).

The performance of the loop is shown in Figure 11.11, where a comparison is
made between the evolution of the state z(t) with and without the switching strategy.

The effect of the switching strategy on the plant output is shown in Figure 11.12.
Figure 11.12 shows a predictably slightly slower control of the plant output, due

to the limitations imposed on the state z(t).
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Figure 11.12. Plant output with (yc) and without (yu) state control saturation.

The evolution of the weighting factor λ(t) is shown in Figure 11.13.
Figure 11.13 shows that the strategy uses a weight which does not reach its

maximum value, i.e. the upper level zh is never reached.
✷✷✷

The reader is invited to try different designs using the SIMULINK schematic in
file newss.mdl. The observer in this schematic includes the possibility of step like
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Figure 11.13. Weighting factor behavior.

input disturbances.

11.5 Introduction to Model Predictive Control

Another class of strategies for dealing with constraints is the, so called, model
predictive control (mpc) algorithms. The essential idea in these algorithms is to
formulate controller design as an on-line receding horizon optimization problem
which is solved (usually by quadratic programming methods) subject to the given
hard constraints. The idea has been widely used in the petro-chemical industries
where constraints are prevalent. Until recently, mpc and anti wind-up strategies
were considered alternative and quite separate schemes for solving the same prob-
lem. However, it has recently been recognized (perhaps not unsurprisingly) that
the schemes are very closely related and are sometimes identical. We will give a
more complete treatment of mpc in Chapter 23.

11.6 Summary

• Constraints are ubiquitous in real control systems

• There are two possible strategies for dealing with them

◦ limit the performance so that the constraints are never violated
◦ carry out a design with the constraints in mind

• Here we have given a brief introduction to the latter idea

• A very useful insight is provided by the arrangement shown in Figure 11.2 on
page 293, which can be set in a general inversion set-up:
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=

x−1
∞

X − x∞

X−1+

−

Figure 11.14. Implicit inversion X−1

◦ X is a biproper, stable, minimum-phase transfer function

◦ x∞ is the high-frequency gain of X : x∞ = lims→∞ X(s)

◦ given that X is biproper, then x∞ �= 0 and hence x−1∞ is finite

◦ the overall system is equivalent to X−1

◦ the fascinating and useful point about the implementation in Figure 11.14
is that the circuit effectively inverts X without that X was inverted
explicitly

• Here we have used this idea to describe ant-windup mechanisms for achieving
input saturation and slew rate limits

• We have also shown how state constraints might be achieved

• In later chapters we will use the same idea for many other purposes
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11.8 Problems for the Reader

Problem 11.1. Consider the following controller transfer functions, C(s)

(a)
9(s+ 1)

s
(b)

(12(s2 + 5s+ 4)
s(s+ 3)

(c)
8s+ 7
s(s− 4)

(d)
6(s− 1)(s+ 7)

s(s+ 8)
Obtain, for each case, the form given in Figure 11.2 on page 293. Discuss,

specially, cases c) and d).

Problem 11.2. In a feedback loop, with plant input saturation, the controller has
a strictly proper transfer function given by

C(s) =
12(s+ 4)
s(s+ 2)

(11.8.1)

Since the use of the anti wind-up strategy developed in this chapter requires a
biproper controller, it is suggested to make this controller biproper by adding a
large zero, leading to a modified transfer function Cm(s) given by

Cm(s) =
12(s+ 4)(τs+ 1)

s(s+ 2)
(11.8.2)

where τ � 1.
Analyze the proposal.

Problem 11.3. Consider a proper controller (with integral action) having a trans-
fer function, C(s), given by

C(s) =
P (s)
sL(s)

=
KI

s
+

P (s)
L(s)

(11.8.3)

It is suggested, as an anti wind-up mechanism, to freeze the integral action of
the controller while the controller output is saturated.

11.3.1 Implement this idea to deal with the same control problem proposed in ex-
ample 11.1. Use SIMULINK file piawup.mdl.

11.3.2 Is this mechanism, in general, equivalent to that proposed in section §11.3?
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Problem 11.4. Consider a plant with nominal model given by

Go(s) =
1

(s+ 1)2
(11.8.4)

The loop has a unit step reference and output disturbances showing abrupt changes
with magnitude 0.5. The plant input, u(t), is constrained to the interval [−2, 2].
11.4.1 Design a linear, biproper controller, such that the closed loop is dominated

by poles located at −0.7ωn ± j0.7ωn.

11.4.2 Choose ωn so that the plant input never saturates.

11.4.3 Choose ωn so that the plant input saturates for a given combination of ref-
erence and disturbances. Evaluate the performance of the loop under this
condition.

11.4.4 Implement the anti wind-up mechanism and compare the loop performance
with the case with no special anti wind-up mechanism.

Problem 11.5. Devise a circuit similar to that shown in Figure 11.5 that would
allow you to constrain the acceleration (i.e. rate of change of the rate of change) of
an input signal.

Problem 11.6. Extend your answer to Problem 11.5 so that you can simultane-
ously constrain acceleration, velocity and amplitude of the input.

Problem 11.7. Test your circuit by repeating Example 11.3 where u(t) is required
to satisfy acceleration, velocity and amplitude constraints.

Problem 11.8. An alternative circuit that is sometimes used to protect against
ant-windup is shown in Figure 11.15, where g is a static gain.

Explain the operation of this circuit.

Problem 11.9. Test the circuit given in Problem 11.8 and compare its perfor-
mance with the results given, for example in Example 11.2.
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Figure 11.15. Alternative anti-windup scheme

Problem 11.10. Say that C(s) is a simple integral controller of the form

C(s) =
k

s
(11.8.5)

11.10.1 Turn C(s) into a biproper controller by adding a term (εs + 1) to the
numerator for ε small.

11.10.2 Write the modified biproper controller as

[C
′
(s)]−1 = [C

′
∞]−1 + {[C ′

(s)]−1 − [C
′
∞]−1} (11.8.6)

11.10.3 Hence show that, when the limiter is operating, the circuit of Figure 11.6
leads to

û = u+
{
kεe−

[
εs

εs+ 1

]
u

}
(11.8.7)

Problem 11.11. Consider again the simple integral controller given in Problem
11.10.

11.11.1 By placing the controller in the feedback circuit given in Figure 11.15 show
that

û = u+
{

kε

(εs+ 1)
e−
[

εs

εs+ 1

]
u

}
(11.8.8)

where ε = 1
gk
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11.11.2 Compare this result with the result found in Problem 11.10.

Problem 11.12. Yet another alternative scheme for anti-windup protection of
simple controllers is to freeze the integrator output when the control is saturated.

Compare this answer with the results found in Problems 11.10 and 11.11 for
small ε.

Problem 11.13. (This problem was suggested by a colleague from industry. It is
a slightly harder problem.)

11.13.1 Consider the situation illustrated in Figure 11.16

Figure 11.16. Cascaded actuator control

The actuator is required to have constrained amplitude and slew rate. How-
ever, the actuator is itself controlled via a cascaded loop whose output u drives
the actuator system. Say that the transfer function from input u to actuator
position ya is given by

Ya(s)
U(s)

=
b

s2 + a1s+ ao
(11.8.9)

We assume that the states ya and ẏa are measured. Also, we note that con-
straints on ya and ẏa correspond to state constraints.

Say that the (cascade) loop bandwidth is wb. Let û denote a demanded input
and choose ∆ # 1

5Wb
.

Our objective is to construct an anti-windup circuit for the problem.

One way to proceed is as follows:
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You can think of bû− a1ẏa − aoya as a demand for actuator acceleration, ÿa.
Thus, if you form

ˆ̇ya = ẏa +∆[bû− a1ẏa − aoya] (11.8.10)

then you can think of this as a prediction of demanded actuator velocity.

You can then constrain this velocity to produce (ˆ̇ya)cons
Similarly,

ŷa = ya +∆(ˆ̇ya)cons (11.8.11)

can be thought of as a prediction of the demanded actuator position.

We can then constrain ŷa, to produce (ŷa)cons.

The above steps can now be reversed to evaluate a control input which is
consistent with the constraints on ya and ẏa. Thus reversing (11.8.11) gives

(ˆ̇y
′

a)cons =
1
∆
[(ŷa)cons − ya] (11.8.12)

Also, reversing (11.8.10) gives the allowed input û
′

as

û
′
=

[ 1
∆ [(ˆ̇y

′

a)cons − ẏa] + a1ẏa + aoya]
b

(11.8.13)

Equations (11.8.10) to (11.8.13) give a special form of input limiter.

Build a Simulink form of this limiter.

11.13.2 How would you combine the limiter described above with an anti-windup
form of the controller C(s) so that û is also limited.

11.13.3 Test your design using the following actuator transfer function

G(s) =
2

s2 + 2s+ 2
(11.8.14)

together with the controller
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C(s) =
4(s2 + 2s+ 2)

s(s+ 4)
(11.8.15)

Choose ∆ = 0.1 and examine the performance for a unit step input subject to
the constraints

|ẏa| ≤ 0.5 (11.8.16)
|ya| ≤ 1 (11.8.17)
|u| ≤ 1.5 (11.8.18)

(Aside: Actually the above design can be viewed as a procedure for predicting
two steps ahead so as to “see” the effect of the current demanded control on the
future states. If these states are constrained, then the input is modified so that the
constraints are not violated. This leads to a special form of input limiter. The
control law is then implemented in a feedback arrangement as in Figure 11.6 so that
the states of the controller are fed by the actual plant input which is the output of
this limiter.

This is one possible way to include state constraints into anti-windup circuits.
The key idea being used here is seen to be prediction of the future state response.
Indeed, we will see in Chapter 23, that the idea described above of predicting ahead
to evaluate the impact of the input on future state constraints is the key idea in
model predictive control.)
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DIGITAL COMPUTER
CONTROL
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PREVIEW

So far in the book we have treated only continuous time (or analogue) control
systems. However, the reality is that almost all modern control systems will be
implemented in a digital computer of one form or another. Thus, in this fourth part
of the book, we will describe the essential differences between analogue and digital
control. Some authors devote entire books to this topic. This tends to highlight
the differences between analogue and digital control. However, our perspective
is quite different. We want to show the reader that these topics actually have a
remarkably close connection. We show, for example, that all properly formulated
digital controllers converge to an underlying continuous controller as the sampling
period goes to zero. We also point to the issues where digital and analogue control
are different - especially at slow sampling rates.
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Chapter 12

MODELS FOR SAMPLED
DATA SYSTEMS

12.1 Preview

Modern control systems are almost always implemented in a digital computer. It is
thus important to have an appreciation of the impact of implementing a particular
control law in digital form. In this chapter we provide the fundamental modeling
tools necessary to describe the sampled response of continuous-time plants.

The main topics included are:

• Discrete-time signals

• Z–transforms and Delta transforms

• Sampling and reconstruction

• Aliasing and anti-aliasing filters

• Sampled-data control systems

It is common in many courses on control to either treat sampling at a much later
point or even to move it to a separate course specifically devoted to digital control.
However, our view is that there is so much in common between continuous and
digital control, that one can introduce sampling ideas early and then, essentially,
present both ideas simultaneously.

12.2 Sampling

Computers work with sequences of numbers rather than continuous functions of
time. To connect an analogue plant to a computer one therefore needs to sample the
output of the system (thus converting a continuous time function into a sequence of
numbers). We will use the notation {f [k]} to denote a sequence f [0], f [1], f [2], . . . .
When {f [k]} arises from sampling a continuous time signal, f(t), at a fixed period
∆ we will write

317
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f [k] = f(k∆) k = 0, 1, 2, . . . (12.2.1)

From the point of view of control we are interested, among other things, in
the process of coding a continuous time signal into such a sequence of numbers
(the sampling process) and of building a continuous time signal from a sequence of
numbers (the reconstruction process).

There will always be loss of information produced by sampling. However, the
extent of this loss depends on the sampling method and the associated parameters.
For example, assume that a sequence of samples is taken of a signal f(t) every ∆
seconds, then the sampling frequency needs to be large enough in comparison with
the maximum rate of change of f(t). Otherwise, high frequency components will
be mistakenly interpreted as low frequencies in the sampled sequence. We illustrate
by a simple example:

Example 12.1. Consider the signal

f(t) = 3 cos 2πt+ cos
(
20πt+

π

3

)
(12.2.2)

We observe that if the sampling period ∆ is chosen equal to 0.1[s], then

f(k∆) = 3 cos(0.2kπ) + cos
(
2kπ +

π

3

)
(12.2.3)

= 3 cos(0.2kπ) + 0.5 (12.2.4)

from where it is evident that the high frequency component has been shifted to a
constant, i.e. the high frequency component appears as a signal of low frequency
(here zero). This phenomenon is known as aliasing.

The result is depicted in Figure 12.1 where the sampled signal is described by a
sequence of small circles.

We can see in Figure 12.1 that the sampled high frequency component appears
as a d.c. upwards shift of the low frequency component, as predicted by (12.2.4).

✷✷✷

To mitigate the effect of aliasing the sampling rate must be high relative to
the rate of change of the signals of interest. A typical rule of thumb is to require
that the sampling rate be 5 to 10 times the bandwidth of the system. If this rule
is violated, the observed samples may be a very poor reflection of the underlying
continuous time signal. This issue will be studied in detail later in the book.

Even when the above rule of thumb is followed, one needs to protect the sampling
process from other contaminating signals with high frequency content, such as noise.
To avoid these signals being aliased to low frequencies, it is common practice to place
an analogue filter prior to the sampling process. This filter is called an anti-aliasing
filter since its purpose is to avoid aliasing of high frequency noise signals to lower
frequencies by the sampling process.
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Figure 12.1. Aliasing effect when using low sampling rate.

12.3 Signal Reconstruction

The output of a digital controller is another sequence of numbers {u[k]} which
are the sample values of the intended control signal. These sample values need to
be converted back to continuous time functions before they can be applied to the
plant. Usually, this is done by interpolating them into a staircase function u(t) as
illustrated in Figure 12.2.

Computer controlled systems are typically analyzed at the samples only (the
danger in this approach, as well as a more general description will be studied in
Chapter 14). In the simple at-sample only case, the plant description is transformed
into one which relates the sampled input sequence {u[k]} to the sampled output
sequence {y[k]}. Thus we need convenient ways of describing dynamic models that
relate one sequence (the input) to another sequence (the output).
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Figure 12.2. Staircase reconstruction
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12.4 Linear Discrete Time Models

A useful discrete time model of the type referred to above is the linear version of
the high order difference equation model of section §3.8. In the discrete case, this
model takes the form:

y[k + n] + an−1y[k + n− 1] + · · · + a0y[k] (12.4.1)

= bn−1u[k + n− 1] + · · · + b0u[k]

Example 12.2. We consider a so-called PI controller which generates the control
sequence, u[k], as the sum of a term proportional to the control error and a term
proportional to the accumulation (integral) of the error. This can be modeled as

e[k + 1] = e[k] + c1e[k] (12.4.2)
u[k] = c2e[k] + e[k] (12.4.3)

Shifting one step forward in (12.4.3) gives

u[k + 1] = c2e[k + 1] + e[k + 1] (12.4.4)

Subtracting (12.4.3) from (12.4.4) and using (12.4.2) gives the following high
order difference equation model:

u[k + 1]− u[k] = c2 (e[k + 1]− e[k]) + e[k + 1]− e[k] (12.4.5)
= c2 (e[k + 1]− e[k]) + c1e[k]

In the notation of (12.4.1) we have a0 = −1, b1 = c2, b0 = c1−c2. Note that the
extra term c2e[k+1] appears on the right hand side since, in this case, the controller
is biproper (the left and right hand sides of (12.4.5) have the same order). Also note
that here, {u[k]} is the output and {e[k]} the input.

✷✷✷

12.5 The Shift Operator

In writing down discrete time models, we will find it convenient to use operator
notation to denote the forward shift operation. Thus we define:

Forward shift operator

q(f [k]) � f [k + 1] (12.5.1)
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In terms of this operator, the model (12.4.1) becomes:

qny[k] + an−1q
n−1y[k] + · · · + a0y[k] = bmq

mu[k] + · · · + b0u[k] (12.5.2)

For a discrete time system it is also possible to have discrete state space models.
In the shift domain these models take the form:

qx[k] = Aqx[k] +Bqu[k] (12.5.3)
y[k] = Cqx[k] +Dqu[k] (12.5.4)

where {x[k]}, {u[k]} and {y[k]} are the state, input and output sequences respec-
tively.

The solution to equations (12.5.3) and (12.5.4) is easily evaluated by iterating
(12.5.3)

x[k] = Ak
qx(0) +

k−1∑
l=0

Al
qBqu[k − l − 1] (12.5.5)

y[k] = CqAk
qx(0) +Cq

k−1∑
l=0

Al
qBqu[k − l − 1] (12.5.6)

Example 12.3. Consider the discrete PI controller of Example 12.2 on the facing
page. Actually (12.4.2) and (12.4.3) were already in discrete state space form where

Aq = 1; Bq = c1; Cq = 1; Dq = c2 (12.5.7)

✷✷✷

12.6 Z–Transform

In the same way that Laplace Transforms turn differential equations into algebraic
equations, we can use Z–transforms to turn difference equations into algebraic equa-
tions.

Consider a sequence {y[k]; k = 0, 1, 2, . . .}. Then the Z–transform pair associ-
ated with {y[k]} is given by

Z [y[k]] = Y (z) =
∞∑
k=0

z−ky[k] (12.6.1)

Z−1 [Y (z)] = y[k] =
1
2πj

∮
zk−1Y (z)dz (12.6.2)
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where the contour of integration is a circle with center at the origin and with radius
ρ.

Y (z) is referred to as the Z–transform of y(t). The transform pair is well defined
if there exists ρ ∈ R+ such that

|y[k]| < ρk ∀k ≥ 0 (12.6.3)

Z–transform of various common signals are shown in Table 12.1 on the next
page. Some useful properties of the Z–transform are summarized in Table 12.2 on
page 324.

Example 12.4. Consider the discrete PI controller of Example 12.2 and say that
u[0] = 0 and e[k] is a unit step applied at k = 0. Then taking the Z-transform in
(12.4.5) gives

zU(z)− zu[0]− U(z) = c2 (zE(z)− E(z)− ze[0]) + c1E(z)

Hence1

U(z) =
c2z + (c1 − c2)

(z − 1)
E(z); E(z) =

z

z − 1
(12.6.4)

U(z)
z

=
c1

(z − 1)2
+

c2
z − 1

; U(z) =
c1z

(z − 1)2
+

c2z

z − 1
(12.6.5)

Hence u[k] = c1k + c2 ; k ≥ 0.

Z-transform can be used to convert linear difference equations into algebraic
equations

12.7 Discrete Transfer Functions

Taking Z-transform on each side of the high order difference equation model (12.5.2)
leads to

Aq(z)Yq(z) = Bq(z)Uq(z) + fq(z, xo) (12.7.1)

where Yq(z), Uq(z) are the Z–transform of the sequences {y[k]} and {u[k]} respec-
tively.

1Note that u[0] = c2e[0]
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f [k] Z [f [k]] Region of convergence

1
z

z − 1
|z| > 1

δK [k] 1 |z| > 0

k
z

(z − 1)2
|z| > 1

k2 z(z − 1)
(z − 1)3

|z| > 1

ak
z

z − a
|z| > |a|

kak
az

(z − a)2
|z| > |a|

cos kθ
z(z − cos θ)

z2 − 2z cos θ + 1
|z| > 1

sinkθ
z sin θ

z2 − 2z cos θ + 1
|z| > 1

ak cos kθ
z(z − a cos θ)

z2 − 2az cos θ + a2
|z| > a

ak sin kθ
az sin θ)

z2 − 2az cos θ + a2
|z| > a

k cos kθ
z(z2 cos θ − 2z + cos θ)

z2 − 2z cos θ + 1
|z| > 1

µ[k]− µ[k − ko], ko ∈ N
1 + z + z2 + . . .+ zko−1

zko−1
|z| > 0

Table 12.1. Z–transform examples
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f [k] Z [f [k]] Names

l∑
i=1

aifi[k]
l∑

i=1

aiFi(z) Partial fractions

f [k + 1] zF (z)− zf(0) Forward shift

k∑
l=0

f [l]
z

z − 1
F (z) Summation

f [k − 1] z−1F (z) + f(−1) Backward shift

y[k − l]µ[k − l] z−lY (z) Unit step

kf [k] −z dF (z)
dz

1
k
f [k]

∫ ∞

z

F (ζ)
ζ

dζ

lim
k→∞

y[k] lim
z→1

(z − 1)Y (z) Final value theorem

lim
k→0

y[k] lim
z→∞ Y (z) Initial value theorem

k∑
l=0

f1[l]f2[k − l] F1(z)F2(z) Convolution

f1[k]f2[k]
1
2πj

∮
F1(ζ)F2

(
z

ζ

)
dζ

ζ
Complex convolution

(λ)kf1[k] F1

(
z
λ

)
Frequency scaling

Table 12.2. Z–transform properties. Note that Fi(z) = Z [fi[k]], µ[k] denotes,
as usual, a unit step, y[∞] must be well defined and the convolution
property holds provided that f1[k] = f2[k] = 0 for all k < 0.
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Aq(z) = zn + an−1z
n−1 + · · ·+ ao (12.7.2)

Bq(z) = bmz
m + bm−1z

m−1 + · · ·+ bo (12.7.3)

and fq(z, xo) is an initial condition term, analogous to f(s, xo) in (4.5.1).
Equation (12.7.1) can be rewritten as

Yq(z) = Gq(z)Uq(z) +
fq(z, xo)
Aq(z)

(12.7.4)

where

Gq(z)
�
=

Bq(z)
Aq(z)

(12.7.5)

is called the discrete (shift form) transfer function. As in the continuous-time
case, the transfer function uniquely determines the input–output behavior at the
discrete sampling times, for zero initial conditions.

We can also use the Z–transform to obtain the transfer function corresponding to
a discrete state space model in shift form. Taking Z–transforms in (12.5.3), (12.5.4)
and ignoring initial conditions this yields:

Gq(z) = Cq(zI−Aq)−1Bq +Dq (12.7.6)

The role of discrete transfer functions in describing the dynamic behavior of
systems parallels that of transfer functions for continuous time systems. In partic-
ular, the location of the poles (roots of Aq(z)) determines the natural modes of the
system. Although continuous and discrete transfer functions share many common
concepts, there are some special features of the discrete time case. This is illustrated
in the following two examples.

Example 12.5 (Poles at the origin–finite settling time). Compute the unit step
response of a discrete time system with transfer function

Gq(z) =
0.5z2 − 1.2z + 0.7

z3
(12.7.7)

Solution

The Z-transform of the system response, y[k], to an input u[k] is given by

Yq(z) =
0.5z2 − 1.2z + 0.9

z3
Uq(z) = 0.5z−1Uq(z)− 1.2z−2Uq(z) + 0.9z−3Uq(z)

(12.7.8)
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Hence

y[k] = 0.5u[k − 1]− 1.2u[k − 2] + 0.9u[k − 3] (12.7.9)

Then, when u[k] = µ[k], the system response is given by

y[k] =



0 k = 0
0.5 k = 1
−0.7 k = 2
0.2 ∀k ≥ 3

(12.7.10)

The key aspect of this system is that its step response has a finite settling
time. This is due to the poles at the origin..

✷✷✷

Example 12.6 (Stable negative real poles–ringing). Find the unit step response
of a system with transfer function given by

Gq(z) =
0.5

z + 0.8
(12.7.11)

Solution

The Z-transform of the step response, y[k], is given by

Yq(z) =
0.5

z + 0.5
Uq(z) =

0.5z
(z + 0.5)(z − 1)

(12.7.12)

Expanding in partial fractions (use MATLAB command residue) we obtain

Yq(z) =
z

3(z − 1)
− z

3(z + 0.5)
⇐⇒ y[k] =

1
3
(
1− (−0.5)k)µ[k] (12.7.13)

Note that the response contains the term (−0.5)k, which corresponds to an os-
cillating behavior (known as ringing). In discrete time this can occur (as in the
example) for a single negative real pole whereas, in continuous time, a pair of com-
plex conjugate poles are necessary to produce this effect.

This behavior can be appreciated in Figure 12.3, where the step response (12.7.13)
is shown

✷✷✷

12.8 Discrete Delta Domain Models

The forward shift operator, q, defined in section §12.5 is the most commonly used
discrete time operator. However, in some applications the forward shift operator
can lead to difficulties. The reason for these difficulties are explained below.



Section 12.8. Discrete Delta Domain Models 327

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Time 

S
te

p 
re

sp
on

se

Figure 12.3. Unit step response of a system exhibiting ringing response

Although there is a clear resemblance between the differential operator model of
equation (4.2.4) and the shift operator model of equation (12.5.2), there is a subtle,
but far reaching, difference between these representations. To illustrate, consider
the first order continuous time equation

ρy(t) + y(t) =
dy(t)
dt

+ y(t) = u(t) (12.8.1)

and the discretized shift operator equation

a2qy(tk) + a1y(tk) = b1u(tk) (12.8.2)

Expanding the differential explicitly as a limiting operation in (12.8.1), we obtain

lim
∆→0

(
y(t+∆)− y(t)

∆

)
+ y(t) = u(t) (12.8.3)

If we now compare (12.8.1) to the expanded form of (12.8.2)

a2y(t+∆) + a1y(t) = b1u(t); where ∆ = tk+1 − tk (12.8.4)

we then see that the fundamental difference between continuous and discrete time
is tangibly captured by the limiting operation in (12.8.3). Beyond that, however,
we notice that (12.8.3) is fundamentally based on a relative and time scaled
displacement y(t+∆)−y(t)

∆ from the absolute position y(t), whereas (12.8.4) models
the same dynamics by the two absolute positions y(t) and y(t + ∆). In later
chapters we will see that this subtle difference prevents the discrete time results



328 Models for Sampled Data Systems Chapter 12

based on shift operators from having any sensible relationship to the corresponding
continuous time results as ∆ → 0.

This fundamental difficulty is avoided by use of an alternative operator; namely
the Delta operator:

δ (f(k∆)) � f((k + 1)∆)− f(k∆)
∆

(12.8.5)

where ∆ denotes the sampling period.
For sampled signals, an important feature of this operation is the observation

that

lim
∆→0

[δ{f(k∆)}] = ρ(f(t)) (12.8.6)

i.e. as the sampling time goes to zero, the δ operator tends to the differential
operator. Note, however, that no approximations will be involved in employing
the delta operator for finite sampling periods since we will derive exact model
descriptions relevant to this operator at the given sampling rate.

Example 12.7. Consider the PI controller of Example 12.4 on page 322 and let
∆ denote the sampling period. Dividing both sides of (12.4.5) by ∆ leads to the
following exact Delta domain form of the controller:

δu(k∆) = c2δe(k∆) +
c1
∆
e(k∆) (12.8.7)

✷✷✷

In delta form, the general discrete model (12.4.1) can be expressed as

δny[k] + a´n−1δ
n−1y[k] + · · · + a´0y[k] = b´mδ

mu[k] + · · · + b´0u[k] (12.8.8)

Note that there is a simple one to one relationship between the coefficients(
ai, bi
)
in (12.4.1) and

(
a´i, b

´
i

)
in (12.8.8).

Discrete time state space models can also be described in the delta domain. The
appropriate state space model format is

δx[k] = Aδx[k] +Bδu[k] (12.8.9)
y[k] = Cδx[k] +Dδu[k] (12.8.10)

We can readily convert a discrete state model, given in shift form to one in delta
form (and vice versa). For example, the model (12.5.3), (12.5.4) becomes
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qx[k]− x[k]
∆

=
(Aq − I)

∆
x[k] +

Bq

∆
u[k] (12.8.11)

y[k] = Cqx[k] +Dqu[k]

This model is as in (12.8.9), (12.8.10) where

Aδ =
Aq − I
∆

; Bδ =
Bq

∆
; Cδ = Cq; Dδ = Dq (12.8.12)

Example 12.8. For the PI controller of example 12.7 on the facing page we have

Aδ = 0, Bδ =
c1
∆
, Cδ = 1, Dδ = c2 (12.8.13)

✷✷✷

The solution of (12.8.9), (12.8.10) is easily seen to be

x[k] = (I +Aδ∆)kx[0] +
k−1∑
l=0

∆(I +Aδ∆)lBδu[k − l − 1] (12.8.14)

y[k] = Cδ(I +Aδ∆)kx[0] +Cδ

k−1∑
l=0

∆(I +Aδ∆)lBδu[k − l− 1] +Dδu[k]

(12.8.15)

12.9 Discrete Delta Transform

As can be seen from by comparing the results in Table 12.1 with those in Table
4.1, expressions in Laplace and Z–transform do not exhibit an obvious structural
equivalence. Intuitively, we would expect such an equivalence to exist when the
discrete sequence is obtained by sampling a continuous time signal. In particular
one would expect that the Laplace Transform should approach the Z–transform
as the sampling frequency increases. We will show that this indeed happens if we
use the alternative delta operator. To show how this occurs, consider the sequence
{y[k] = y(k∆)} arising from sampling a continuous time signal y(t) every ∆ seconds.

Recall that the Laplace Transform is given by

L [y(t)] =
∫ ∞

0−
e−sty(t)dt (12.9.1)

It is natural to seek a discrete version of this Laplace Transform by using the
Riemann sum
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Yδ(s) =
∞∑
k=0

e−stky(tk)∆ tk = k∆ (12.9.2)

For reasons to be motivated presently, it is also desirable to invoke the isomorphic
change of argument

es∆
�
= 1 + γ∆ (12.9.3)

γ =
es∆ − 1

∆
(12.9.4)

In terms of the argument γ, we then define the Discrete–Delta Transform
pair

D [y(k∆)]
�
= Yδ(γ) =

∞∑
k=0

(1 + γ∆)−ky(k∆)∆ (12.9.5)

D−1 [Yδ(γ)] = y(k∆) =
1
2πj

∮
(1 + γ∆)k−1Yδ(γ)dγ (12.9.6)

Discrete Delta Transform can be related to Z-transform by noting that

Yδ(γ) = ∆Yq(z)
∣∣∣
z=∆γ+1

(12.9.7)

where Yq(z) = Z [y(k∆)]. Conversely

Yq(z) =
1
∆
Yδ(γ)
∣∣∣
γ= z−1

∆

(12.9.8)

Equations (12.9.7) and (12.9.8) allow us to derive a table of Delta Transforms
from the corresponding Z–Transforms – see Table 12.3. Properties of the Delta
Transform are given in Table 12.4.

A key property of Delta Transforms is that they converge to the associated
Laplace Transform as ∆ → 0, i.e.

lim
∆→0

Yδ(γ) = Y (s)
∣∣∣
s=γ

(12.9.9)

We illustrate by a simple example
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f [k] (k ≥ 0) D [f [k]] Region of Convergence

1
1 + ∆γ

γ

∣∣∣∣γ + 1
∆

∣∣∣∣ > 1
∆

1
∆
δK [k] 1 |γ| < ∞

µ[k]− µ[k − 1]
1
∆

|γ| < ∞

k
1 + ∆γ

∆γ2

∣∣∣∣γ + 1
∆

∣∣∣∣ > 1
∆

k2 (1 + ∆γ)(2 + ∆γ)
∆2γ3

∣∣∣∣γ + 1
∆

∣∣∣∣ > 1
∆

eα∆k α ∈ C
1 + ∆γ

γ − eα∆−1
∆

∣∣∣∣γ + 1
∆

∣∣∣∣ > eα∆

∆

keα∆k α ∈ C
(1 + ∆γ)eα∆

∆
(
γ − eα∆−1

∆

)2
∣∣∣∣γ + 1

∆

∣∣∣∣ > eα∆

∆

sin(ωo∆k)
(1 + ∆γ)ωosinc(ωo∆)

γ2 +∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ + 1
∆

∣∣∣∣ > 1
∆

where sinc(ωo∆) =
sin(ωo∆)
ωo∆

and φ(ωo,∆) =
2(1− cos(ωo∆))

∆2

cos(ωo∆k)
(1 + ∆γ)(γ + 0.5∆φ(ωo,∆))
γ2 +∆φ(ωo,∆)γ + φ(ωo,∆)

∣∣∣∣γ + 1
∆

∣∣∣∣ > 1
∆

Table 12.3. Delta Transform examples
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f [k] D [f [k]] Names

l∑
i=1

aifi[k]
l∑

i=1

aiFi(γ) Partial fractions

f1[k + 1] (∆γ + 1)(F1(γ)− f1[0]) Forward shift

f1[k + 1]− f1[k]
∆

γF1(γ)− (1 + γ∆)f1[0] Scaled difference

k−1∑
l=0

f [l]∆
1
γ
F (γ) Reimann sum

f [k − 1] (1 + γ∆)−1F (γ) + f [−1] Backward shift

f [k − l]µ[k − l] (1 + γ∆)−lF (γ)

kf [k] −1 + γ∆
∆

dF (γ)
dγ

1
k
f [k]

∫ ∞

γ

F (ζ)
1 + ζ∆

dζ

lim
k→∞

f [k] lim
γ→0

γF (γ) Final value theorem

lim
k→0

f [k] lim
γ→∞

γF (γ)
1 + γ∆

Initial value theorem

k−1∑
l=0

f1[l]f2[k − l]∆ F1(γ)F2(γ) Convolution

f1[k]f2[k]
1
2πj

∮
F1(ζ)F2

(
γ − ζ

1 + ζ∆

)
dζ

1 + ζ∆
Complex convolution

(1 + a∆)kf1[k] F1

(
γ − a

1 + a∆

)

Table 12.4. Delta Transform properties. Note that Fi(γ) = D [fi[k]], µ[k] de-
notes, as usual, a unit step, f [∞] must be well defined and the
convolution property holds provided that f1[k] = f2[k] = 0 for all
k < 0.
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Example 12.9. Say that {y[k]} arises from sampling, at period ∆, a continuous
time exponential eβt. Then

y[k] = eβk∆ (12.9.10)

and, from Table (4.9.1)12.3

Yδ(γ) =
1 + γ∆

γ −
[
eβ∆−1

∆

] (12.9.11)

In particular, note that as ∆ → 0, Yδ(γ) → 1
γ − β

which is the Laplace Trans-

form of eβt.

✷✷✷

For our purposes, the key property of Delta Transforms is:

The Delta Transform can be used to convert difference equations into algebraic
equations. The Delta Transform also provides a smooth transition from discrete
to continuous time as the sampling rate increases.

Historically, discrete systems analysis began with the use of the Delta Transform.
However, this subsequently moved to the Z-transform. More recently, there has been
a movement back to the Delta Transform. This has been especially motivated by
the availability of faster computers which allow smaller sampling periods; in which
case the Delta form has major numerical and conceptual advantages as we show
below. Indeed, we conjecture that the reason why Digital Control has been seen
as a separate subject to Continuous Control is, in part, due to misunderstandings
which were associated with the wide spread use of Z-Transforms and shift operators.
These conceptual problems are resolved by the Delta Operation which makes it clear
that Digital and Continuous are actual quite close.

12.10 Discrete Transfer Functions (Delta Form)

Applying the discrete Delta Transform and its difference rule to the high order
difference equation in delta form (12.8.8) we obtain

Aδ(γ)Yδ(γ) = Bδ(γ)Uδ(γ) + fδ(γ, xo) (12.10.1)

where Yδ(γ), Uδ(γ) are the Delta-transforms of the sequences {y[k]} and {u[k]}
respectively;
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Aδ(γ) = γn + a′n−1γ
n−1 + · · ·+ a′o (12.10.2)

Bδ(γ) = b′mγ
m + b′m−1γ

m−1 + · · ·+ b′o (12.10.3)

and where fδ(γ, xo) is an initial condition term, analogous to f(s, xo) in (4.5.1) and
to fq(z, xo) in (12.7.1).

Equation (12.10.1) can be rewritten as

Yδ(γ) = Gδ(γ)Uδ(γ) +
fδ(γ, xo)
Aδ(γ)

(12.10.4)

where

Gδ(γ)
�
=

Bδ(γ)
Aδ(γ)

(12.10.5)

is called the discrete (delta form) transfer function.
We can also use Delta-transfers to derive the transfer function corresponding

to the delta domain state space model given in (12.8.9), (12.8.10). Taking the
Delta-transfers and ignoring initial conditions this yields:

Gδ(γ) = Cδ(γI−Aδ)−1Bδ +Dδ (12.10.6)

12.11 Transfer Functions and Impulse Responses

For each of the three transforms introduced so far, namely, the Laplace Transform,
the Z–transform and the Delta Transform there exists a characteristic signal, which
when transformed yields a value equal to one. These signals are

δD(t) (the Dirac delta function) for the Laplace Transform;
δK [k] (the unit impulse, or Kronecker delta) for the Z–transform;
1
∆δK [k] (the scaled unit impulse) for the Delta Transform.

We then see that the transfer function, in each of the three domains, is the
corresponding transformation of the response of the system to the particular
characteristic signal, with zero initial conditions.

12.12 Discrete System Stability

12.12.1 Relationship to poles

We have seen that the response of a discrete system (in the shift operator) to an
input U(z) has the form:
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Y (z) = Gq(z)U(z) +
fq(z, xo)

(z − α1)(z − α2) · · · (z − αn)
(12.12.1)

where α1 · · · αn are the poles of the system.
We then know, via a partial fraction expansion, that Y (z) can be written as

Y (z) =
n∑

j=1

βjz

z − αj
+ terms depending on U(z) (12.12.2)

where, for simplicity, we have assumed non repeated poles.
The corresponding time response is

y[k] = βj [αj ]
k + terms depending on the input (12.12.3)

Stability requires that [αj ]k → 0,which is the case if |αj | < 1. Hence stability
requires the poles to have magnitude less than 1, i.e. to lie inside a unit circle
centered at the origin.

12.12.2 Delta domain stability

Actually, the delta domain is simply a shifted and scaled version of the Z-Domain.
(As is clear for example from (12.9.7) and (12.9.8).) It follows that the Delta Domain
boundary is a circle of radius 1

∆ centered on − 1
∆ in the γ domain. Note again the

close connection between the continuous s-domain and discrete δ-domain, since the
δ-stability region approaches the s-stability region (OLHP) as ∆ → 0.

12.13 Obtaining Discrete Models for Sampled Continuous Sys-
tems

As mentioned in section §12.2, the controller in most modern control systems is
implemented in a digital computer whereas the process evolves in continuous time.

Thus, our objective in this section is to obtain discrete time models which link
the sampled output of a continuous time system to the sampled input. We first
recall how a digital controller is connected to the continuous time plant.

A typical way of making this interconnection is shown in Figure 12.4.
The Analogue to Digital converter (A/D in the figure) implements the process

of sampling (usually at some fixed period ∆). Anti-aliasing filters may also be
introduced before the samples are taken. The digital to analogue converter (D/A
in the figure) interpolates the discrete control action into a function suitable for
application to the plant input. In practice this is usually achieved by holding the
discrete time signal over the sample period. This is known as a zero order hold. It
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input

Digital
controller

A/D

Plant
output

D/A

Figure 12.4. Digital control of a continuous time plant

leads to the piece-wise constant or stair-case input shown earlier in Figure 12.2 on
page 319.

When a zero order hold is used to construct u(t), then

u(t) = u[k] for k∆ ≤ t < (k + 1)∆ (12.13.1)

Discrete time models typically relate the sampled signal y[k] to the sampled
input u[k]. Also a digital control usually evaluates u[k] based on y[j] and r[j],
where {r(k∆)} is the reference sequence and j ≤ k.

12.13.1 Using continuous transfer function models

We observe that the generation of the staircase signal u(t), from the sequence {u[k]}
can be modeled as in Figure 12.5.

us(t) 1− e−s∆

s∆

u[k] m(t)

ZOH

Figure 12.5. Zero order hold

In Figure 12.5, the impulse sampler generates a Dirac sequence us(t) given by

us(t) =
∞∑

k=−∞
u[k]δ(t− k∆) (12.13.2)

This sequence, when processed through the zero order hold block, ZOH, yields
the staircase signal u(t). It is important to emphasize that the system in Figure 12.5
makes sense only when considered as a whole, since the impulse sampler does not
have any physical meaning.
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Gh0(s)
∆

Go(s)
y(t)us(t)u(k∆)

y(k∆)

∆

Figure 12.6. Discrete time equivalent model with zero order hold

We can now see that the digital controller drives an equivalent discrete time
system as shown in Figure 12.6.

In Figure 12.6 we consider the discrete time system with input u[k] and output
y[k] = y(k∆). We know (see section §12.11) that the transfer function of a discrete
time system, in Z–transform form, is the Z–transform of the output (the sequence
{y[k]}) when the input, u[k], is a Kronecker delta, with zero initial conditions. We
also have, from Figure 12.6, that if u[k] = δK [k], then us(t) = δ(t). If we denote by
Hoq(z) the transfer function from Uq(z) to Yq(z), we then have the following result.

The discrete transfer function in Figure 12.6 satisfies

Hoq(z) = Z [the sampled impulse response of Gh0(s)Go(s)] (12.13.3)

= (1− z−1)Z [the sampled step response of Go(s)] (12.13.4)

(The second line of the above expression can also be derived by noting that the
Kronecker Delta is equivalent to a step up at k = 0, followed by a delayed step
down at k = 1).

The transfer function Hoq(z) is sometimes expressed as [Gh0Go]q. This should
be interpreted as in (12.13.3).

The discrete transfer function is usually known as the pulse transfer function
of the continuous time system. This terminology arises from the fact that a Dirac
delta applied at the input of the zero order sample and hold device translates into a
pulse (unit height and width equal to ∆[s]) at the input of the original continuous
time system.

Example 12.10. Consider the d.c. servo motor problem of Example 3.4 on page 47.
The continuous time transfer function is

Go(s) =
b0

s(s+ a0)
(12.13.5)

Using (12.13.3) we see that
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Hoq(z) =
(z − 1)

z
Z
{
b0
a0
(k∆) − b0

a2
0

+
b0
a2
0

e−δk

}
(12.13.6)

=
(z − 1)
a2
0

{
a0b0z∆
(z − 1)2

− b0z

z − 1
+

b0
z − e−a0∆

}

=

(
b0a0∆+ b0e

−a0∆ − b0
)
z − b0a0∆e−a0∆ − b0e

−a0∆ + b0

a2
0(z − 1)(z − e−a0∆)

✷✷✷

12.14 Using Continuous State Space Models

Next we show how to derive a discrete state space model when a zero hold input is
applied to a continuous time plant (described in state space form). Thus consider
a continuous time plant where the input to the plant, u(t), is generated by a zero-
order-hold from an input sequence {u[k]}. This implies that

u(t) = u[k] for k∆ ≤ t < (k + 1)∆ (12.14.1)

If the plant is described by a continuous time state space model

dx(t)
dt

= Ax(t) +Bu(t) (12.14.2)

y(t) = Cx(t) (12.14.3)

then, using the solution formula (3.7.2), the sampled state response is given by

x((k + 1)∆) = eA∆x(k∆) +
∫ ∆

0

eA(∆−τ)Bu(τ)dτ (12.14.4)

and using (12.14.1) we can write

x((k + 1)∆) = Aqx(k∆) +Bqu(k∆) (12.14.5)

where

Aq = eA∆ (12.14.6)

Bq =
∫ ∆

0

eA(∆−τ)Bdτ (12.14.7)

Also the output is

y(k∆) = Cqx(k∆) where Cq = C (12.14.8)
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12.14.1 Shift form

As usual, the discrete time model (12.14.5)-(12.14.8) can be expressed compactly
using the forward shift operator, q, as

qx[k] = Aqx[k] +Bqu[k] (12.14.9)
y[k] = Cqx[k] (12.14.10)

where

Aq
�
= eA∆ =

∞∑
k=0

(A∆)k

k!
(12.14.11)

Bq
�
=
∫ ∆

0

eA(∆−τ)Bdτ = A−1
[
eA∆ − I

]
if A is nonsingular (12.14.12)

Cq
�
= C (12.14.13)

Dq
�
= D (12.14.14)

12.14.2 Delta form

Alternatively, if we define tk
�
= k∆, then (12.14.4) – (12.14.8) can be expressed in

the delta operator form as

δx(tk) = Aδx(tk) +Bδu(tk) (12.14.15)
y(tk) = Cδx(tk) +Dδu(tk) (12.14.16)

where Cδ = Cq = C, Dδ = Dq = D and

Aδ
�
=

eA∆ − I

∆
(12.14.17)

Bδ
�
= ΩB (12.14.18)

Ω =
1
∆

∫ ∆

0

eAτdτ = I +
A∆
2!

+
A2∆2

3!
+ . . . (12.14.19)

12.14.3 Some comparisons of shift and delta forms

There are several advantages associated with the formulation (12.14.15) over (12.14.9).
For example, we can readily see that for the delta form we have

lim
∆→0

Aδ = A lim
∆→0

Bδ = B (12.14.20)
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where (A,B) are the underlying continuous values.
This coincides with the intuition that a discrete time model should converge to

the underlying continuous time model as the sampling period goes to zero. Similarly,
the left hand side of (12.14.15) could be thought of as a finite difference approxi-
mation to the continuous derivative. These intuitions are lost in the formulation of
(12.14.11) since

lim
∆→0

Aq = I lim
∆→0

Bq = 0 (12.14.21)

Other advantages of the delta format include:

• It can be shown that, under rapid sampling conditions, (12.14.15) is numeri-
cally better conditioned than (12.14.9).

• More fundamentally, (12.14.9) models the absolute displacement of the state
vector in one interval, whereas the underlying continuous model is based on
differentials, that is, infinitesimal increments of the state. This characteristics
is better captured by (12.14.15), which also describes the increment of the
state in one time step.

12.15 Frequency Response of Sampled Data Systems

The idea of frequency response also applies to sampled data systems. Consider a
continuous time system having a zero order hold at the input. The input to the
sample and hold device and the system output are then signals sampled every ∆
seconds. Consider now a sine wave input given by

u(k∆) = sin(ωk∆) = sin
(
2πk

ω

ωs

)
=

1
2j

(
ej2πk

ω
ωs − e−j2πk ω

ωs

)
(12.15.1)

where ωs = 2π
∆ .

Following the same procedure as in the continuous time case (see section §4.9)
we see that the system output response to the input (12.15.1) is

y(k∆) = α(ω) sin(ωk∆+ φ(ω)) (12.15.2)

where

Hq(ejω∆) = α(ω)ejφ(ω) (12.15.3)

or



Section 12.15. Frequency Response of Sampled Data Systems 341

Hδ

(
ejω∆ − 1

∆

)
= α(ω)ejφ(ω) (12.15.4)

and where Hq(z), Hδ(γ) are the discrete system transfer function in z or δ form.
The frequency response of a sampled data system can also be depicted using

Bode diagrams. However, since Hq(ejω∆) is a non rational function of ω, some of
the simple rules for drawing Bode diagrams for continuous time systems do not apply
here. Today, this has lost some of its traditional significance since modern computer
packages provide a direct way to represent graphically the frequency response of
discrete time systems.

A characteristic feature of the frequency response of sampled data systems is
its periodicity (in ω). This property arises from the fact that ejω∆ is periodic in ω
with period 2π/∆. The periodicity naturally holds for the magnitude as well as for
the phase of the frequency response. To illustrate this idea, Figure 12.7 shows the
frequency response of a sampled data system with transfer function

Hq[z] =
0.3

z − 0.7
(12.15.5)

Another feature of particular interest is that the sampled data frequency re-
sponse converges to its continuous counterpart as ∆ → 0 and hence much insight
can be obtained by simply looking at the continuous version. This is exemplified
below.

Example 12.11. Consider the two systems shown in Figure 12.8 on the following
page:

Compare the frequency responses of both systems in the range [0, ωs].

Solution

For System 1 the frequency response is given by

H(jω) � Y (jω)
U(jω)

=
a

jω + a
(12.15.6)

For System 2 the frequency response is given by

Hq(ejω∆) � Yq(ejω∆)
Uq(ejω∆)

= Z
{
Gh0(s)

a

s+ a

}∣∣∣∣
z=ejω∆

=
1− e−a∆

ejω∆ − e−a∆
(12.15.7)

Note that if ω � ωs, a � ωs, i.e. ω∆ � 1 and a∆ � 1, then we can use a first
order Taylor’s series approximation for the exponentials e−a∆ and ejω∆ leading to
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Figure 12.7. Periodicity in the frequency response of sampled data systems.
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Figure 12.8. Continuous and sampled data systems

Hq(jω∆) ≈ 1− 1 + a∆
1 + jω∆− 1 + a∆

=
a

jω + a
= H(jω) (12.15.8)

Hence both frequency responses will asymptotically (in ωs) approach each other.
To illustrate this asymptotic behavior, an error function He(jω) is defined as
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He(jω) = H(jω)−Hq[ejω ] (12.15.9)
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Figure 12.9. Asymptotic behavior of a sampled data transfer function

Figure 12.9 displays the magnitude of the frequency response of He(jω), for two
different values of the sampling period ∆, and for a = 1. We see that for ∆ small,
the continuous and discrete frequency responses are very close indeed.

A complete analysis of this issue, in the framework of digital control, will be
carried out in Chapter 13.

✷✷✷

12.16 Summary

• Very few plants encountered by the control engineer are digital, most are
continuous. That is, the control signal applied to the process, as well as the
measurements received from the process, are usually continuous time.

• Modern control systems, however, are almost exclusively implemented on dig-
ital computers.

• Compared to the historical analog controller implementation, the digital com-
puter provides

◦ much greater ease of implementing complex algorithms,

◦ convenient (graphical) man-machine interfaces,

◦ logging, trending and diagnostics of internal controller and

◦ flexibility to implement filtering and other forms of signal processing
operations.
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• Digital computers operate with sequences in time, rather than continuous
functions in time.

• Therefore,

◦ input signals to the digital controller-notably process measurements -
must be sampled;

◦ outputs from the digital controller-notably control signals - must be in-
terpolated from a digital sequence of values to a continuous function in
time.

• Sampling (see Figure 12.10) is carried out by A/D (analog to digital) convert-
ers.

continuous-time signal

x
x
x
xxxxxxxxx

x
x
x

x

sampled signal

A/D

Analog to digital converter

Figure 12.10. The result of sampling

• The converse, reconstructing a continuous time signal from digital samples, is
carried out by D/A (digital to analog) converters. There are different ways of
interpolating between the discrete samples, but the so called zero-order hold
(see Figure 12.11) is by far the most common.

xx
x
x
xxxxxxxxx

x
x
x

D/A

Digital to analog convertersampled signal reconstructed signal

Figure 12.11. The result of reconstruction

• When sampling a continuous time signal,

◦ an appropriate sampling rate must be chosen

◦ an anti-aliasing filter (low-pass) should be included to avoid frequency
folding.
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• Analysis of digital systems relies on discrete time versions of the continuous
operators.

• The chapter has introduced two discrete operators:

◦ the shift operator, q, defined by qx[k]
�
= x[k + 1]

◦ the δ-operator, δ, defined by δx[k]
�
=

x[k + 1]− x[k]
∆

• Thus, δ =
q − 1
∆

, or q = δ∆+ 1.

• Due to this conversion possibility, the choice is largely based on preference
and experience. Comparisons are outlined below.

• The shift operator, q,

◦ is the traditional operator;

◦ is the operator many engineers feel more familiar with;

◦ is used in the majority of the literature.

• The δ-operator, δ, has the advantages of:

◦ emphasizing the link between continuous and discrete systems (resembles
a differential);

◦ δ-expressions converge to familiar continuous expressions as ∆ → 0,
which is intuitive;

◦ is numerically vastly superior at fast sampling rates when properly im-
plemented.

• Analysis of digital systems relies on discrete time versions of the continuous
operators:

◦ the discrete version of the differential operator is a difference operator;

◦ the discrete version of the Laplace Transform is either the Z–transform
(associated with the shift operator) or the γ-transform (associated with
the δ-operator).

• With the help of these operators,

◦ continuous time differential equation models can be converted to discrete
time difference equation models;

◦ continuous time transfer or state space models can be converted to dis-
crete time transfer or state space models in either the shift or δ operators.
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12.18 Problems for the Reader

Problem 12.1. Compute the Z-transform and the discrete Delta Transform for
the discrete sequences which result from sampling the following signals at 1 [Hz].

(a) µ(t)− µ(t− 3) (b) e−0.1tcos(0.5t+ π/4)

(c) t2e−0.25t (d) te−0.1tcos(t)

Problem 12.2. Consider the following recursive equations describing the relation-
ship between the input u[k] and the output y[k] in different discrete (sampled data)
time systems.

(a) y[k]− 0.8y[k − 1] = 0.4u[k − 2] (12.18.1)
(b) y[k]− 0.5y[k − 1] + 0.06y[k − 2] = 0.6u[k − 1] + 0.3u[k − 1] (12.18.2)
(c) y[k]− 0.5y[k − 1] + 0.64y[k − 2] = u[k − 1] (12.18.3)

12.2.1 For each case, determine the transfer function.

12.2.2 From the above result compute the response of each system to a unit Kro-
necker delta.

Problem 12.3. Determine the step response of the discrete time systems which
have the following transfer functions in Z-form:

z − 0.5
z2(z + 0.5)

z

z2 − 0.5z + 1
(12.18.4)

1
(z − 0.6)2

z + 1
z2 − 0.4z + 0.64

(12.18.5)

Problem 12.4. Consider a continuous time system with transfer function

G(s) =
4

s2 + 2.4s+ 4
(12.18.6)

Find a sampling rate such that the pulse transfer function [GGh0]q(z) has only
one pole.
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Problem 12.5. Assume that, in Figure 12.6 on page 337, Go(s) is given by

Go(s) =
2

(s+ 1)(s+ 2)
(12.18.7)

12.5.1 Compute the Delta Transform of the transfer function from u[k] to y[k],
Hoδ(γ), as a funcion of the sampling period ∆.

12.5.2 Verify that if we make ∆ → 0, then

lim
∆→0

Hoδ(γ)
∣∣∣
γ=s

= Go(s) (12.18.8)

Problem 12.6. The output y(t) of a continuous time system with a unit step
input is sampled every 1[s]. The expression for the sequence {y[k]} is given by

y[k] = 0.5− 0.5(0.6)k ∀k ≥ 0 (12.18.9)

12.6.1 Determine Yq(z)

12.6.2 Determine the transfer function from Uq(z) to Yq(z)

12.6.3 From the above result, derive the difference equation linking {y[k]} to {u[k]}.

Problem 12.7. Consider the setup shown in Figure 12.6 on page 337 where the
sampling period is ∆ = 0.5[s]. Assume that the transfer function from Uq(z) to
Yq(z) is given by

Hoq(z) =
z − 0.5

(z − 0.8)(z − 0.2)
(12.18.10)

12.7.1 Find Go(s) (try MATLAB command d2c).

12.7.2 Explain why the above solution is not unique and provide some alternative
expressions for Go(s) which also yield 12.18.10.

Problem 12.8. Consider the setup shown in Figure 12.6 on page 337, where

G(s) =
e−s

s+ 0.8
(12.18.11)

Find the transfer function from Uq(z) to Yq(z), first for ∆ = 1[s] and then for
∆ = 0.75[s].



Section 12.18. Problems for the Reader 349

Problem 12.9. The transfer function of a sampled data system (in Delta form)
is given by

Gδ(γ) =
γ + 0.5

γ(γ + 0.8)
(12.18.12)

12.9.1 If ∆ = 3.5[s], is the system stable?

12.9.2 Find the corresponding Z–transform transfer function for ∆ = 1.5[s].

12.9.3 Repeat parts (12.9.1) and (12.9.2) for ∆ = 1.5[s]

Problem 12.10. Consider a continuous time and a discrete time low pass filter
with transfer functions H(s) and Hδ(γ) respectively. Assume that, for the digital
filter, the sampling frequency, ωs, is chosen equal to 25[rad/s] , and that

H(s) =
1

s2 +
√
2s+ 1

Hδ(γ) =
1

γ2 +
√
2γ + 1

(12.18.13)

12.10.1 Compare the frequency response for both filters in the frequency range
[0; 3ωs]. Comment your findings.

12.10.2 Can this digital filter act as an anti-aliasing filter?

Problem 12.11. Consider two transfer functions, G1(s) and G2(s) given by

G1(s) =
1

s+ 1
and G2(s) =

2
s+ 2

(12.18.14)

Compare the frequency responses of the following two pulse transfer functions:

[GhoG1G2]q(z) and [GhoG1]q(z)[GhoG2]q(z) (12.18.15)

for two different sampling periods: ∆ = 0.05[s] and ∆ = 0.5[s]. Discuss the general
problem raised by this example.





Chapter 13

DIGITAL CONTROL

13.1 Preview

Models for discrete time systems have been described in Chapter 12. There we
saw that digital and continuous systems were actually quite close. Hence it is often
true that digital responses approach the corresponding continuous response as the
sampling period goes to zero. For this reason, in the remainder of the book we
will present continuous and discrete ideas in parallel. The purpose of the current
chapter is to provide a smooth transition to this latter work by highlighting the
special issues associated with digital control. In particular, the chapter covers:

• why one cannot simply treat digital control as if it were exactly the same as
continuous control, and

• how to carry out designs for digital control systems so that the at-sample
response is exactly treated.

13.2 Discrete Time Sensitivity Functions

The reader is asked to recall the results presented in Chapter 12 on models for
sampled data systems.

We assume (as will almost always be the case) that the plant operates in con-
tinuous time whereas the controller is implemented in digital form. Having the
controller implemented in digital form introduces several constraints into the prob-
lem:

(a) the controller sees the output response only at the sample points,

(b) an anti-aliasing filter will usually be needed (see section §12.2) prior to the
output sampling process to avoid folding of high frequency signals (such as
noise) onto lower frequencies where they will be misinterpreted; and

(c) the continuous plant input bears a simple relationship to the (sampled) digital
controller output, e.g. via a zero order hold device.

351
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A key idea that the reader should have learnt from Chapter 12 is that if one
is only interested in the at-sample response, these samples can be described by
discrete time models in either the shift or delta operator. For example, consider the
sampled data control loop shown in Figure 13.1

Cq(z)
Rq(z)

Gh0(s) Go(s)
Y (s)

−+

Digital controller Hold device Plant

sampler
F (s)

Anti-aliasing filter

Yf (s)

Eq(z)

Figure 13.1. Sampled data control loop

Note that, in the figure, we have used the Laplace variable, s, to describe contin-
uous time transfer functions and the z-transform variable, z, to describe the digital
controller.

If we focus only on the sampled response then it is straightforward to derive an
equivalent discrete model for the at-sample response of the hold-plant-anti-aliasing
filter combination. This can be done either via transfer function or state space
methods. For convenience, we here use the transfer function form, which we recall
from (12.13.3).

[FGoGh0]q (z) � Z {sampled impulse response of F (s)Go(s)Gh0(s)} (13.2.1)

[GoGh0]q (z) � Z {sampled impulse response of Go(s)Gh0(s)} (13.2.2)

Given the equivalent discrete plant transfer function we can immediately write
down other relevant closed loop transfer functions:

The discrete sensitivity function is

Soq(z) =
Eq(z)
Rq(z)

=
1(

1 + Cq(z) [FGoGh0]q (z)
) (13.2.3)

The discrete complementary sensitivity function is

Toq(z) =
Yfq(z)
Rq(z)

=
Cq(z) [FGoGh0]q (z)(

1 + Cq(z) [FGoGh0]q (z)
) (13.2.4)
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So far, this all seems directly analogous to the continuous case (and indeed it is).
Of course, the above transfer functions only capture the sampled responses. More
will be said about this in Chapter 14 when we investigate the intersample response
of a digital control loop. The term intersample response refers to the actual-but,
unobservable (at the computer) -continuous time response of the underlying process.

13.3 Zeros of Sampled Data Systems

As shown in Chapter 8, the open loop zeros of a system have a profound impact
on achievable closed loop performance. The importance of an understanding of the
zeros in discrete time models is therefore not surprising. It turns out that there
exist some subtle issues here as we now investigate.

If we use shift operator models, then it is difficult to see the connection between
continuous and discrete time models. However, if we use the equivalent delta do-
main description, then it is clear that discrete transfer functions converge to the
underlying continuous time descriptions. In particular, the relationship between
continuous and discrete (delta domain) poles is revealed by equation (12.14.17).
Specifically, we see that

pδi =
epi∆ − 1

∆
; i = 1, . . . n (13.3.1)

where pδi , pi denote the discrete (delta domain) poles and continuous time poles
respectively. In particular, we see that pδi → pi as ∆ → 0.

However, the relationship between continuous and discrete zeros is more com-
plex. Perhaps surprisingly, all discrete time systems turn out to have relative degree
1 irrespective of the relative degree of the original continuous system1.

Hence, if the continuous system has n poles and m(< n) zeros then the corre-
sponding discrete system will have n poles and (n− 1) zeros.

In view of the convergence of the discrete zeros to the continuous zeros we
(somewhat artificially) divide the discrete zeros into two sets.

1. System zeros: zδ1, · · · , zδm Having the property

lim
∆→0

zδi = zi i = 1, . . . ,m (13.3.2)

where zδi are the discrete time zeros (expressed in the delta domain for con-
venience) and zi are the zeros of the underlying continuous time system.

1Exceptions arise when sampling continuous time systems either with pure time delays or, with
NMP zeros (and a particular choice of sampling period).
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2. Sampling zeros: zδm+1, · · · zδn−1

Having the property

lim
∆→0

∣∣zδi ∣∣ = ∞ i = m+ 1, . . . , n− 1 (13.3.3)

Of course, if m = n − 1 in the continuous time system, then there are no
sampling zeros. Also, note that as the sampling zeros tend to infinity, they
contribute to the continuous relative degree.

Example 13.1. Consider the continuous time servo system of Example 3.4 on
page 47, having continuous transfer function

Go(s) =
1

s(s+ 1)
(13.3.4)

where n = 2, m = 0. Then we anticipate that discretizing would result in one
sampling zero, which we verify as follows.

With a sampling period of 0.1 seconds, the exact shift domain digital model is

Goq(z) = K
z − zqo

(z − 1)(z − αo)
(13.3.5)

where K = 0.0048, zqo = −0.967 and αo = 0.905.
The corresponding exact delta domain digital model is

Gδ(γ) =
K ′(γ − zδo)
γ(γ − α′

o)
(13.3.6)

where K ′ = 0.0048, zδo = −19.67 and αo = −0.9516.
The location of the shift and delta domain sampling zero, as a function of the

sampling period ∆ are respectively given by

zqo =
(1 +∆)e−∆ − 1
∆+ e−∆ − 1

; and zδo =
e−∆ − 1

∆ + e−∆ − 1
(13.3.7)

from where it is straightforward to verify that for very small ∆, zqo → (−1)+, and
zδo → ∞. Also, for very large ∆, zqo → 0− and zδo → 0−. These evolutions are
shown in Figure 13.2

✷✷✷
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Figure 13.2. Location of sampling zero with different sampling periods. Exam-
ple 13.1

In the control of discrete time systems special care needs to be taken with the
sampling zeros. For example, these zeros can be non-minimum phase even if the
original continuous system is minimum phase. Consider, for instance, the minimum
phase, continuous time system with transfer function given by

Go(s) =
s+ 4

(s+ 1)3
(13.3.8)

For this system, the shift domain zeros of [GoGh0]q(z) for two different sampling
periods are

∆ = 2[s] ⇒ zeros at −0.6082 and −0.0281
∆ = 0.5[s] ⇒ zeros at −1.0966 and 0.1286

Note that for ∆ = 0.5[s], the pulse transfer function has a zero outside the
stability region.

13.4 Is a Special Theory of Digital Control Design Really Neces-
sary?

We have seen in section §13.3 that, under reasonable conditions, the discrete time
model of a system will converge, as the sampling rate increases, to the underlying
continuous time model.

This inevitably leads to the question: Do we really need to worry about a separate
theory of digital control? It is intuitively reasonable that the constraints labeled
(a), (b), (c) in section §13.2 are almost certainly negligible if one samples quickly
enough. Also, we see from section §13.3 that discrete (delta domain) poles and
zeros converge to the continuous locations as ∆ → 0. Although these observations
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are absolutely correct, the sampling rate needed is probably somewhat higher than
might be used in practice. Practical sampling rates in current use are typically 5 to
10 times the closed loop bandwidth whereas to make the impact of sampling truly
negligible would require sampling rates an order of magnitude higher.

One therefore needs to think about digital control in its own right. Three pos-
sible design options are:

1) design the controller in continuous time, discretize the result for implementa-
tion and ensure that the sampling constraints do not significantly affect the
final performance.

2) work in discrete time by doing an exact analysis of the at-sample response
and ensure that the intersample response is not too surprising, or

3) carry out an exact design by optimizing the continuous response with respect
to the (constrained) digital controller.

The first two of these options will be analyzed in the following sections.

13.5 Approximate Continuous Designs

Here we explore the idea of simply carrying out a normal continuous time design
and then mapping the resultant controller into the discrete domain.

To illustrate the effect of simple continuous to discrete mappings in control
system design, we mention three methods drawn from the digital signal processing
literature. These are:

1. Simply take a continuous time controller expressed in terms of the Laplace
variable, s and to then replace every occurrence of s by the corresponding
delta domain operator γ. This leads to the following digital control law:

C1(γ) = C(s)
∣∣
s=γ

(13.5.1)

where C(s) is the transfer function of the continuous time controller and where
C1(γ) is the resultant transfer function of the discrete time controller in delta
form.

2. Convert the controller to a zero order hold discrete equivalent. This is called
a step invariant transformation. This leads to

C2(γ) = D [sampled impulse response of {C(s)Gh0(s)}] (13.5.2)

where C(s), Gh0(s) and C2(γ) are the transfer functions of the continuous time
controller, zero order hold and resultant discrete time controller respectively.
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3. We could use a more sophisticated mapping from s to γ. For example, we
could carry out the following transformation, commonly called a bilinear trans-
formation with pre-warping. We first let

s =
αγ

∆
2 γ + 1

⇐⇒ γ =
s

α− ∆
2 s

(13.5.3)

The discrete controller is then defined by

C3(γ) = C(s)|s= αγ
∆
2 γ+1

(13.5.4)

We next choose α so as to match the frequency responses of the two controllers
at some desired frequency, say ω∗. For example, one might choose ω∗ as the
frequency at which the continuous time sensitivity function has its maximum
value.

Now we recall from Chapter 12 that the discrete frequency response at ω∗ is
evaluated using γ =

(
ejω

∗∆ − 1
)
/∆ and the continuous frequency response is

obtained by replacing s by jω∗. Hence to equate the discrete and continuous
frequency responses at ω∗ we require that α satisfies

jω∗ =
α
[
ejω

∗∆−1
∆

]
∆
2

[
ejω∗∆−1

∆

]
+ 1

(13.5.5)

The solution is

α =
ω∗∆
2

[
sinω∗∆

1− cosω∗∆

]
=

ω∗∆
2

cot
[
ω∗∆
2

]
(13.5.6)

We illustrate by the following examples:

Example 13.2. A plant has a nominal model given by

Go(s) =
1

(s− 1)2
(13.5.7)

13.2.1 Synthesize a continuous time PID controller such that the dominant closed
loop poles are the roots of the polynomial s2 + 3s+ 4.
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13.2.2 Using the above result, obtain a discrete time PID controller. Assume that
the sampling frequency can be as large as required and that a zero order hold
is present at the plant input.

13.2.3 Using SIMULINK compare the response to a unit step reference for the con-
tinuous and the discrete time loop.

Solution

13.2.1 The closed loop characteristic polynomial Acl(s) is chosen as

Acl(s) = (s2 + 3s+ 4)(s2 + 10s+ 25) (13.5.8)

where the factor s2 + 10s + 25 has been added to ensure that the degree of
Acl(s) is 4, which is the minimum degree required for an arbitrarily chosen
Acl(s).

On solving the pole assignment equation we obtain P (s) = 88s2 + 100s+ 100
and L̄(s) = s+ 15. This leads to the following PID controller

C(s) =
88s2 + 100s+ 100

s(s+ 15)
(13.5.9)

13.2.2 Since we can use high sampling rates, a straightforward procedure to obtain a
discrete time PID controller is to substitute s by γ in (13.5.9), i.e.

Cδ(γ) =
88γ2 + 100γ + 100

γ(γ + 15)
(13.5.10)

or, in Z transform form

Cq(z) =
88z2 − 166z + 79
(z − 1)(z + 0.5)

(13.5.11)

where we have assumed a sampling period ∆ = 0.1.

13.2.3 The continuous and the discrete time loops are simulated with SIMULINK for
a unit step reference at t = 1 and a unit step input disturbance at t = 10. The
difference of the plant outputs is shown in Figure 13.3 on the next page.

The reader is invited to verify that if a smaller sampling period is used, say
∆ = 0.01, then the difference would be barely noticeable. Both loops are in-
cluded in the SIMULINK scheme in file lcodi.mdl.



Section 13.5. Approximate Continuous Designs 359

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

O
ut

pu
t d

iff
er

en
ce

Figure 13.3. Difference in plant outputs due to discretization of the controller
(sampling period =0.1 [s])

However, the fact that none of the ad-hoc transformations listed above is entirely
satisfactory with more modest sampling rates is illustrated in the following example.

Example 13.3. The system nominal transfer function is given by

Go(s) =
10

s(s+ 1)
(13.5.12)

and the continuous time controller is

C(s) =
0.416s+ 1
0.139s+ 1

(13.5.13)

Replace this controller by a digital controller with ∆ = 0.157[s] preceded by a
sampler and followed by a ZOH using the three approximations outlined above. Test
the unit step response for each such approximation.

Solution

1. Replacing s by γ in C(s) we get

C1(γ) =
0.416γ + 1
0.139γ + 1

(13.5.14)

2. The ZOH equivalent of C(s) is

C2(γ) =
0.694γ + 1
0.232γ + 1

(13.5.15)
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3. For the bilinear mapping with pre-warping we first look at the continuous time
sensitivity function

So(jω) =
1

1 + C(jω)G(jω)
(13.5.16)

We find that |So(jω)| has a maximum at ω∗ = 5.48 [rad/s].

Now using the formula 13.5.6 we obtain α = 0.9375.

With this value of α we find the approximation

C3(γ) = C(s)
∣∣
s= αγ

∆
2 γ+1

=
0.4685γ + 1
0.2088γ + 1

(13.5.17)

The closed loop unit step responses obtained with the continuous time con-
troller C(s) and the three discrete-time controllers C1(γ), C2(γ) and C3(γ)
are presented in Figure 13.4 on the facing page.

✷✷✷

We see from the figure that none of the approximations exactly reproduces the
closed-loop response obtained with the continuous time controller. Actually for this
example, we see that simple substitution appears to give the best result and that there
is not much to be gained by fancy methods here. However, it would be dangerous to
draw general conclusions from this one example.

The above example shows the difficulty of obtaining discrete time control laws
by ad-hoc means. We therefore proceed to examine discrete-time and sampled data
control system design.

13.6 At-Sample Digital Design

The next option we explore is that of doing an exact digital control system design
for the sampled response.

We recall that the sampled response is exactly described by appropriate discrete-
time-models (expressed in either the shift or delta operation).

Many possible design strategies could be used. We briefly outline some of the
time and frequency domain options.

13.6.1 Time domain design

Any algebraic technique (such as pole assignment) has an immediate digital coun-
terpart. Essentially all that is needed is to work with z (or γ) instead of the Laplace
variable, s, and to keep in mind the different region for closed loop stability. Recall
the following regions for closed loop stability:
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Figure 13.4. Performance of different control designs: continuous time (yc(t)),
simple substitution (y1(t)), step invariance (y2(t)) and bilinear
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Continuous: �{s} < 0

Discrete z-Domain: |z| < 1

Discrete δ-Domain:
∣∣δ + 1

∆

∣∣ < 1
∆

As already discussed in Chapter 7, in specifying the closed loop poles, we fix the
characteristics of the closed loop natural modes. Thus, the general approaches for
pole assignment described in Chapter 7 can be applied, with obvious modifications,
in digital control synthesis. However, discrete time systems have the appealing
feature of being able to exhibit finite settling time ( impossible to achieve exactly
in continuous time systems). This is achieved when all the sensitivity transfer
function poles are located at z = 0 or, equivalently, at γ = − 1

∆ (see Example 12.5
on page 325). Several synthesis approaches have been suggested to obtain digital
control loops with finite settling time (to step references), measured at sample times.
We briefly examine two of those approaches for the following framework.

Consider a continuous time plant with a sampled transfer function given by

Goq(z) = [GoGh0]q(z) =
Boq(z)
Aoq(z)

(13.6.1)
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and a digital controller with transfer function given by

Cq(z) =
Pq(z)
Lq(z)

(13.6.2)

(13.6.3)

where Aoq(z), Boq(z), Lq(z) and Pq(z) are polynomials in z, with Aoq(z) and Lq(z)
monic. The degrees of Aoq(z) and Boq(z) are n and m (m < n) respectively. We
further assume that the open loop has accumulation effect (integral action), i.e.
Aoq(z)Lq(z) has at least one root at z = 1, to ensure zero steady state errors to
step references and output disturbances.

13.6.2 Minimal prototype

The basic idea in this control design strategy is to achieve zero error at the sample
points in the minimum number of sampling periods, for step references and step
output disturbances (with zero initial conditions). This implies that the comple-
mentary sensitivity must be of the form

To(z) =
p(z)
zl

(13.6.4)

where l ∈ N and p(z) is a polynomial of degree< l, and p(1) = 1. This last condition
ensures that Toq(1) = 1, which is necessary and sufficient to achieve the zero steady
state requirement.

The controller synthesis can then be carried out using pole assignment techniques
(see section §7.2). We will consider two cases:

Case 1 The plant sampled transfer function, Goq(z), is assumed to have all its
poles and zeros strictly inside the stability region. Then the controller can
cancel the numerator and the denominator of Goq(z) and the pole assignment
equation becomes

Lq(z)Aoq(z) + Pq(z)Boq(z) = Aclq(s) (13.6.5)

where

Lq(z) = (z − 1)Boq(z)Lq(z) (13.6.6)
Pq(z) = KoAoq(z) (13.6.7)

Aclq(s) = zn−mBoq(z)Aoq(z) (13.6.8)

Note that the polynomial degrees have been chosen according to the theory
presented in section §7.2.
Using (13.6.6)–(13.6.8) in (13.6.5) and simplifying, we obtain

(z − 1)Lq(z) +Ko = zn−m (13.6.9)
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Equation (13.6.9) can now be solved for Ko by evaluating the expression at
z = 1. This leads to Ko = 1, and to a controller and a complementary
sensitivity given by

Cq(z) = [Goq(z)]−1 1
zn−m − 1

; and To(z) =
1

zn−m
(13.6.10)

We illustrate this case with an example.

Example 13.4. Consider a continuous time plant with transfer function

Go(s) =
50

(s+ 2)(s+ 5)
(13.6.11)

Synthesize a minimum prototype controller with sampling period ∆ = 0.1[s].

Solution

The sampled transfer function is given by

Goq(z) =
0.0398(z + 0.7919)

(z − 0.8187)(z − 0.6065)
(13.6.12)

Notice that Goq(z) is stable and minimum phase, with m = 2 and n = 3.
Then, on applying (13.6.10), we have that

Cq(z) =
25.124(z − 0.8187)(z − 0.6065)

(z − 1)(z + 0.7919)
and Toq(z) =

1
z

(13.6.13)

The performance of the resultant control loop is evaluated for a unit step
reference at t = 0.1[s]. The plant output is shown in Figure 13.5.

We see that the sampled response settles in exactly one sample period. This
is as expected, since Toq(z) = z−1. However, Figure 13.5 illustrates one of the
weaknesses of minimal prototype control: perfect tracking is only guaranteed
at the sampling instants. Indeed, we see a very substantial intersample ripple!
We will analyze the cause of this problem in the next chapter. Another draw-
back of this approach is the large control effort required: since the controller
is biproper, it reacts instantaneously to the step reference with an initial value
equal to 48.73 times the magnitude of the step.

✷✷✷

Case 2 The plant is assumed to be minimum phase and stable, except for a pole
at z = 1, i.e. Aoq(z) = (z−1)Aoq(z). In this case, the minimal prototype idea
does not require that the controller have a pole at z = 1. Thus, equations
(13.6.6) to (13.6.8) become
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Figure 13.5. Plant output for aunit step reference and a minimal prototype
digital control. Stable plant

Lq(z) = Boq(z)Lq(z) (13.6.14)

Pq(z) = KoAoq(z) (13.6.15)

Aclq(z) = zn−mBoq(z)Aoq(z) (13.6.16)

Equation (13.6.9) holds as in Case 1. Thus Ko = 1 and

Cq(z) = [Goq(z)]−1 1
zn−m − 1

=
Aoq(z)
Boq(z)

z − 1
zn−m − 1

(13.6.17)

=
Aoq(z)

Boq(z)(zn−m−1 + zn−m−2 + zn−m−3 + . . .+ z + 1)
(13.6.18)

Toq(z) =
1

zn−m
(13.6.19)

This case is illustrated in the following example.

Example 13.5. Consider the servo system of Example 3.4 on page 47. Recall
that its transfer function is given by

Go(s) =
1

s(s+ 1)
(13.6.20)

Synthesize a minimal prototype controller with sampling period ∆ = 0.1[s].

Solution
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From Example 13.1 on page 354, we have that the system pulse transfer func-
tion (with ∆ = 0.1[s]) is given by (13.3.5), i.e.

Goq(z) = 0.0048
z + 0.967

(z − 1)(z − 0.905)
(13.6.21)

Thus

Boq(z) = 0.0048(z + 0.967) and Aoq(z) = z − 0.905 (13.6.22)

and, using (13.6.17)

Cq(z) = 208.33
z − 0.905
z + 0.967

(13.6.23)

Toq(z) =
1
z

(13.6.24)
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Figure 13.6. Plant output for a unit step reference and a minimal prototype
digital control. Plant with integration

The performance of the resultant control loop is evaluated for a unit step
reference at t = 0.1[s]. The plant output is shown in Figure 13.6.

Again we see that the sampled response settles in one sample period. How-
ever, Figure 13.6 also verifies the main characteristics of minimal prototype
control: non zero errors in the intersample response and large control magni-
tudes. ✷✷✷

The remarkable common feature in both cases is the intersample response: there
exists a lightly damped oscillation of frequency equal to half the sampling
frequency. We will examine the reasons for this in Chapter 14.
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Further insights into the minimal prototype approach can be obtained by ana-
lyzing the behavior of the controller output u[k]. From (13.6.4) we have that

Yq(z) = Toq(z) =
p(z)
zl

Rq(z) ⇐⇒ Uq(z) = [Goq(z)]−1Yq(z) =
Aoq(z)p(z)
zlBoq(z)

Rq(z)

(13.6.25)

For the above examples, p(z) = 1 and l is equal to the relative degree of Goq(z)
(this will generally be the case). Thus, the natural modes in u[k] will depend on
the location of the zeros of Goq(z), i.e. the roots of Boq(z) (including the sampling
zeros!). This implies that u[k] does not settle to its steady state value in
finite time. Due to the fact that the sampling zeros generally have negative real
values, this transient will include oscillatory modes; this phenomenon (illustrated
in Example 12.6 on page 326) is known as ringing and it is undesirable due to its
wearing effect on the actuators.

13.6.3 Minimum time dead-beat control

The basic idea in dead-beat control design is similar to that in the minimal proto-
type case: to achieve zero error at the sample points in a finite number of sampling
periods for step references and step output disturbances (and with zero initial con-
ditions). However, in this case we add the requirement that, for this sort of reference
and disturbance, the controller output u[k] also reach its steady state value in the
same number of intervals.

Consider a digital control loop with step reference and where y[k] must reach
its steady state value (with zero control error at the sample points) in n sampling
instants where n is the degree of the denominator polynomial. Then Y (z) must
have the form

Yq(z) =
w(z)
zn

Rq(z) ⇐⇒ Toq(z) =
w(z)
zn

(13.6.26)

w(z) = wnz
n + wn−1z

n−1 + . . .+ w1z + w0 (13.6.27)

To achieve perfect steady state tracking at the sample points (for step references
and step output disturbances) we need Toq(1) = 1, i.e.

w(1) =
n∑
i=0

wi = 1 (13.6.28)

We also require that the controller output u[k] reaches its steady state value in
n sampling periods. This condition allows us to compute 2 the polynomial w(z),
since

2Note that, to have Suoq(z) proper, the degree of w(z) must be, at most, equal to the degree
of Boq(z)
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Uq(z) = [Goq(z)]−1Yq(z) = Suoq(z)Rq(z) =
Aoq(z)w(z)
Boq(z)zn

Rq(z) (13.6.29)

Now to have u[k] settle to its steady state value in n steps it follow that Boq(z)
cannot appear in the denominator of the term in the last equality in (13.6.29). It
follows that , we must choose w(z) to satisfy:

w(z) = αBoq(z) where α =
1

Boq(1)
(13.6.30)

Finally, we see that

Uq(z) =
αAoq(z)

zn
Rq(z) (13.6.31)

which is achieved by the following control law

Cq(z) =
αAoq(z)

zn − αBoq(z)
(13.6.32)

The dead-beat control is illustrated in the following example.

Example 13.6. Consider the servo system of Examples 3.4 on page 47 and 13.5
on page 364, i.e. a system with transfer function

Go(s) =
1

s(s+ 1)
(13.6.33)

Synthesize a minimum time dead-beat control with sampling period ∆ = 0.1[s].

Solution

From Example 13.5 on page 364, we have that the system pulse transfer function
(with ∆ = 0.1[s]) is given by (13.6.21), i.e.

Goq(z) = 0.0048
z + 0.967

(z − 1)(z − 0.905)
=⇒ α = 105.49 (13.6.34)

Hence, applying (13.6.32) we have that

Cq(z) =
αAoq(z)

zn − αBoq(z)
=

105.49z − 95.47
z + 0.4910

(13.6.35)

The performance of this controller is shown in Figure 13.7 for a unit step ref-
erence applied at time t = 0.
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Observe that the continuous time plant output, y(t), reaches its steady state
value after two sampling periods, as expected. Furthermore, the intersample re-
sponse is now quite acceptable. To evaluate the control effort we apply (13.6.31) to
obtain

Uq(z) =
αAoq(z)

zn
Rq(z) = 105.49

(z − 1)(z − 0.905)
z2

Rq(z) (13.6.36)

Solving, we obtain the control sequence: u[0] = 105.49, u[1] = −95.47 and
u[k] = 0 ∀k ≥ 2. Note that the zero value is due to the fact that the plant exhibits
integration. Also observe the magnitudes of the first two sample values of the control
signal; they run the danger of saturating the actuator in practical applications. In
this respect, dead-beat control is not different to minimal prototype and to continuous
time control, since fast control (with respect to the plant bandwidth) will always
demand large control magnitudes (as happens in this example) since this is a trade-
off which does not depend on the control architecture or control philosophy. (See
Chapter 8.)
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Figure 13.7. Minimum time dead-beat control for a second order plant

Remark 13.1. The controller presented above has been derived for stable plants or
plants with at most one pole at the origin, since cancellation of Aoq(z) is allowed.
However, the dead-beat philosophy can also be applied to unstable plants, provided
that dead-beat is attained in more than n sampling periods. To do this we simply
use pole assignment and place all of the closed loop poles at the origin.

✷✷✷

13.6.4 Digital control design by pole assignment

Minimal prototype and dead-beat approaches are particular applications of pole
assignment. If, for example, one requires to reduce the control effort demanded
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by the dead-beat design we can resort to pole assignment synthesis by shifting the
poles at the origin to less demanding positions, i.e. moving them towards (1; 0).
With this strategy we are trading control speed (loop bandwidth) against control
effort (magnitude of u[k]). This idea is applied to the servo problem in the example
below.

Example 13.7 (General pole assignment synthesis). Consider the same servo
system used in the previous examples, i.e. with continuous time transfer function
given by (13.6.33) and pulse transfer function given by (13.6.34) (for ∆ = 0.1[s]).

A pole assignment synthesis is carried out with a closed loop polynomial Aclq(z) =
(z − 0.905)(z− 0.8)(z− 0.6). If we compare this choice with the dead-beat synthesis
case, we observe that we are still canceling the pole at z = 0.905; however, this time
the other closed loop poles have been shifted from the origin to the positions z = 0.8
and z = 0.6. The pole assignment equation is then

Aclq(z) = (z − 1)(z − 0.905)Lq(z) + 0.0048(z + 0.967)Pq(z)
= (z − 0.905)(z − 0.6)(z − 0.8)

(13.6.37)

where

Lq(z) = z − α0 Pq(z) = β1(z − 0.905) =⇒ Cq(z) =
β1(z − 0.905)

z − α0
(13.6.38)

Once equations ( 13.6.37) and (13.6.38) are solved, we obtain

Cq(z) =
8.47(z − 0.905)

z − 0.44
=⇒ Suoq(z) =

8.47(z − 0.905)(z − 1)
(z − 0.6)(z − 0.8)

(13.6.39)

The reader can verify that, with this controller, the loop response to a unit step
reference settles within 2% of its final value in approximately 20[s]. Notice that
this is ten times the settling time obtained with the minimum time dead-beat control
strategy. However, the trade-off becomes evident when we use the control sensitivity
Suoq(z) in (13.6.39) to compute the control effort for the same reference. For this
case, the control sequence is

{u[k]} = {8.47, 4.19, 1.80, 0.51,−0.15,−0.45,−0.56,−0.57,−0.52, . . . , 0}.
This compares very favorably with the control effort demanded in the dead-beat

design. The trade-off between response time and control energy in this and the
previous example is completely in line with the trade-offs derived in Chapter 8.

A further example of digital design by pole assignment is presented below.

Example 13.8. Consider a continuous time plant having a nominal model given
by

Go(s) =
1

(s+ 1)(s+ 2)
(13.6.40)
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Design a digital controller, Cq(z), which achieves a loop bandwidth of approx-
imately 3[rad/s]. The loop must also yield zero steady state error for constant
references.

Solution

We choose to carry out the design using the Delta transform and then to transform
the resulting controller, Cδ(γ), into the Z form, Cq(z). The sampling period, ∆, is
chosen to be equal to 0.1[s] (note that, with this choice, the sampling frequency is
significantly higher than the required bandwidth).

We first use the MATLAB program c2del.m (in the accompanying diskette) to
obtain the discrete transfer function in delta form representing the combination of
the continuous time plant and the zero order hold mechanism. This yields

D {Gho(s)Go(s)} = 0.0453γ + 0.863
γ2 + 2.764γ + 1.725

(13.6.41)

We next choose the closed loop polynomial Aclδ(γ) to be equal to

Aclδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4) (13.6.42)

Note that a fourth order polynomial was chosen, since we have to force integral
action in the controller. The resulting pole assignment equation has the form

(γ2 + 2.764γ + 1.725)γLδ(γ) + (0.0453γ + 0.863)Pδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4)
(13.6.43)

The MATLAB program paq.m is then used to solve this equation, leading to
Cδ(γ), which is finally transformed into Cq(z). The delta and shift controllers are
given by

Cδ(γ) =
29.1γ2 + 100.0γ + 87.0

γ2 + 7.9γ
=

Pδ(γ)
γLδ(γ)

and (13.6.44)

Cq(z) =
29.1z2 − 48.3z + 20.0
(z − 1)(z − 0.21)

(13.6.45)

The design is evaluated by simulating a square wave reference using the SIMULINK
file dcpa.mdl. The results are shown in Figure 13.8.

The reader is encouraged to use the SIMULINK file dcpa.mdl to check that the
bandwidth of the loop (use the command dlinmod) exceeds the required value. It is
also of interest to evaluate how the locations of the closed loop poles change when
the sampling period is changed (without modifying Cq(z)).
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Figure 13.8. Performance of a digital control loop

13.7 Internal Model Principle for Digital Control

Most of the ideas presented in previous chapters carry over to digital systems. One
simply needs to take account of issues such as the different stability domains and
model types.

As an illustration, we consider here IMP applied to digital control. Say that
the disturbance is modeled by a discrete model having disturbance generating poly-
nomial Γdq(z) (or Γ

′
dδ(γ) for delta operators). Γdq(z) will typically have poles

on the unit circle whilst Γ
′
dδ(γ) will typically have poles on the shifted circle:

γ : |γ + 1
∆ | = 1

∆ . The IMP is then satisfied by including Γdq(z) or Γ
′
dδ(γ) in

the denominator of the controller transfer function. For example, discrete integral
action is achieved by including (Γdq(z) = z−1) or (Γ

′
dδ(γ) = γ) in the denominator

of the controller.
We illustrate by a simple example:

Example 13.9. A continuous time plant is being digitally controlled. The plant
output should track a sinusoidal reference of frequency 0.2[rad/s], in the presence
of step disturbances.

Determine the polynomial to be included in the transfer function denominator
of the digital controller, necessary to achieve zero steady state errors. Assume that
the sampling period is 1[s].

Solution

We first note that the sampled reference is r[k] = K1 sin(0.2k +K2), where K1

and K2 are unknown constants. Thus, the reference generating polynomials, in shift
and delta form, correspond to the denominators of the Z-transform and the Delta
transform of r[k], respectively. We then obtain
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Γrq(z) = z2 − 1.96z + 1; Γrδ(γ) = γ2 + 0.04γ + 0.04 (13.7.1)

Similarly, the disturbance generating polynomials are given by

Γdq(z) = z − 1; Γdδ(γ) = γ (13.7.2)

To obtain zero steady state errors the IMP must be satisfied. This requires that
the denominator of the controller must include either the factor Γrq(z)Γdq(z) = (z2−
1.96z+1)(z−1) (for the shift form) or the factor Γrδ(γ)Γdδ(γ) = (γ2+0.04γ+0.04)γ
(for the delta form).

✷✷✷

13.7.1 Repetitive control

An interesting special case of the Internal Model Principle in digital control occurs
with periodic signals. It is readily seen that any periodic signal of periodNp samples
can be modeled by a discrete time model (in shift operator form) using a generating
polynomial given by

Γdq(q) =
(
qNp − 1

)
(13.7.3)

Hence any Np period reference signal can be exactly tracked (at least at the
sample points) by including Γdq(q) in the denominator of the controller. This idea
is the basis of a technique known as repetitive control aimed at causing a system to
learn how to carry out a repetitive (periodic) task.

This idea has found application in many areas, e.g. robotics. The authors of
this book have used the idea in real world applications in the steel industry.

The core idea as set out above is simple and intuitively reasonable. In applica-
tions, it is usually necessary to modify the scheme to meet practical requirements.
One such issue is that of robustness.

Incorporation of (13.7.3) in the denominator of the controller, ensures that the
complementary sensitivity function is exactly one at frequencies

ωi =
i2π
Np∆

; i = 0, 1, . . . , Np − 1 (13.7.4)

where ∆ is the sampling period. The above ideas are illustrated with the following
example.

Example 13.10. Consider a continuous time plant with nominal transfer function
Go(s) given by
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Go(s) =
2

(s+ 1)(s+ 2)
(13.7.5)

Assume that this plant has to be digitally controlled with sampling period ∆ =
0.2[s] in such a way that the plant output tracks a periodic reference, r[k], given by

r[k] =
∞∑
i=0

rT [k − 10i]⇐⇒ Rq(z) = RTq(z)
z10

z10 − 1
(13.7.6)

where {rT [k]} = {0.0; 0.1; 0.25; 0.6; 0.3; 0.2; −0.1; −0.3; −0.4; 0.0} and 3 RTq(z) =
Z [rT [k]].

Synthesize the digital control which achieves zero steady state at-sample errors.

Solution

From (13.7.6) we observe that the reference generating polynomial, Γqr(z), is given
by z10 − 1. Thus the IMP leads to the following controller structure

Cq(z) =
Pq(z)
Lq(z)

=
Pq(z)

Lq(z)Γqr(z)
(13.7.7)

We then apply pole assignment with the closed loop polynomial chosen as Aclq(z) =
z12(z − 0.2). The solution of the Diophantine equation yields

Pq(z) =13.0z11 + 11.8z10 − 24.0z9 + 19.7z8 − 16.1z7 + 13.2z6 −
− 10.8z5 + 8.8z4 − 7.2z3 + 36.4z2 − 48.8z + 17.6

(13.7.8)

Lq(z) = (z10 − 1)(z + 0.86) (13.7.9)

Figure 13.9 shows the performance of the resulting digital control loop.
In Figure 13.9 we verify that, after a transient period, the plant output, y(t) fol-

lows exactly the periodic reference, at the sampling instants. Notice the dangers
of a purely at-sample analysis and design. The intersample behavior of this example
can be predicted with the techniques for hybrid systems which will be presented in
Chapter 14.

✷✷✷

Perfect tracking in steady state, for reference with high frequency harmonics
may compromise the robustness of the nominal design. This can be appreciated
by introducing a 0.02 [s] unmodelled time delay in the control loop designed in
Example 13.10. For this case, the loop behavior is depicted in Figure 13.10.

3Note that RTq(z) is a polynomial in z−1
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Figure 13.9. Repetitive control
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Figure 13.10. Repetitive control loop in the presence of an unmodelled time
delay.

This behaviour can be readily understood. In particular, perfect tracking re-
quires To to be 1 at all frequencies of interest. However, we know from Theorem 5.3
on page 144 that robust stability usually requires that |To| be reduced at high fre-
quencies. This can be achieved in several ways. For example, one could redefine
the internal model in (13.7.3) to include only the frequency components up to some
maximum frequency determined by robustness issues, i.e. we could use 4

Γdq(q) = (q − 1)
Nmax∏
i=1

(
q2 − 2 cos

(
i2π
Np

)
q + 1
)
; Nmax ≤ Np − 1

2
(13.7.10)

4Recall that the roots of the polynomial in (13.7.3) are ejlθ , l = 0, 1, . . . , Np − 1 and where
θ = 2π

Np
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13.8 Fundamental Performance Limitations

The results presented in Chapters 8 and 9 on fundamental design trade-offs also
extend in a straightforward way to the discrete time case.

Analogous results to those presented in section §8.6.5 for example, can be derived
for discrete time systems.

Thus, the time domain properties can be derived from a lemma equivalent to
Lemma 4.1 on page 81 which is stated as follows.

Lemma 13.1. Let H(z) be a rational function of z and analytic for |z| > ρ. Also,
let the corresponding discrete time function, i.e.

H(z) = Z {h[k]} (13.8.1)

Then for any zo such that |zo| > ρ, we have that

∞∑
k=0

h[k] (zo)
−k = lim

z→zo
H(z) (13.8.2)

Proof

From the definition of the Z–transform we have that, for all z in the region of
convergence of the transform, i.e. for |z| > ρ,

H(z) =
∞∑
k=0

h[k]z−k (13.8.3)

The result follows since zo is in the region of convergence of the transform.

✷✷✷

The application of this lemma leads to the same conclusions as those in the
continuous time case. This is due to the fact that, in both cases, the key elements
are

(i) The sensitivity function must vanish at the open loop unstable poles, and the
complementary sensitivity function is equal 1 at those values.

(ii) The complementary sensitivity function must vanish at the NMP zeros, and
the sensitivity function must be equal to 1 at those values.

(iii) The use of a cumulative measure of the signals of interest. This leads to
the same line of argument regarding compensation of positive and negative
accumulated values.
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To illustrate this parallel, the discrete time counterpart of Lemma 8.3 on page 211
is formulated below.

Lemma 13.2. Consider a feedback control loop having stable closed loop poles lo-
cated inside a circle centered at the origin and having radius ρ, for some ρ < 1.
Also assume that the controller C(z) = P (z)

L(z) has at least one pole at (1,0). Then,
for a plant zero zo and a plant pole ηo satisfying |zo| > ρ and |ηo| > ρ respectively:

(i) For a positive unit reference step or a negative unit step output disturbance,
we have

∞∑
k=0

e[k](zo)−k =
1

1− z−1
o

(13.8.4)

∞∑
k=0

e[k](ηo)−k = 0 (13.8.5)

(ii) For a positive unit step reference and for zo outside the unit disk, we have

∞∑
k=0

y[k](zo)−k = 0 (13.8.6)

(iii) For a negative unit step input disturbance, we have

∞∑
k=0

e[k](zo)−k =
L(ηo)(

1− η−1
o

)
P (ηo)

(13.8.7)

Proof

The proof depends on the key fact that the poles and zeros that we consider are in
the region of convergence of the transform, i.e. their magnitudes are larger than
that of all closed loop poles.

(i) In this case, the control error satisfies

E(z) = Soq(z) (Rq(z)−Do(z)) (13.8.8)

with either Rq(z) = (1 − z−1)−1 or Do(z) = (1 − z−1)−1. We also note that
Soq(zo) = 1, Soq(ηo) = 0. The result then follows from Lemma 13.1 on the
page before where h[k] is replaced by e[k].
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(ii) In this case, the plant output satisfies

Yq(z) = Toq(z)Rq(z) (13.8.9)

with Rq(z) = (1 − z−1)−1. We also note that Toq(zo) = 0. The result then
follows from Lemma 13.1 on page 375 where h[k] is replaced by y[k].

(iii) In this case, the control error satisfies

E(z) = −Sioq(z)Di(z) (13.8.10)

with −Di(z) = (1 − z−1)−1. We also note that Si0(zo) = 0 and Si0(ηo) =
L(ηo)
P (ηo)

. The result then follows from Lemma 13.1 on page 375 where h[k] is
replaced by e[k].

✷✷✷

It is left as a task for the reader to establish the discrete time counterparts to
other results presented in section §8.6.5. These discrete time constraints, however,
require careful interpretation. For example, the condition (13.8.6) does not neces-
sarily imply that the system exhibits undershoot, since the sum on the left hand
side can be equal to zero if zo ∈ R− even if y[k] never changes sign. This is the case
when zo is a sampling zero.

It is also possible to extend the frequency domain results of Chapter 9 to the
discrete case.

To give a flavor of the discrete results, we present the following lemma which is
the discrete version of Lemma 9.2 on page 242.

Lemma 13.3. Consider a one d.o.f. discrete stable control loop with open loop
rational transfer function Hoq(z).

Assume that Hoq(z) has q open loop poles outside the unit disk, located at
ζ1, ζ2, . . . , ζq. Then the nominal sensitivity function satisfies:

1
2π

∫ 2π

0

ln |So(ejω)|dω =
1
π

∫ π

0

ln |So(ejω)|dω =
q∑

i=1

ln |ζi| (13.8.11)
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Proof

The proof follows from a straightforward application of Jensen’s formula for the unit
disc ( Theorem ?? on page ??). Note that h(z) must be replaced by So(z), which
by definition is a biproper stable quotient of two monic polynomials, i.e. Kf = 1
and m = m̄ ←→ m′ = 0.

✷✷✷

Equation (13.8.11 ) is very similar to (9.2.9), since both indicate the need to
balance the low sensitivity region (negative logarithm) with the high sensitivity
region (positive logarithm). They also show that the existence of large unstable
open loop poles shift this balance significantly towards sensitivities larger than 1.
The main difference is that in the discrete time case the sensitivity compensation
must be achieved in a finite frequency band, [0, 2π].

Other parallel results for discrete time systems are more or less direct applica-
tions of Lemma ?? on page ?? and theorem ?? on page ??.

The above result is illustrated in the following example.

Example 13.11. A plant with nominal model Go(s) = 13
s2−4s+13 is to be digitally

controlled. The sampling period is ∆ and a zero order hold is used. Assume that
the nominal sensitivity must satisfy

|So(ejω∆)| ≤ ε < 1 ∀ω ≤ ωs
4

=
π

2∆
(13.8.12)

Use Lemma 13.3 on the preceding page to determine a lower bound for the sen-
sitivity peak Smax.

Solution
We note that the nominal model has two unstable poles located at p1,2 = 2± j3.

When the discrete model for the plant is obtained, these unstable poles map into
ζ1,2 = e(2±j3)∆. We then apply Lemma 13.3, using normalized frequency. This
leads to

∫ π

0

ln |So(ejω)|dω = 4π∆ (13.8.13)

If we split the integration interval in [0, π] = [0, π2 ] ∪ (π2 , π] then

lnSmax > 4∆− ln(ε) (13.8.14)

This bound becomes smaller if the sampling frequency increases. The reader is
invited to investigate the use of Theorem ?? on page ?? to obtain a tighter bound
for Smax.
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13.9 Summary

• There are a number of ways of designing digital control systems:

◦ design in continuous time and discretize the controller prior to imple-
mentation;

◦ model the process by a digital model and carry out the design in discrete
time;

• Continuous time design which is discretized for implementation;

◦ Continuous time signals and models are utilized for the design.

◦ Prior to implementation, the controller is replaced by an equivalent dis-
crete time version.

◦ Equivalent means that simply maps s to δ (where δ is the delta operator).

◦ Caution must be exercised since the analysis was carried out in continu-
ous time and the expected results are therefore based on the assumption
that the sampling rate is high enough to mask sampling effects.

◦ If the sampling period is chosen carefully, in particular with respect to
the open and closed loop dynamics, then the results should be acceptable.

• Discrete design based on a discretized process model:

◦ First the model of the continuous process is discretized.

◦ Then, based on the discrete process, a discrete controller is designed and
implemented.

◦ Caution must be exercised with so called intersample behavior: the anal-
ysis is based entirely on the behavior as observed at discrete points in
time, but the process has a continuous behavior also between sampling
instances.

◦ Problems can be avoided by refraining from designing solutions which
appear feasible in a discrete time analysis, but are known to be unachiev-
able in a continuous time analysis (such as removing non-minimum phase
zeros from the closed loop!).

• The following rules of thumb will help avoid intersample problems if a purely
digital design is carried out:

◦ Sample 10 times the desired closed loop bandwidth.

◦ Use simple anti-aliasing filters to avoid excessive phase shift.

◦ Never try to cancel or otherwise compensate for discrete sampling zeros.

◦ Always check the intersample response.
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13.10 Further Reading

General
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13.11 Problems for the Reader

Problem 13.1. The frequency response of the zero order sample and hold device
is computed from

Gh0(jω) =
1− e−jω∆

jω
(13.11.1)

13.1.1 Plot the magnitude of this frequency response for different values of ∆.

13.1.2 What is the relationship between the results obtained and the staircase nature
of the plant input u(t) ?

Problem 13.2. A continuous time plant has a transfer function given by

Go(s) =
1

(s+ 1)2(s+ 2)
(13.11.2)

13.2.1 Compute the location of the sampling zeros for ∆ = 0.2[s].

13.2.2 How do those zeros evolve when we vary ∆ in the range [0.02; 2]

Problem 13.3. A continuous time plant has a transfer function given by

Go(s) =
−s+ 1

(s+ 2)(s+ 1)
(13.11.3)

13.3.1 Is there any sampling frequency at which no zero appears in the pulse trans-
fer function?

13.3.2 Synthesize a minimal prototype controller for ∆ = 0.5[s]. Evaluate the
control loop performance for a unit step output disturbance.

Problem 13.4. A continuous time plant has a nominal model with transfer func-
tion given by

Go(s) =
1

(s+ 2)(s+ 1)
(13.11.4)
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13.4.1 Synthesize a minimum time dead beat control with ∆ = 0.2[s]. Evaluate the
control loop performance.

13.4.2 Assume that the true transfer function has an additional pole at s = −8
(without affecting the D.C. gain). Evaluate the robustness of the original
synthesis. Do you still have dead-beat performance?

Problem 13.5. Consider the minimum dead beat control presented in subsection
§13.6.3.

13.5.1 Prove that, in general, there is no dead beat behavior for input step distur-
bances.

13.5.2 Show that a dead beat control (for input step disturbances) which settles in
2n sampling intervals can be synthesized using pole assignment techniques,
where n is the number of the plant model poles.

13.5.3 Apply your results to synthesize a dead beat controller for a plant having
nominal model

Go(s) =
4

s2 + 3s+ 4
(13.11.5)

Problem 13.6. Consider the following plant nominal models

(a)
9

s2 + 4s+ 9
(b)

2
−s+ 2

(c)
−s+ 8

(s+ 2)(s+ 3)
(d)

−s+ 4
(−s+ 1)(s+ 4)

13.6.1 For each case, synthesize a controller providing dead beat control (for step
output disturbances) in the minimum number of sampling periods. Use ∆ =
0.1 [s].

13.6.2 Discuss the difficulties you found in cases (b), (c) and (d), and suggest
a general procedure to synthesize dead beat control for systems with unstable
poles and non minimum phase zeros.

Problem 13.7. Consider a plant having nominal model

Go(s) =
e−s

s+ 0.5
(13.11.6)
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13.7.1 Choose ∆ = 0.2 [s] and synthesize a digital controller such that the control
error e[k], for a step input disturbance, decays faster than (0.5)k.

13.7.2 Using a Smith predictor, design a continuous time controller which achieves
similar performance. Compare and discuss.

Problem 13.8. Extend the anti wind-up mechanism described in Chapter 11 to
digital control loops having biproper digital controllers.

Problem 13.9. Build the anti wind-up form of Figure 11.6 on page 296 for the
following controllers.

(a)
2z − 1
z − 0.5

(b)
z(z − 0.2)

z2 − 0.8z + 0.5

(c)
(z − 0.4)3

z3
(d)

z + 1.2
z − 0.8

Analyze the difficulties arising in case (d).

Consider a plant having nominal model

Go(s) =
e−s

(2s+ 1)(4s+ 1)
(13.11.7)

13.9.1 Using the Cohen-Coon tuning method find a continuous time PID controller,
C(s).

13.9.2 Build a delta form digital controller by taking Cδ(γ) = C(γ), and compare
the performance of the continuous and the discrete control loop, for step
reference and step input disturbances, with sampling period ∆ = 0.1 [s].

13.9.3 Repeat for ∆ = 1 [s]. Compare and discuss.

Problem 13.10. Consider a digital feedback control loop where the open loop
transfer function is given by

Cq(z) [Gh0Go]q (z) =
K(z − α)

(z − 1)(z − 0.7)
(13.11.8)
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13.10.1 Fix α = 0.4 and study the closed loop stability using Nyquist theory.

13.10.2 Fix K = 2 and study the closed loop stability using root locus

Problem 13.11. Consider a digital control loop where

[Gh0Go]q (z) =
0.1

z − 0.9
(13.11.9)

Assume that a digital controller, Cq(z), is designed to achieve a complementary
sensitivity given by

Toq(z) =
1− po
z − po

with 0 < po < 1 (13.11.10)

13.11.1 Determine the control sensitivity Suoq(z).

13.11.2 Use SIMULINK and verify that a fast control loop, i.e. a small po, leads
to large magnitudes in the controller output u[k].

13.11.3 Set po = 0.1 and draw, on the same graph, the magnitudes of the frequency
response of the plant and the complementary sensitivity.

Problem 13.12. In a digital control loop of a continuous time plant, we have that

{Gh0Go}q(z) = z − α

(z − 0.2)(z − 0.6)
(13.11.11)

13.12.1 Prove that, if α > 1, then the plant output will always exhibit undershoot
for a step reference.

13.12.2 Will the above be true for α < −1?.

Problem 13.13. Consider the digital control of a loop, with ∆ = 0.1 [s], for a
plant having nominal model

Go(s) =
3

(−s+ 1)(s+ 3)
(13.11.12)

Synthesize a digital controller which provides perfect steady state at-sample
tracking for a reference r(t) = 2 + cos(2πt).



Chapter 14

HYBRID CONTROL

14.1 Preview

Chapter 13 gives a traditional treatment of digital control based on analyzing the
at-sample response. Generally we found that this was a simple and problem free
approach to digital control design. However, at several points we warned the reader
that the resultant continuous response could contain nasty surprises if certain digital
controllers were implemented on continuous systems. The purpose of this chapter
is to analyze this situation and to explain:

• why the continuous response can appear very different from that predicted by
the at-sample response

• how to avoid these difficulties in digital control

The general name for this kind of analysis where we mix digital control and
continuous responses is hybrid control.

14.2 Hybrid Analysis

In this chapter we will examine what causes the unexpected differences between
continuous and sampled responses to occur. We will achieve this by analyzing the
underlying continuous time behavior. We will use the term hybrid analysis to
describe formulations of this type which allow one to combine digital control of a
continuous time process in a unified framework.

14.3 Models for Hybrid Control Systems

A hybrid control loop containing both continuous and discrete time elements is
shown in Figure 14.1 on the next page.

To carry out a hybrid analysis of this loop we will need to mix both continuous
and discrete time signals and systems.

Using the notation of section §12.13 we denote the discrete equivalent transfer
function of the combination { zero order hold + Continuous Plant + Filter } as
[FGoGh0 ]q. From (12.13.3) we have

385
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+−

Gh0(s)

u(t) Go(s) y(t)

F (s)

yf (t)

∆

r[k]e[k]Cq(z)u[k]

yfq[k]

Sampling period

Pre-sampling
filter

Continuous outputContinuous time
plant

Discrete
controller

Continuous input

Zero-order
hold

Figure 14.1. Sampled data control loop. Block form

[FGoGh0 ]q = Z {sampled impulse response of F (s)Go(s)Gh0(s)} (14.3.1)

In this section we will need to mix Z-transform and Laplace transform. We will
thus use a subscript q to distinguish the former.

We also associate a fictitious staircase function, ŷf (t) with the sequence {yf [k]}
where

ŷf(t) =
∞∑
k=0

yf [k] (µ(t− k∆)− µ(t− (k + 1)∆)) (14.3.2)

where µ(t − τ) is a unit step function starting at τ . We illustrate the connection
between yf (t), yf [k] and ŷf(t) for a special case in Figure 14.2 on the facing page.

We also note that, due to the zero order hold, u(t) is already a staircase function,
i.e.

u(t) = û(t) =
∞∑
k=0

u[k] (µ(t− k∆)− µ(t− (k + 1)∆)) (14.3.3)

The reason for introducing ŷf(t) is that it has a Laplace Transform. (Similarly
for û(t)). For example, the Laplace Transform of û(t) can be related to the Z–
transform of {u[k]} as follows:
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��

yf (t)

yf [k]

ŷf (t)

Figure 14.2. Connections between yf (t), yf [k] and ŷf (t) for yf (t) = sin(2πt),
∆ = 0.1

Û(s) = L{û(t)} =
∫ ∞

0

e−stû(t)dt (14.3.4)

=
∫ ∞

0

e−st
∞∑
k=0

u[k] (µ(t− k∆)− µ(t− (k + 1)∆)) dt

Interchanging the order of summation and integration, we have

U(s) = Û(s) =
∞∑
k=0

u[k]
(
e−k∆s − e−(k+1)∆s

s

)
(14.3.5)

=
∞∑
k=0

u[k]e−k∆s

[
1− e−∆s

s

]
= Uq

(
e∆s
)
Gho(s)

where Uq(z) is the Z–transform of {u[k]}. It is clear that
Y (s) = Go(s)Û(s) (14.3.6)

We also know that Yfq(z) is related to Uq(z) and the sampled reference input
Rq(z) via standard discrete transfer functions, i.e.

Uq(z) = Cq(z) [Rq(z)− Yfq(z)] (14.3.7)
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Multiplying both sides by Gho(s) and setting z = es∆ gives

[
Gho(s)Uq(es∆)

]
= −Cq(es∆)Gho(s)Yfq(es∆) (14.3.8)

+ C(es∆)Gho(s)Rq(es∆)

and, on using (14.3.5) for Û(s) and Ŷf (s) we obtain:

Û(s) = −Cq(es∆)Ŷf (s) + Cq(es∆)Gho(s)Rq(es∆) (14.3.9)

Similarly we can see that

Ŷf (s) = [FGoGh0]q (e
s∆)Û(s) (14.3.10)

Hence we can redraw the loop in Figure 14.1 on page 386 as in Figure 14.3 on
the facing page where all discrete functions (with subscript q) are evaluated at es∆

and all other functions are evaluated at s.
Figure 14.3 on the next page describes the hybrid system containing both dis-

crete and continuous signals. This diagram can be used to make various hybrid
calculations.

For example

The Laplace transform of the continuous output of the hybrid loop is given by

Y (s) =
[

Cq(es∆)Go(s)Gh0(s)
1 + Cq(es∆)[FGoGh0]q(es∆)

]
Rq(es∆) (14.3.11)

Remark 14.1. Although the continuous transfer function Go(s) in Figure 14.3 on
the facing page appears to be in open loop, feedback is actually provided around it
by the discrete loop. Thus feedback will ensure that unstable modes in Go(s) are
stabilized.

Remark 14.2. Note that, even when the reference input is a pure sinusoid, the
continuous time output will not, in general, be sinusoidal. This is because Rq(ejωo)
is a periodic function and hence it follows from (14.3.11) that Y (jω) will have
components at {ω = ωo + 2kπ

∆ ; k = . . . ,−1, 0, 1, . . .}.

✷✷✷
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Cq

Go
Y

Ŷf

−

+

U = Û
Gh0

Rq

[FGoGh0]q

Figure 14.3. Transfer function form of a sampled data control loop.

14.4 Analysis of Intersample Behavior

The starting point for analyzing intersample behavior is the set of results given in
subsection §14.3 for the continuous time output of a hybrid loop. Here we work
with the filtered output, yf (t).

From those results we have that

Yf (s) =
Cq(es∆)F (s)Go(s)Gh0(s)

1 + Cq(es∆) [FGoGh0]q (es∆)
Rq(es∆) (14.4.1)

Also, we recall that the sampled output response is given by

Yfq(es∆) = Toq(es∆)Rq(es∆) (14.4.2)

where Toq(z) is the shift domain complementary sensitivity, i.e.

Toq(z) =
Yfq(z)
Rq(z)

=
Cq(z) [FGoGh0]q (z)(

1 + Cq(z) [FGoGh0]q (z)
) (14.4.3)
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Also, the staircase approximation to the sampled output is given by

Ŷf (s) = Gh0(s)Yfq(es∆) (14.4.4)

From equations (14.4.1) and (14.4.4) the ratio of the continuous time output
response to the staircase form of the sampled output response is given by

Yf (s)
Ŷf (s)

=
F (s)Go(s)

[FGoGh0]q (es∆)
(14.4.5)

For the moment let us ignore the effect of the anti-aliasing filter. (This is reason-
able since one usually designs this filter to be somewhat transparent to the dynamics
anyway).

Then one sees from (14.4.5) that the ratio of the continuous time output response
to the staircase form of the sampled output response depends on the ratio

Θ(s) =
Go(s)

[GoGh0]q (es∆)
(14.4.6)

As shown in section §13.3, the discrete transfer function [GoGh0]q will typically
have sampling zeros. The effect of those zeros will be particularly significant at,
or near half the sampling frequency. Hence the ratio Θ(s) given in (14.4.6) can
be expected to become large in the vicinity of half the sampling frequency. We
illustrate this feature by considering the servo system in Example 13.5 on page 364.

Example 14.1. Compare the continuous time and discrete time responses for Ex-
amples 13.5 on page 364 and 13.6 on page 367.

Solution

The magnitude of the ratio Θ(jω) for Example 13.5 on page 364 is shown in Fig-
ure 14.4 on the next page. We see from this figure that the ratio is 1 at low fre-
quencies but at ω = π

∆ [rad/s] there is a ratio of, approximately 23 : 1 between the
frequency contents of the continuous time response and that of the staircase form of
the sampled output.

We next use the above analysis to compare the continuous frequency response of
the minimal prototype design and the dead-beat design for this plant.

(a) Minimal prototype design We recall that this design canceled the sampling
zero and led to Toq(z) = z−1 which is an all-pass transfer function. Hence a
sampled sine wave input in the reference leads to a sampled sine wave output
of the same magnitude. However Figure 14.4 on the facing page predicts that
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Figure 14.4. Frequency response of Θ(jω), ∆ = 0.1.

the corresponding continuous output will have 23 times more amplitude for a
sinusoidal frequency ω = π

∆ [rad/s]. The reason for this peak is easily seen.
In particular, the minimal prototype cancels the sampling zero in the discrete
system. However this sampling zero is near ω = π

∆ [rad/s]. Hence, it follows
from (14.4.6) that the continuous time output must have significant energy at
ω = π

∆ [rad/s].

(b) Minimum time dead-beat design By way of contrast, the minimum time
dead-beat design of Example 13.6 on page 367 did not cancel the sampling zeros
and led to the following discrete time complementary sensitivity functions:

Toq(z) =
Boq(z)
Boq(1)z2

=
0.5083z + 0.4917

z2
(14.4.7)

The magnitude of the frequency response of this complementary sensitivity is
shown in Figure 14.5 on the following page. We see that, in this case, the
discrete time gain drops dramatically at ω = π

∆ [rad/s] and hence, although
Figure 14.4 still applies with respect to Θ(jω), there is now little discrete time
response at π

∆ [rad/s] to yield significant intersample ripple.

We observe that this design makes no attempt to compensate for the sam-
pling zero, and hence there are no unpleasant differences between the sampled
response and the full continuous time response.

✷✷✷

14.5 Repetitive Control Revisited

We recall the repetitive controller described in section §13.7.1. There we found that
a digital control system could be designed to track (at the sample points) any arbi-
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Figure 14.5. Frequency response of the complementary sensitivity for a mini-
mum time dead-beat design.

trary periodic reference. However, we found that this involved having infinite loop
gain at high frequencies (relative to the sampling period) and this was undesirable
due to robustness effects. We therefore suggested modifying the idea so that only
frequency components up to some maximum frequency were exactly tracked.

Another reason for not using the idealized form of repetitive control comes from
intersample response issues. We have seen in section §13.7.1 that significant inter-
sample response will occur if one tries to enforce a significant discrete response at
frequencies approaching π/∆. However, this is exactly what the idealized form of
the repetitive controller aims to do. Thus, if a repetitive controller is to be applied
to a continuous time system then it is again a good idea to limit the bandwidth
over which exact tracking occurs.

14.6 Poisson Summation Formula

Finally we present a result which is frequently useful in the context of hybrid control.
In particular we wish to explicitly evaluate the Z-transform of a sequence {f(k∆)}
obtained by sampling, at a fixed period ∆, a continuous time signal f(t). We use
F (s) and Fq(z) to denote the Laplace transform of f(t) and the Z–transform of
{f(k∆)} respectively, i.e.

F (s) =
∫ ∞

o

f(t)e−stdt (14.6.1)

Fq(z) =
∞∑
k=0

f(k∆)z−k (14.6.2)

Then, subject to various regularity conditions, we have
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Fq(es∆) =
1
∆

∞∑
k=−∞

F

(
s+ jk

2π
∆

)
+

f(0)
2

(14.6.3)

This result is known as the Poisson summation formula . This formula is useful
in the analysis of hybrid control systems. For example, it shows that the frequency
response of a sampled signal is the superposition of infinitely many copies of the
corresponding continuous time frequency response.

To establish the result, we write

1
∆

∞∑
k=−∞

F

(
s+ jk

2π
∆

)
=

1
∆

lim
n−→∞

n∑
k=−n

∫ ∞

0

f(t)e−(s+jk 2π
∆ )tdt (14.6.4)

=
1
∆

lim
n−→∞

∫ ∞

0

f(t)Dn

(
πt

∆

)
e−stdt (14.6.5)

where Dn

(
πt
∆

)
is the special function given by

Dn

(
πt

∆

)
=

n∑
k=−n

e−jk πt∆ =
sin
(

(2n+1)πt
∆

)
sin
(
πt
∆

) (14.6.6)

The function Dn

(
πt
∆

)
is very frequently employed in proofs relating to conver-

gence of Fourier transforms. It is known as the Dirichlet kernel. To give an idea
what this function looks like, we plot it in Figure 14.6 for the case n = 8.
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Figure 14.6. Dirichlet kernel (n = 8)

An interesting fact which can be readily established is that, for all n,∫ ∆
2

0

Dn

(
πt

∆

)
=

∆
2

(14.6.7)
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As n → ∞, it can be seen that integrating ( a not too bizarre) function multiplied
by Dn

(
πt
∆

)
will yield the values of the function at t = ∆, 2∆, . . . scaled by ∆, and

the value of the function at t = 0 scaled by ∆
2 .

Thus we might envisage that (14.6.5) simply becomes

1
∆

lim
n→∞

∫ ∞

0

f(t)Dn

(
πt

∆

)
e−st =

f(0)
2

+
∞∑
k=1

f(k∆)e−sk∆ (14.6.8)

= Fq
(
e−s∆
)− f(0)

2
(14.6.9)

This essentially establishes (14.6.3).

Remark 14.3. The above development is somewhat heuristic but a formal proof of
the result (under very general conditions) is given in the references given at the end
of the chapter. Actually if f(t) is such that e−σtf(t) is of uniform bounded variation
for some σ ∈ R, then (14.6.3) holds for every s such that �{s} > σ.

14.7 Summary

• Hybrid analysis allows one to mix continuous and discrete time systems prop-
erly.

• Hybrid analysis should always be utilized when design specifications are par-
ticularly stringent and one is trying to push the limits of the fundamentally
achievable.

• The ratio of the magnitude of the continuous time frequency content at fre-
quency ω to frequency content of the staircase form of the sampled output is

Θ(s) =
Go(s)

[GoGh0]q (es∆)

• The above formula allows one to explain apparent differences between the
sampled and continuous response of a digital control system.

• Sampling zeros typically cause [GoGh0]q (e
jω∆) to fall in the vicinity of ω = π

∆ ,
i.e. |Θ(jω)| increases at these frequencies.

• It is therefore usually necessary to ensure that the discrete complementary
sensitivity has been reduced significantly below 1 by the time the folding
frequency, π

∆ , is reached.

• This is often interpreted by saying that the closed loop bandwidth should be
20%, or less, of the folding frequency.
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• In particular, it is never a good idea to carry out a discrete design which either
implicitly or explicitly cancels sampling zeros since this will inevitably lead to
significant intersample ripple.

14.8 Further Reading

Intersample issues

Araki, M., Ito, Y., and Hagiwara, T. (1996). Frequency response of sample-data
systems. Automatica, 32(4):483–497.

Chen, T. and Francis, B. (1995). Optimal Sample-Data Control Systems. Springer–
Verlag.

Feuer, A. and Goodwin, G.C. (1996). Sampling in Digital Signal Processing and
Control. Birkäusser Boston, Cambridge, Mass.

Goodwin, G.C. and Salgado, M.E. (1994). Frequency domain sensitivity function
for continuous time systems under sample data control. Automatica, 30(8):1263–
1270.

Fundamental limitations in hybrid control systems

Braslavsky, J.H., Middleton, R.H., and Freudenberg, J.S. (1995). Frequency re-
sponse of generalized sampled-data hold function. Proceedings of the 34th CDC,
New Orleans, LA, 4:3596–3601.

Freudenberg, J.S., Middleton, R.H., and Braslavsky, J.H. (1995). Inherent design
limitations for linear sampled-data feedback systems. International Journal of
Control, 61(6):1387-1421.

Goodwin, G.C. and Salgado, M.E. (1994). Frequency domain sensitivity function
for continuous time systems under sample data control. Automatica, 30(8):1263–
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Poisson sampling formula

Braslavsky, J., Meinsma, G., Middleton, R., and Freundenberg, J. (1997). On a key
sampling fourmula relating the Laplace and Z- transforms. Systems and Control
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14.9 Problems for the Reader

Problem 14.1. Consider a plant having a nominal model with transfer function
given by

Go(s) =
−s+ 2

(s+ 2)(s+ 4)
(14.9.1)

Find an expression for the location of the zero for the sampled data function
[GoGh0]q(z), as a function of the sampling period ∆.

Problem 14.2. Assume that [GoGh0]q(z) is given by

[GoGh0]q(z) =
(z + 1.2)

(z − 0.5)2(z − 0.8)
(14.9.2)

If Go(s) is the transfer function of a third order system, find Go(s) for ∆ = 0.1,
0.5 and ∆ = 1 [s].

Problem 14.3. Evaluate the function Θ(jω) as in (14.4.6) for the functions and
sampling periods indicated below.

Go(s) =
1

(s− 1)(s+ 2)
∆ = 0.10

Go(s) =
e−0.4s

(s+ 0.5)(s+ 0.25)
∆ = 0.20

Go(s) =
1

s2 + 0.1s+ 1
∆ = 0.25

Problem 14.4. A digital feedback control loop is designed for a plant with nominal
model

Go(s) =
2

(10s+ 1)(5s+ 1)
(14.9.3)

A sample period of 0.5 [s] is used.

14.4.1 Synthesize a digital controller achieving (output) dead beat behavior in 2
sampling periods. Simulate the control loop and analyze the intersample re-
sponse.

14.4.2 Allowing the dead beat response to be achieved in 4 sampling intervals, find
a new controller which yields better intersample response.
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Problem 14.5. Assume a digital controller is needed for a plant having a nominal
model given by

Go(s) =
−0.25s+ 1

(0.25s+ 1)(s+ 1)
(14.9.4)

14.5.1 Synthesize a digital controller such that the loop tracks, as closely as possible,
a triangular wave reference with period 10∆, where the sampling period is
∆ = 0.05.

14.5.2 Simulate and evaluate your design. Discuss.

Problem 14.6. An idea that has been described in the control theory literature is
to use a more sophisticated hold function than a simple zero order hold. We recall
that from section §12.13.1 that a zero order hold can be modeled as follows:

Figure 14.7. Zero order hold

This can be generalized by simply replacing the Laplace Transform of the impulse
response of the zero order hold by a more general transfer function as shown in
Figure 14.8.

Figure 14.8. Generalized hold

14.6.1 Use the above ideas to show that the discrete model corresponding to a con-
tinuous plant Go(s) with generalized hold Ghg(s) is given by

Hoq(z) = Z [the sampled impulse response of Ghg(s)Go(s)] (14.9.5)
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Figure 14.9.

14.6.2 One way of forming a generalized hold is via piecewise constant functions.
Thus consider the pulse response shown in Figure 14.9.

Show that, for this generalized hold, we have

Ghg(s) =
m∑
k=1

e−(k−1)∆
2 sgk[1− e

−s∆
m ]

s
(14.9.6)

Problem 14.7. Consider the generalized hold described in (14.9.6). Say that this
is used with a continuous time model (in state space form):

ẋ = Ax+Bu (14.9.7)
y = Cx (14.9.8)

Show that the corresponding discrete time model takes the form:

x[k + 1] = Aqx[k] +Bgqu[k] (14.9.9)
y[k] = Cqx[k] (14.9.10)

where

Aq = eA∆ (14.9.11)

Bgq =
m∑
i=1

giΓi (14.9.12)

where
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Γi =
∫ i∆

m

(i−1)∆
m

eA(∆−τ)Bdτ (14.9.13)

Problem 14.8. Generalized holds can actually be used to (arbitrarily) shift the
discrete zeros. As an illustration consider the continuous system.

A =


−1 0

0 −2


 , B =


1
1


 , C =

[
2 −3

]
(14.9.14)

14.8.1 Obtain the corresponding discrete transfer function with ZOH and ∆ = 0.1.

14.8.2 Show that this discrete model is non-minimum phase with zero at 1.10573
and poles at 0.90484 and 0.81873.

14.8.3 Use a generalized hold as in (14.9.6) with m = 2 to obtain a discrete time
model having zero at 0.90484. This zero cancels the stable pole leading to the
discrete transfer function

Ggq(z) =
0.1

z − 0.81873
(14.9.15)

Problem 14.9. Problems 14.6 to 14.8 suggests that one can remove the effects of
discrete non-minimum phase zeros by use of a generalized hold. Hence one should
be able to increase the bandwidth of a closed loop system well beyond that which
would result from the use of a Z0H.

Explain why this is not a good idea (in general) by examining the difference
between the sampled and continuous output using (14.4.6). (Actually it is a bit
subtle). The continuous response appears to have less output response than the
discrete system. Thus the discrete system response must be being produced by folding
of higher frequency components to lower frequencies due to sampling.)

Problem 14.10. Illustrate the idea captured in Problem 14.9, by designing a min-
imal prototype controller for Ggq(z) given in (14.9.15).

Simulate the discrete closed loop response and compare with the corresponding
continuous system response using the same hold function and controller.

Discuss the result
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ADVANCED SISO
CONTROL
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PREVIEW

In this fifth part of the book we move onto some slightly more advanced topics in
SISO control. In particular, we show how to parameterize all linear time invariant
controllers that stabilize a given linear system. We then use this parameterization
to introduce optimization based methods for control system design. We then turn to
alternative methods for control system design based on state space models. These
methods provide us with a smooth transition to multivariable control systems which
will be the subject of the remaining parts of the book. Finally we introduce some
basic ideas related to the control of nonlinear systems.
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Chapter 15

SISO CONTROLLER
PARAMETERIZATIONS

15.1 Preview

Up to this point in the book we have seen many different methods for designing
controllers of different types. On reading all of this, one might be tempted to
ask if there wasn’t some easy way that one could specify all possible controllers
that, at least, stabilized a given system. This sounds, at first glance a formidable
task. However, we will show in this chapter that it is actually quite easy to give a
relatively straightforward description of all stabilizing controllers for both open loop
stable and unstable linear plants. This leads to an affine parameterization of all
possible nominal sensitivity functions. This affine structure, in turn, gives valuable
insights into the control problem and opens the door to various optimization based
strategies for design. The main ideas presented in this chapter include

• motivation for the affine parameterization and the idea of open loop inversion

• affine parameterization and Internal Model Control

• affine parameterization and performance specifications

• PID synthesis using the affine parameterization

• control of time delayed plants and affine parameterization. Connections with
the Smith controller.

• interpolation to remove undesirable open loop poles

15.2 Open Loop Inversion Revisited

In previous chapters we have discussed the basic nature of control design, the mod-
eling problem, key issues in feedback control loops, performance limitations and
various synthesis methods. Underlying these topics there is a set of basic con-
cepts, including the key notion that control implicitly and explicitly depends on

405
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plant model inversion. Thus, inversion is a convenient framework within which to
develop an alternative discussion of the control design problem.

In open loop control the input, U(s), can be generated from the reference signal
R(s), by a transfer function Q(s). This leads to an input-output transfer function
of the following form:

To(s) = Go(s)Q(s) (15.2.1)

This simple formula is the basis of the affine parameterization to be discussed
in this chapter. It highlights the fundamental importance of inversion, as To(jω)
will be 1 only at those frequencies where Q(jω) inverts the model. Note that
this is consistent with the prototype solution to the control problem described in
section §2.5.

A key point is that (15.2.1) is affine in Q(s). On the other hand, with a conven-
tional feedback controller, C(s), the closed loop transfer function has the form

To(s) =
Go(s)C(s)

1 +Go(s)C(s)
(15.2.2)

The above expression is nonlinear in C(s). This makes tuning C(s) to achieve
desired closed loop properties difficult. We are thus motivated to see if one could
retain the simplicity of (15.2.1) in a more general feedback setting. Actually com-
paring (15.2.1) and (15.2.2) we see that the former affine relationship holds if we
simply could parameterize C(s) in the following fashion:

Q(s) =
C(s)

1 + C(s)Go(s)
(15.2.3)

This is the essence of the idea presented in this chapter. In particular we will
use the idea of inversion to first design Q(s) in (15.2.1) and then use (15.2.3) to
determine the corresponding value of C(s).

15.3 Affine Parameterization. The Stable Case

15.3.1 The parameterization

Our starting point will be the relationship (15.2.3) between Q(s) and C(s). We can
invert this relationship to express C(s) in terms of Q(s) and Go(s):

C(s) =
Q(s)

1−Q(s)Go(s)
(15.3.1)
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This is known as the Youla parameterizationof all stabilizing controllers for
stable plants. The result is formalized in the following lemma.

Lemma 15.1 (Affine parameterization for stable systems). Consider a plant
having a stable nominal model Go(s) controlled in a one d.o.f. feedback architecture
with a proper controller. Then the nominal loop, see Figure 5.1 on page 120, is
internally stable if and only if Q(s) is any stable proper transfer function when the
controller transfer function C(s) is parameterized as in (15.3.1).

Proof

We first note that the four sensitivity functions defined in (5.3.1) to (5.3.4), can be
written, using (15.3.1), as

To(s) = Q(s)Go(s) (15.3.2)
So(s) = 1−Q(s)Go(s) (15.3.3)
Sio(s) = (1−Q(s)Go(s))Go(s) (15.3.4)
Suo(s) = Q(s) (15.3.5)

Necessity and sufficiency can then be established as follows

Necessity

From equation (15.3.5) we immediately conclude that stability of Q(s) is neces-
sary for internal stability.

Sufficiency

Equations (15.3.2 ) to (15.3.5), together with the assumption regarding stability
of Go(s), imply that stability of Q(s) is sufficient to ensure the stability of the four
sensitivity functions, and hence, to ensure the internal stability of the loop.

✷✷✷

The key point about the parameterization 15.3.1 is that it describes all possible
stabilizing linear time invariant controllers for the given linear time invariant plant
Go(s). All that we need to do (in the light of Lemma 15.1) is ensure that Q(s) is
chosen to be a stable transfer function.

The above parameterization can be made explicit if the feedback loop is redrawn
as in Figure 15.1.

This description for the controller can also be used to give expressions for the
achieved (or true) sensitivities. Using equations (5.9.15) to (5.9.19) from Chapter
5 we obtain
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Figure 15.1. Youla’s parameterization of all stabilizing controller for stable
plants

S(s) = (1−Q(s)Go(s))S∆(s) = So(s)S∆(s) (15.3.6)
T (s) = Q(s)Go(s)(1 +G∆(s))S∆(s) (15.3.7)
Si(s) = (1−Q(s)Go(s))(1 +G∆(s))S∆(s)Go(s) (15.3.8)
Su(s) = Q(s)S∆(s) (15.3.9)

S∆(s) =
1

1 +Q(s)Gε(s)
(15.3.10)

where Gε(s) and G∆(s) are the additive and multiplicative modeling errors, respec-
tively, as defined in section §4.12.

15.3.2 Design considerations

We see, from equations (15.3.2) to (15.3.5), that by use of Q(s) we can shape one
of the four nominal sensitivities. The remaining three are then, of course, specified
by this choice. A common objective is to initially focus on the shaping of So(s). A
typical requirement is that |So(jω)| be small at low frequencies and then rise to 1 at
high frequencies. The latter requirement is employed so as to reduce |To(jω)| at high
frequencies, which is usually required to ensure that high frequency measurement
noise is rejected by the control loop and to provide robustness to modeling errors.
Under these circumstances it would seem that a reasonable choice for Q(s) might
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be:

Q(s) = FQ(s)[Go(s)]−1 (15.3.11)

where [Go(s)]−1 is the exact inverse of Go(s). Not unexpectedly, we see that inver-
sion plays a central role in this prototype solution.

The transfer function FQ(s) plays a key role in controller design as we shall see
below.

Although the design proposed in (15.3.11) is a useful starting point it will usually
have to be further refined to accommodate more detailed design considerations. In
particular, we will investigate the following issues:

• non minimum phase zeros

• model relative degree

• disturbance rejection

• control effort

• robustness

15.3.3 Non minimum phase zeros

Recall that, provided Go(s) is stable, then Q(s) only needs to be stable to ensure
closed loop stability. However, this implies that, if Go(s) contains NMP zeros, then
they cannot be included in [Go(s)]−1 in equation (15.3.11). One might therefore
think of replacing (15.3.11) by

Q(s) = FQ(s)Gi
o(s) (15.3.12)

where Gi
o(s) is a stable approximation to [Go(s)]−1. For example, if one factors

Go(s) as:

Go(s) =
Bos(s)Bou(s)

Ao(s)
(15.3.13)

where Bos(s) and Bou(s) are the stable and unstable factors in the numerator,
respectively, with Bou(0) = 1, then a suitable choice for Gi

o(s) would be

Gi
o(s) =

Ao(s)
Bos(s)

(15.3.14)
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15.3.4 Model relative degree

To have a proper controller it is necessary that Q(s) be proper. Thus in view of
(15.3.12) and (15.3.14) it is necessary that the shaping filter, FQ(s), have relative
degree at least equal to the negative of that of [Gi

o(s)]−1. Conceptually, this can be
achieved by including factors of the form (τs + 1)nd (τ ∈ R+) in the denominator.
In this form, nd is chosen so as to make Q(s) at least biproper, and τ should be
chosen to meet the necessary design trade-offs.

15.3.5 Disturbance rejection

(a) Steady state errors

Steady state errors due to input and output disturbances can be reduced to zero
if Q(jω) is the exact inverse of Go(jω) in all frequency bands where the input
and/or output disturbances have significant energy. This will yield zero sensitiv-
ity and zero input sensitivity in those bands. The affine parameterization can
be generalized to include the case when the input and output disturbance en-
ergies are concentrated at certain known frequencies. Specifically, we have from
C(s) = Q(s) (1−Q(s)Go(s))

−1, that the controller has integral action if and only
if Q(0) = [Go(0)]−1. Note, however, that this way of formulating the disturbance
rejection problem does not capture the remaining solution space in terms of the
degrees of freedom available to the designer. Such a parameterization is provided
by the following result.

Lemma 15.2. Consider a stable model Go(s) with (input and/or output) distur-
bance at zero frequency. Then, a one d.o.f. control loop, giving zero steady state
tracking error, is stable if and only if the controller C(s) can be expressed as in
(15.3.1) where Q(s) satisfies

Q(s) = sQ(s) + [Go(0)]−1Qa(s) (15.3.15)

where Q(s) is any stable transfer function, and Qa(s) is any stable transfer function
which satisfies Qa(0) = 1.

Proof

• Sufficiency

We see that if Q(s) and Qa(s) are stable, then so is Q(s) and this implies that
the loop is stable. Also, we see that (15.3.15) implies that C(s) contains an
integrator.

• Necessity

Consider a controller which stabilizes the model in closed loop and also yields
zero steady state error at D.C. This is equivalent to saying that the nominal
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complementary sensitivity is 1 at D.C. From equation (15.3.2) we see that this
is also equivalent to having Q(0)− [Go(0)]−1 = 0, i.e. Q(s)− [Go(0)]−1 is an
arbitrary stable function which has a zero at s = 0. A characterization of all
such transfer functions is

Q(s)− [Go(0)]−1 = s

[
Q(s) +

Qb(s)
s

]
where Qb(0) = 0 (15.3.16)

Equation (15.3.16) shows that any Q(s) giving zero steady state error for
constant reference and/or disturbances, can be written as

Q(s) = sQ(s) + [Go(0)]−1[1 +Go(s)Qb(s)] where Qb(0) = 0
(15.3.17)

The result follows with

Qa(s) = 1 +Go(s)Qb(s) (15.3.18)

✷✷✷

Remark 15.1. We observe that the simplest choice in (15.3.15) is Qa(s) = 1.

Lemma 15.3. Consider a stable model Go(s) and assume that the input distur-
bance has frequency components at ω1, ω2, . . . , ωl. Then, a one d.o.f. control loop
yields zero steady state tracking errors if, and only if, the controller C(s) can be
expressed as in (15.3.1) where Q(s) satisfies

Q(s) =
NQ(s)
DQ(s)

=
N1(s)

∏l
i=1(s

2 + ω2
i ) +N2(s)

DQ(s)
(15.3.19)

where NQ(s), N1(s), N2(s) and DQ(s) are real polynomials in s with DQ(s) stable
and

N2(jωi) = DQ(jωi)[Go(jωi)]−1 where i = 1, 2, . . . , l (15.3.20)

Proof

• Sufficiency

We see that, since DQ(s) is a stable polynomial, then Q(s) is stable and this
implies that the loop is stable. Also, we see from (15.3.19) and (15.3.20) that
Q(jωi) = [Go(jωi)]−1 and thus, C(±jωi) = ∞ for i = 1, 2, . . . l, i.e. perfect
model inversion is achieved at this set of frequencies.
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• Necessity

Consider a controller which stabilizes the model in closed loop and also yields
zero steady state error for disturbances at frequencies ω = ω1, ω2, . . . , ωl.

Denote the numerator of Q(s) by NQ(s) and its denominator by DQ(s). If we

divide NQ(s) by the polynomial Pd(s)
�
=
∏l

i=1(s
2+ω2

i ) we obtain a polynomial
result N1(s) and a remainder N2(s), i.e.

NQ(s)
Pd(s)

= N1(s) +
N2(s)
Pd(s)

(15.3.21)

from where (15.3.19) follows, on identifying N1(s) as N1(s) and N2(s) as
N2(s).

Furthermore, the zero steady state error condition is equivalent to saying that
the nominal input sensitivity is 0 at s = ±jωi for i = 1, 2, . . . l. From equation
(15.3.4) we see that this is also equivalent to having Q(±jωi) = [Go(±jωi)]−1,
which requires that (15.3.20) be satisfied.

✷✷✷

Remark 15.2. We note that in (15.3.19), a possible choice for N2(s) is

N2(s) = DQ(s)
2l∑
i=1

(τjωi + 1)2l−1[Go(jωi)]−1
∏

k∈Ω2l,i

s− jωk
jωi − jωk

(15.3.22)

where τ > 0, ωl+i = −ωi for i = 1, 2, . . . , l, Ω2l,i
�
= {1, 2, . . . , 2l} − {i} and

DQ(s) = DQ(s)(τs + 1)2l−1 (15.3.23)

We can then parameterize Q(s) as

Q(s) = Q(s)
l∏

i=1

(s2 + w2
i ) +

2l∑
i=1

[Go(jωi)]−1
∏

k∈Ω2l,i

s− jωk
jωi − jωk

(15.3.24)

The above lemmas allow us to parameterize the control problem satisfying steady
state constraints while preserving the affine structure of the sensitivity functions in
the design variable Q(s). We will make use of these parameterizations in Chapter
16 in the context of control system design via optimization.
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(b) Disturbance rejection trade-offs

Focusing on disturbances and noise only, we see from chapter 5 that the nominal
output response is given by

Yo(s) =− To(s)Dn(s) + So(s)Do(s) + Sio(s)Di(s)
=−Q(s)Go(s)Dn(s) + (1−Q(s)Go(s))Do(s)
+ (1−Q(s)Go(s))Go(s)Di(s)

(15.3.25)

With the choices (15.3.12) and (15.3.14) we see that

Yo(s) =− (FQ(s)Bou(s))Dn(s) + (1− FQ(s)Bou(s))Do(s)
+ (1− FQ(s)Bou(s))Go(s)Di(s)

(15.3.26)

As we know, the first two transfer functions on the right hand side add to one
(So(s) + To(s) = 1).

A more subtle trade-off occurs between Do and Di. We can use FQ(s) to cancel
any desired open loop poles in Si(s), but then these poles necessarily occur as zeros
in So, as shown in subsection §8.6.3. In view of the impact of both poles and zeros
on performance as discussed in Chapter 8, we see that one has a definite trade off
between dealing with input disturbances and output disturbances. For example,
if one has a slow pole in Go(s), then this either appears as a slow pole in Sio(s),
which leads to a long settling time, or as a slow zero in So(s) with a consequential
sensitivity peak. This will be discussed further in sections 15.5 and 15.6 below.

The case when disturbance and measurement noise are present, and the plant
is non-minimum phase, is illustrated in the example below.

Example 15.1 (Non-minimum phase plant). Consider a one d.o.f control loop
where the plant has a nominal model given by

Go(s) =
−s+ 2

(s+ 2)(s+ 1)
(15.3.27)

Assume that there are output disturbances, which are infrequent abrupt changes.
The measurement noise is a signal with significant energy only in the frequency
region above 5[rad/s].

Design a controller C(s) using the affine parameterization approach and such
that the controller output u(t) does not contain significant noise components.

Solution

Considering only the nature of the output disturbance we require that

• The controller includes integration, i.e. Q(0) = [Go(0)]−1 = 1, to ensure zero
steady state error
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• The closed loop bandwidth must be as large as possible to provide fast distur-
bance compensation.

However, the noise requirement sets an upper bound for the loop bandwidth, say
ωc = 5[rad/s]. We note that the noise component in the controller output is given
by (15.3.5). We can then use filter synthesis theory, since FQ(s) must be a low
pass filter with cut off frequency ωc = 5[rad/s]. After iterating with different types
(Butterworth, Tchebyshev and elliptic) of different orders, a 4th order Butterworth
filter was chosen, i.e.

FQ(s) =
625

s4 + 13.0656s3 + 85.3553s2 + 326.6407s+ 625
(15.3.28)

The reader is encouraged to test other choices for FQ(s) using the SIMULINK
diagram in file qaff1.mdl.

✷✷✷

15.3.6 Control effort

We see from (15.3.3 ) and (15.3.1) that if we achieve So = 0 at a given frequency,
i.e. QGo = 1, then we have infinite gain in the controller C at the same frequency.
For example, say the plant is minimum phase, then we could choose Gi

o(s) = G−1
o .

However, using (15.3.12), we would then have

C(s) =
FQ(s)Gi

o(s)
1− FQ(s)

(15.3.29)

By way of illustration, say that we choose

FQ(s) =
1

(τs+ 1)r
(15.3.30)

then, the high frequency gain of the controller, Khfc, and the high frequency gain
of the model, Khfg, are related by

Khfc =
1

τrKhfg
(15.3.31)

Thus, as we make FQ(s) faster, i.e. τ becomes smaller, we see that Khfc in-
creases. This, in turn, implies that the control energy will increase. This conse-
quence can be appreciated from the fact that, under the assumption that Go(s) is
minimum phase and stable, we have that

Suo(s) = Q(s) =
[Go(s)]−1

(τs+ 1)r
(15.3.32)
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15.3.7 Robustness

The issue of modeling errors was introduced in section §4.12. A key observation was
that modeling errors are usually significant at high frequencies. This observation
was central to the analysis of robustness carried out in section §5.9. A fundamental
result in that analysis was that, in order to ensure robustness, the closed loop
bandwidth should be such that the frequency response |To(jω)| rolls off before the
effects of modeling errors become significant.

Now say we choose Q(s) as in (15.3.12) then

To(s) = FQ(s)Bou(s) (15.3.33)

Thus, in the framework of the affine parameterization under discussion here, the
robustness requirement can be satisfied if FQ(s) reduces the gain of To(jω) at high
frequencies. This is usually achieved by including appropriate poles in FQ(s). Of
course, reducing |To(jω)| to a value � 1 beyond some frequency necessarily means
that So(s) tends to 1 beyond the same frequency.

15.3.8 Choice of Q. Summary for the case of stable open loop
poles

We have seen that a prototype choice for Q(s) is simply the inverse of the open loop
plant transfer function Go(s). However, this “ideal” solution needs to be modified
in practice to account for the following:

• Non-minimum phase zeros. Since internal stability precludes the cancellation
of these zeros, they must appear in To(s). This implies that the gain of Q(s)
must be reduced at these frequencies to avoid poor transient response, as
discussed in Chapter 8.

• Relative degree. Excess poles in the model must necessarily appear as a lower
bound for the relative degree of To(s), since Q(s) must be proper to ensure
that the controller C(s) is proper.

• Disturbance trade-offs. Whenever we roll To off to satisfy measurement noise
rejection, we necessarily increase sensitivity to output disturbances at that
frequency. Also, slow open loop poles must either appear as poles of Sio(s) or
as zeros of So(s), and in either case there is a performance penalty.

• Control energy. All plants are typically low pass. Hence, any attempt to make
Q(s) close to the model inverse necessarily gives a high pass transfer function
from Do(s) to U(s). This will lead to large input signals and may lead to
controller saturation.

• Robustness. Modeling errors usually become significant at high frequencies,
and hence to retain robustness it is necessary to attenuate To, and hence Q,
at these frequencies.
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15.4 PID Synthesis using the Affine Parameterization

In this section we will illustrate the application of the affine parameterization by
using it to develop synthesis strategies for PI and PID controllers when all open
poles are stable (and hence acceptable as closed loop poles).

That PID design is possible by selecting Q(s) is no surprise since (15.3.1) covers
all stabilizing controllers for an open loop stable plant model and it must therefore
also include the PID architecture when applied to stable plants.

15.4.1 Plant models for PID control

In the sequel we will consider the following models:

Go(s) =
Ko

νos+ 1
first order (15.4.1)

Go(s) =
Koe

−sτo

νos+ 1
time-delayed first order (15.4.2)

Go(s) =
Ko

s2 + 2ζoωos+ ω2
o

relative degree 2 resonant (15.4.3)

Go(s) =
Ko(bos+ 1)

s2 + 2ζoωos+ ω2
o

; bo > 0 relative degree 1 resonant (15.4.4)

Go(s) =
Ko(−bos+ 1)

s2 + 2ζoωos+ ω2
o

; bo > 0 non-minimum phase resonant (15.4.5)

In the above models all coefficients are assumed to be positive.
Together these models cover many systems met in industrial applications. In

particular, (15.4.2 ) usually occurs in applications with transport delays and (15.4.3)-
(15.4.5) typically occur in electro-mechanical systems with resonant structures.

15.4.2 First order models

In this subsection we consider the model (15.4.1)

Go(s) =
Ko

νos+ 1

We employ the affine synthesis methodology. Since there are no unstable zeros,
the model is exactly invertible. We then choose

Gi
o(s) = [Go(s)]−1 =

νos+ 1
Ko

(15.4.6)

In order for Q(s) to be biproper, FQ(s) must have relative degree 1, such as
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FQ(s) =
1

αs+ 1
(15.4.7)

Hence

Q(s) = FQ(s)Gi
o(s) =

νos+ 1
Ko(αs+ 1)

(15.4.8)

and the controller (15.3.1) becomes

C(s) =
Q(s)

1−Q(s)Go(s)
=

νos+ 1
Koαs

=
νo
Koα

+
1

Koαs
(15.4.9)

which is a PI controller with

KP =
νo
Koα

KI =
1

Koα
(15.4.10)

With these controller parameters, the nominal complementary sensitivity be-
comes

To(s) = Q(s)Go(s) = FQ(s) =
1

αs+ 1
(15.4.11)

where α becomes a tuning parameter. Hence, choosing α smaller makes the loop
faster, whereas a larger value for α slows the loop down. With this controller,
output disturbances are rejected with the nominal sensitivity function

So(s) = 1− To(s) = 1− FQ(s) =
αs

αs+ 1
(15.4.12)

Again, choosing a small value for α rejects the output disturbance faster than a
large value for α. This effect is shown in Figure 15.2 on the next page, where the
response to an output step disturbance is shown for α = 0.1, 0.5, 1.0 and 2.0.

However, as discussed in Chapter 8, α cannot be chosen arbitrarily small be-
cause of actuator limitations and robustness considerations. Still, performing the
experiment which leads to Figure 6.6 on page 165, and provided that t0 ≈ t1, the
relationships in (15.4.10) provide a simple method for PI controller design with a
single easily tuned parameter α. Furthermore, if the time constant νo or gain Ko

happens to be time varying in a known way, the controller can be easily adapted,
since KP and KI in (15.4.10) are explicitly expressed in terms of these values.
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Figure 15.2. Effect of α on output disturbance rejection

15.4.3 Second order models with medium damping

Next consider the design of PID controllers for second order models of the form
(15.4.3) to (15.4.5). Throughout this subsection we assume that the plant is medium
well damped. The exact meaning of medium versus light damping, regarding design,
depends on the size of the prevalent modeling errors; typically, however, the design
in this subsection is applicable for damping factors larger than, say, 0.6.

We consider initially the relative degree 2 model (15.4.3).
Since there are also no unstable zeros, we can choose

Gi
o(s) = [Go(s)]−1 =

s2 + 2ζoωos+ ω2
o

Ko
(15.4.13)

In order to ensure biproperness of Q(s) = FQ(s)Gi
o(s), FQ(s) must have relative

degree 2, typically

FQ(s) =
1

α2s2 + α1s+ 1
(15.4.14)

Then, the equivalent unity feedback controller becomes

C(s) =
Q(s)

1−Q(s)Go(s)
=

FQ(s)Gi
o(s)

1− FQ(s)Gi
o(s)

=
s2 + 2ζoωos+ ω2

o

Ko(α2s2 + α1s)
(15.4.15)

and the equivalent PID controller has proportional gain

KP =
2ζoωoα1 − α2ω

2
o

Koα2
1

(15.4.16)
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integral gain

KI =
ω2
o

Koα1
(15.4.17)

derivative gain

KD =
α2

1 − 2ζoωoα1α2 + α2
2ω

2
o

Koα3
1

(15.4.18)

and derivative time constant

τD =
α2

α1
(15.4.19)

It is again useful to parameterize the nominal closed loop complementary sen-
sitivity function directly in terms of the desired closed loop natural frequency ωcl
and damping ψcl, by choosing

α2 =
1
ω2
cl

; α1 =
2ψcl

ωcl
(15.4.20)

that is

To(s) = FQ(s) =
ω2
cl

s2 + 2ψclωcls+ ω2
cl

(15.4.21)

Then, inserting (15.4.20) into (15.4.16) to (15.4.19), yields the PID gains

KP =
4ζoψclωoωcl − ω2

o

4Koψ2
cl

(15.4.22)

KI =
ω2
oωcl

2Koψcl
(15.4.23)

KD =
4ψ2

cl ω
2
cl − 4ζo ωo ζcl ωcl + ω2

o

8Ko ψ3
cl ωcl

(15.4.24)

τD =
1

2ψclωcl
(15.4.25)

Compared to the classical PID techniques of Chapter 6, this model based ap-
proach has several advantages. In particular, the PID gains (15.4.22)-(15.4.25) are
explicit functions of the desired closed loop model (15.4.21) which allows systematic
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trade-offs decisions. They are also explicit in the model parameters which allows
gain-scheduling to changing parameters without additional effort.

Similar expressions can be derived for the relative degree 1 model (15.4.4), by
using the inverse

Gi
o = [Go(s)]−1 =

s2 + 2ζoωos+ ω2
o

Ko(bos+ 1)
(15.4.26)

and the relative degree 1 filter

FQ(s) =
1

αs+ 1
(15.4.27)

For the non-minimum phase model (15.4.5), an appropriate stable inverse ap-
proximation is given by

Gi
o(s) =

s2 + 2ζoωos+ ω2
o

Ko
(15.4.28)

since the unstable zero cannot be inverted. To ensure biproperness of Q(s), FQ(s)
must have relative degree 2, and so (15.4.14) is again an appropriate choice.

15.4.4 Lightly damped models

In this subsection we consider plant models of the type (15.4.3), with a very small
value for the damping factor ζo. We must warn the reader that the control of lightly
damped systems is an inherently difficult problem. The aim of this subsection is to
discuss the main issues associated with the problem and to highlight the difficulties
involved in solving it.

The problem with very lightly damped systems is the sensitivity at the reso-
nance peaks, which have increasingly higher gains for lower damping ratios. This
results in severe performance degradation even for small errors in the model param-
eters, when the closed loop is beyond the location of the open loop resonance. To
better appreciate the nature of the problem, we apply the general model based con-
troller (15.3.1) to the true plant model G(s). As usual, the achieved complementary
sensitivity is

T (s) =
G(s)C(s)

1 +G(s)C(s)
=

G(s)Q(s)
1 +Q(s)(G(s) −Go(s))

(15.4.29)

To avoid cluttering the analysis by including other plant limitations such as non
minimum phase zeros, we assume, for clarity, that the model is exactly invertible,
and thus we can choose

Gi
o(s) = [Go(s)]−1 (15.4.30)
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and so

Q(s) = FQ(s)[Go(s)]−1 (15.4.31)

This yields

T (s) =
FQ(s)G(s)

FQ(s)(G(s) −Go(s)) +Go(s)
=

FQ(s)G(s)
FQ(s)G(s) + (1 − FQ(s))Go(s)

(15.4.32)

We recall now that the usual control objective of set-point tracking requires
T (jω) to be unity at the relevant frequencies. Equation (15.4.32) highlights that
this can be achieved in two alternative ways. One obvious way is first to use a
very good model at those frequencies (Gε = G−Go small), then the filter FQ(s) is
shaped to be close to unity at those frequencies.

Note also that T (jω) is also close to unity at those frequencies where |Go(jω)(1−
FQ(jω))| is small. If the nominal model damping is close to that of the true system,
then the bandwidth of FQ(s) must be very large to achieve this. A large bandwidth
FQ(s) would have severe consequences regarding loop robustness. An alternative
strategy would be to use a well damped model, even if the true system is not.
Caution has to be exercised in this approach since we have to ensure robust stability.

These arguments suggest that, at important tracking frequencies, one should
choose FQ and Go such that |Go(jω)(1− FQ(jω))| is small.

To see the implications for lightly damped systems, we return to the model
(15.4.3) and assume that the true system is of the form:

G(s) =
K

s2 + 2ζωns+ ω2
n

(15.4.33)

We assume also that FQ(s) is the same as in the previous subsection, i.e.

FQ(s) =
ω2
cl

s2 + 2ψclωcls+ ω2
cl

(15.4.34)

We consider a nominal model where there is no error in the damping factor, i.e
ζo = ζ. We also assume that the D.C gain in both the true system and the nominal
model, is 1, i.e. K = ω2

n and Ko = ω2
o . If we measure the frequency in units of ωo,

we obtain
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Go(s) =
1

s2 + 2ζs+ 1
(15.4.35)

G(s) =
x2

s2 + 2ζxs+ x2
(15.4.36)

FQ(s) =
v2

s2 + 2ψclvs+ v2
(15.4.37)

Gε(s) = (x− 1)s
(x+ 1)s+ 2ζx

(s2 + 2ζs+ 1)(s2 + 2ζxs+ x2)
(15.4.38)

G∆(s) = (x− 1)s
(x+ 1)s+ 2ζx
s2 + 2ζxs+ x2

(15.4.39)

where s is now the normalized Laplace variable, and

x
�
=

ωn
ωo

; v
�
=

ωcl
ωo

(15.4.40)

.
To illustrate the nature and magnitude of modeling error due to a mismatch

between ωn and ωo, i.e. when x �= 1, we calculate and plot |Gε(jω)|, as a function
of the normalized frequency, for x = 0.9 and x = 1.1. The results are shown in
Figure 15.3.
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Figure 15.3. Additive modeling error for a lightly damped system (ζ = 0.01)

Figure 15.3 shows that the magnitude of the error has a peak of approximately
33[dB], in both cases. However, the similarity between the cases for x = 0.9 (over-
estimating the natural frequency) and x = 1.1 (underestimating the natural fre-
quency) is deceptive. To have a more accurate picture of the effects of modeling
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Figure 15.4. Root locus analysis for S∆(s) over and under estimating the natural
frequency

errors we recall the expression for the achieved or true sensitivity (15.3.6). If in
that expression we substitute (15.3.10), (15.3.12) and (15.4.30) we obtain

S(s) = (1−Q(s)Go(s))S∆(s) =
So(s)

1 + FQ(s)G∆(s)
(15.4.41)

Thus, since the nominal model is stable, robust stability is achieved if and only
if the Nyquist plot of FQ(jω)G∆(jω) does not encircle the point (−1, 0) in the
complex plane. This is equivalent to require the stability of an equivalent closed
loop in which the open loop transfer function is given by

FQ(s)G∆(s) =
v2

s2 + 2ψclvs+ v2
(x− 1)s

(x+ 1)s+ 2ζx
s2 + 2ζxs+ x2

(15.4.42)

Figure 15.4 shows two root locus diagrams. They correspond to the cases x = 0.9
and x = 1.1; in both cases, ζ = 0.01, ψcl = 0.7 and v = 2 . We see that for the
first case (overestimation) the true loop will be unstable even for small errors.
On the contrary, underestimation always yields a stable loop. The result for the
latter case must be interpreted with caution, since only mismatch in the natural
frequency has been considered. However, from this analysis it seems sensible, when
facing uncertainty in the value of the true natural frequency, to choose the nominal
natural frequency equal to the lower bound known.

The above analysis highlights one of the main difficulties in the control of lightly
damped systems, namely the extreme sensitivity to modeling errors. Another major
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problem arises in the presence of input disturbances when the model poles are
canceled. The uncontrollable poles appear in the input sensitivity and the associated
modes are lightly damped.

15.4.5 Models with time delays using Padé approximation

We next turn to first order models with time delay as in (15.4.2). The main difficulty
in this type of system arises from the factor e−sτo , which is non invertible and
irrational. Initially, we will replace the time delay term by its so called first order
Padé-approximation given by

e−sτo ≈ 2− sτo
2 + sτo

(15.4.43)

If we substitute (15.4.43) in (15.4.2) we obtain the rational model approximation

Go(s) ≈ Gop(s)
�
=

(−τoKo)s+ 2Ko

(τoνo)s2 + (τo + 2νo)s+ 2
(15.4.44)

Since this model is stable but non-minimum phase, we use an approximate
inverse given by

Gi
op =

(τoνo)s2 + (τo + 2νo)s+ 2
2Ko

(15.4.45)

A biproper Q(s) is obtained if FQ(s) is chosen to have relative degree 2, say

FQ(s) =
1

α2s2 + α1s+ 1
(15.4.46)

The unity feedback controller is then given by

Cp(s) =
Q(s)

1−Q(s)Gop(s)
=

FQ(s)Gi
op(s)

1− FQ(s)Gi
op(s)Gop(s)

=
(τoνo)s2 + (τo + 2νo)s+ 2

(2Koα2)s2 + (2Koα1 + τoKo)s

(15.4.47)

which according to Lemma 7.2 on page 185 is of PID type (7.3.2), with
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KP =
2τoα1 + 4νoα1 + τ2

o + 2τoνo − 4α2

4Koα2
1 + 4Koα1τo + τ2

oKo
(15.4.48)

KI =
2

2Koα1 + τoKo
(15.4.49)

KD =
(2Koα1 + τoKo)2(τoνo)− (2Koα2)(2Koα1 + τoKo)(τo + 2νo) + 8K2

oα
2
2

(2Koα1 + τoKo)3
(15.4.50)

τD =
2α2

2α1 + τo
(15.4.51)

Observe once again that the PID gains are given directly in terms of the model
parameters (15.4.2) and the design filter (15.4.46). The rather involved and nonlin-
ear nature of these expressions hints at the origins of why trial and error tuning of
a PID controller for time-delayed systems has traditionally been known to be cum-
bersome. The expressions given here, however, lead to a straightforward design.

Another advantage of these explicit expressions is that time delays are frequently
time-varying. This is the case, for example, where the time delay is due to a
transportation speed which varies with production requirements. If the speed is
measurable, the time delay can be computed on line and the PID gains (15.4.48) to
(15.4.51) can be adapted correspondingly.

An alternative approach is the Smith controller, presented in the next section.
The advantage of the Smith controller over the PID controller (15.4.48) to (15.4.51)
is that the Padé approximation is avoided; this tends to be an advantage if the time
delay τo is comparable to (or larger than) the dominant closed loop time constant.
However the resulting controller is not strictly of PID type since it introduces a
time delay element in the parallel model.

15.5 Affine Parameterization for Systems having Time Delays

A classical method for dealing with pure time delays was to use a dead-time com-
pensator. This idea was introduced by Otto Smith in the 1950’s. Here we give this
a modern interpretation via the affine parameterization.

Smith’s controller is based upon two key ideas: affine synthesis and the recogni-
tion that delay characteristics cannot be inverted. The structure of the traditional
Smith controller can be obtained from the scheme in Figure 15.6, which is a partic-
ular case of the general scheme shown in Figure 15.1 on page 408.

In Figure 15.5, the nominal model is given by the product of a time delay factor
and a rational transfer function, i.e.

Go(s) = e−sτGo(s) (15.5.1)

then, from (15.3.2), the nominal complementary sensitivity is
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To(s) = e−sτGo(s)Q(s) (15.5.2)

Equation (15.5.2) suggests that Q(s) must be designed considering only the
rational part of the model, Go(s), since the delay cannot be inverted. To carry out
the design, the procedures and criteria discussed in the previous sections can be
used. In particular, we need an approximate (stable, causal and proper) inverse for
Go(s) = e−sτGo(s). Since the delay has no causal inverse, we seek an approximate
inverse for Go(s). This can be achieved directly as in (15.3.14). Alternatively, one
can use the idea of feedback to generate a stable inverse. Thus we might conceive
of evaluating Q(s) by

Q(s) =
C(s)

1 + C(s)Go(s)
(15.5.3)

+

+

Di(s)

+
+

Do(s)

+

+

+

Dn(s)

Y (s)
+

−
EQ(s)

Plant
U(s)R(s)

Ym(s)

e−sτ Ḡo(s)

Q(s)

−

Controller

Figure 15.5. Smith’s controller (Q form)

When |C(jω)| is large, then Q(jω) ≈ [Go(jω)]−1.
If Q(s) is implemented via (15.5.3), then the structure in Figure 15.6 on the

facing page is obtained. This is the traditional form for the Smith controller, as was
presented in section §7.4. However, the form given in Figure 15.5 is equally valid.

Remark 15.3. It is sometimes said that one should not use Smith controllers due
to their sensitivity to the modeling errors. However, Lemma 15.1 on page 407
shows that the structure given in Figure 15.5 covers all stabilizing controllers.
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− +

+

Di(s)

+

Do(s)

+

+

Dn(s)

Y (s)
+

Plant
U(s)R(s)

Ym(s)

C(s)

(e−sτ − 1)Ḡo(s) −

+

Controller

+

Figure 15.6. Smith’s controller (traditional form)

Hence, the only question remaining is how to choose Q(s). In this context there are
inescapable bandwidth limitations issues associated with robustness. The reader is
invited to reread section §8.6.2.

The ideas presented above are applied in the following example.

Example 15.2. Consider a plant with a nominal model given by

Go(s) =
e−s

2s+ 1
(15.5.4)

Synthesize a controller which provides good reference tracking in the frequency
band [0, 1][rad/s].

Solution

We use the structure shown in Figure 15.5 and thus only pay attention to the rational
part of Go(s). A simple approach is to make

Q(s) =
2s+ 1

s2 + 1.3s+ 1
(15.5.5)

which leads to

To(s) =
e−s

s2 + 1.3s+ 1
(15.5.6)
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The performance of this design can be evaluated, via simulation, using SIMULINK
file qaff2.mdl. Using this schematic, the reader can, among other things, assess
the effect of modeling errors.

A more elaborate solution can be obtained if cancellation of the plant pole is
unacceptable, as we explore in the next section.

✷✷✷

Example 15.3 (Rolling Mill Thickness Control). We recall from Example 8.3
on page 206, that there is an inescapable measurement delay associated with the use
of a downstream x-ray gauge to measure thickness in a rolling mill. Hence, if one
wishes to use this measurement for feedback control, then a Smith predictor archi-
tecture of the type shown in Figure 15.6 may well be appropriate. Two practical
comments are

(i) The delay τ is actually a function of strip velocity and thus it may be desirable
to schedule the delay in the controller based on strip speed.

(ii) Robustness issues precludes the use of excessively high bandwidth for the con-
troller C(s).

✷✷✷

15.6 Undesirable Closed Loop Poles

15.6.1 Interpolation constraints

Up to this point it has been implicitly assumed that all open loop plant poles were
stable and hence could be tolerated in the closed loop input sensitivity function
Sio(s). In practice we need to draw a distinction between stable poles and desirable
poles. For example, a lightly damped resonant pair might well be stable but is
probably undesirable. Say the open loop plant contains some undesirable (including
unstable) poles. The only way to remove poles from the complementary sensitivity
is to choose Q(s) to contain these poles as zeros. This results in cancellation of these
poles from the product Q(s)Go(s) and hence from So(s) and To(s) (see equations
(15.3.1), (15.3.2)). However we see from (15.3.4) that the canceled poles may still
appear as poles of the nominal input sensitivity Sio(s), depending on the zeros of
1−Q(s)Go(s), i.e. the zeros of So(s). To eliminate these poles from Sio(s) we need
to ensure that the offending poles are also zeros of [1−Q(s)Go(s)]. The following
lemma summarizes the above observations.

Lemma 15.4 (Interpolation constraints to avoid undesirable poles). Con-
sider a nominal feedback control loop with one d.o.f. and assume Go(s) contains
undesirable (including unstable) open loop poles. We then have

a) Each of the sensitivity functions To(s), So(s), Sio(s) and Suo(s) will have no
undesirable poles if and only if the controller C(s) is expressed as in (15.3.1),
where Q(s) satisfies the following constraints:
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(i) Q(s) is proper stable and has only desirable poles.

(ii) Any undesirable poles of Go(s) are zeros of Q(s) with, at least, the same
multiplicity as Go(s).

(iii) Any undesirable poles of Go(s) are zeros of 1−Q(s)Go(s), with at least
the same multiplicity as Go(s).

b) When conditions (ii) and (iii) are satisfied, then all resultant unstable pole-
zero cancellations in C(s) induced by (15.3.1) should be performed ana-
lytically, prior to implementation

Proof

Part a) Follows immediately from equations (15.3.2) to (15.3.5).

Part b) Avoids undesirable (unstable) pole-zero cancellation inside the controller.

✷✷✷

Remark 15.4. In connection with part b) of the above result, the reader should note
the difference between an analytical and an implementation pole-zero cancellation.
This can be better understood by considering an example which involves the following
three transfer functions

H(s) =
4

(s+ 1)(s+ 4)
; H1(s) =

4
(s+ 1)(−s+ 2)

; H2(s) =
(−s+ 2)
(s+ 4)
(15.6.1)

We observe that H(s) = H1(s)H2(s). If the cancellation is performed prior
to implementation of the transfer function H(s) (analytic cancellation), no problem
arises. However, if we cascade the implementation of H1(s) with the implementation
of H2(s), internal instability arises, since then the cancellation will appear in the
implementation.

This distinction explains why the structure in Figure 15.1 on page 408 cannot
be used to implement a controller for unstable systems. Instead, the pole-zero
cancellations inherent in the interpolation constraints given in Lemma 15.4 on the
facing page must be performed prior to implementation

✷✷✷

We illustrate Lemma 15.4 on the preceding page by a simple example

Example 15.4. Consider a nominal model Go(s) given by

Go(s) =
6

(s+ 1)(s+ 6)
(15.6.2)
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Assume that the measurement noise limits the closed loop bandwidth to ω =
10[rad/s]. Under these conditions, a possible choice for Q(s) is

Q(s) = FQ(s)
(s+ 1)(s+ 6)

6
where FQ(s) = 1000

β1s+ 1
(s2 + 14s+ 100)(s+ 10)

(15.6.3)

where β1 is a free coefficient to be chosen later.
The relative degree of F (s) has been chosen equal to 2, to make Q(s) biproper.

Since To(s) = FQ(s) the choice of FQ(0) = 1 ensures exact inversion at ω = 0, i.e.
C(s) will have a pole at the origin.

We see that the controller is actually given by

C(s) =
Q(s)

1−Q(s)Go(s)
=

FQ(s)[Go(s)]−1

1− FQ(s)
=

(β1s+ 1)(s+ 1)(s+ 6)
6s(s2 + 24s+ 240− 1000β1)

(15.6.4)

Next, let us hypothesize that simply canceling the slow plant pole at s = −1 in
So(s) is inadequate since this would lead to a (relatively) slow pole in Sio(s), which,
in turn, would produce a slow response to input disturbances. To avoid this outcome,
it is desirable to further constrain Q(s) so that s = −1 is a zero of So(s). To achieve
this, we seek a value of β1 such that So(−1) = 0 (⇒ To(−1) = FQ(−1) = 1). Using
(15.6.3) we require

FQ(−1) = 1000
783

(1− β1) = 1 =⇒ β1 =
217
1000

(15.6.5)

We observe that, with this value for β1, the denominator of C(s) in (15.6.4) can
be factored as 6s(s+ 23)(s+ 1). We then see that (s+ 1) cancels in the numerator
and denominator of the controller leading to

C(s) =
(217s+ 1000)(s+ 6)

6000s(s+ 23)
(15.6.6)

From this last equation we see that only the pole at s = −6 will be uncontrollable
from the reference and controllable from the input disturbance.

15.6.2 PID design revisited

We return to the design of section 15.4.2 where a PI controller was synthesized for a
first order plant. We found that the design of section 15.4.2 (based on canceling the
open loop poles in C(s)) gave excellent output disturbance rejection. In chemical
processes, however, disturbances are frequently better modeled as occurring at the
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input to the system. We then recall that, the input disturbance response Yd(s) is
given by

Yd(s) = Sio(s)Di(s) (15.6.7)
Sio(s) = So(s)Go(s) (15.6.8)

Hence, when any plant pole is canceled in the controller, it remains controllable
from the input disturbance, and is still observable at the output. Thus the transient
component in the input disturbance response will have a mode associated with
that pole. Canceling slow poles thus has a deleterious effect on the response. For
example, consider again the design given in (15.4.6), (15.4.7). The response to a
unit step input disturbance is illustrated in Figure 15.7. Time has been expressed
in units of νo, and three cases have been considered. Each curve has been obtained
for a different value of α (measured relative to νo). These values have been chosen
to be 1, 2 and 5. In each case the plant model D.C. gain Ko has been set to 1. We
see that the response has a long tail and that changing α only scales the response
without changing its shape.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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α=0.5
α=0.2

Figure 15.7. Input disturbance rejection with plant pole cancellation, for differ-
ent values of α.

The origin of this problem is the cancellation of a pole in Go(s) with a zero in
C(s). As shown in subsection §15.6, the only way to remove the pole from Sio(s) is to
choose FQ(s) in such a way that the offending pole is a zero of So(s) = 1−Q(s)Go(s),
i.e. we require

So(−a) = 0 =⇒ To(−a) = FQ(−a) = 1 where a
�
=

1
νo

(15.6.9)

The following result shows how this can be achieved:



432 SISO Controller Parameterizations Chapter 15

Lemma 15.5. Consider the plant model (15.4.1) and the control scheme shown in
Figure 15.1 on page 408 where Q(s) = [Go(s)]−1FQ(s). Then a PI controller which
does not cancel the plant pole, is obtained as

C(s) = KP +
KI

s
with KP =

2ψclωclνo − 1
Ko

; KI =
νo
Ko

ω2
cl

(15.6.10)

where ψcl and ωcl are chosen to obtain a closed loop characteristic polynomial given
by

Acl(s) =
(

s

ωcl

)2

+ 2ψcl

(
s

ωcl

)
+ 1 (15.6.11)

Proof

We first parameterize FQ(s) as

FQ(s) =
β1s+ 1

α2s2 + α1s+ 1
(15.6.12)

where, to ensure that (15.6.11) is satisfied, we choose

α2 =
1
ω2
cl

; α1 = 2
ψcl

ωcl
(15.6.13)

Then we note that

So(s) = 1− FQ(s) =
(α2s+ α1 − β1)s
α2s2 + α1s+ 1

(15.6.14)

This leads to

C(s) =
To(s)
So(s)

[Go(s)]−1 =
(β1s+ 1)(νos+ 1)
Kos(α2s+ α1 − β1)

(15.6.15)

Thus, to obtain a PI controller which removes the open loop pole at −ν−1
o from

the input disturbance response, it is sufficient that

FQ(−a) = −aβ1 + 1
a2α2 − aα1 + 1

= 1 (15.6.16)
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This leads to the choice

a =
α1 − β1

α2
(15.6.17)

or

β1 = α1 − α2

νo
=

2ψclωclνo − 1
νoω2

cl

(15.6.18)

The result follows on noting that (15.6.15) leads to

C(s) =
FQ(s)

Go(s)(1 − FQ(s))
=

β1νo
α2Ko

+
νo

α2Ko

1
s

(15.6.19)

✷✷✷

Lemma 15.5 on the preceding page allows one to reduce the design problem to
the choice of one parameter. To do that, we first do a time scaling by νo, this implies
a frequency scaling by a factor of [νo]−1. If we choose a damping factor ψcl = 0.7,
then using (15.6.10) we have that

Go(s)C(s) =
s(1.4v − 1) + v2

s(s+ 1)
(15.6.20)

where v is the normalized value for ωcl and s has been also scaled by ωcl.
From (15.6.20) it is evident that the choice of one parameter (ωcl) determines the

loop performance. We recall that ωcl is a measure of the closed loop bandwidth, in
units of the plant model bandwidth, it thus becomes a meaningful tuning parameter.

To illustrate the application of the above result, we repeat the simulations in
Figure 15.7 on page 431 but this time using the controller given by (15.6.10). Also,
(15.6.11) is

(
s

ωcl

)2

+ 2ψcl

(
s

ωcl

)
+ 1 = (β1s+ 1) + sχo(νos+ 1) (15.6.21)

The response to a unit step input disturbance is shown in Figure 15.8 for three
different (normalized) values of ωcl. These values are 1, 2 and 5.

In contrast with the results in Figure 15.7 when cancellation was used, we now
see that the time response to an input disturbance can be changed both in shape
and scale. The difference can be appreciated by examining Figures 15.8 and 15.7
on page 431 for the case when a value of 5 is chosen for the ratio between the closed
loop and the plant bandwidths. Note, however, that (νos+ 1) now appears in the
numerator of So(s). Since Sio(s) = So(s)Go(s), it is inescapable that every open
loop pole either appears as pole in Sio or as zero in So(s).
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Figure 15.8. Input disturbance rejection without plant pole cancellation

15.6.3 Integrating models

In this subsection we consider a first order model with integrator:

Go(s) =
Ko

s(νos+ 1)
(15.6.22)

A free integrator, of the type appearing in this model, frequently models mass
accumulation, the rotational angle of a motor shaft or the position of a moving
object. Of course an integration is an undesirable, indeed unstable, closed loop pole
and thus we need to apply the methodology explained in section 15.6.

Recall from Lemma 15.4 on page 428 that the parameterization (15.3.1) is still
valid, but Q(s) must satisfy additional interpolation constraints. In this case there
are only two constraints, which originate from the presence of the pole at the origin.
In particular, internal stability requires that Q(s) and 1−Q(s)Go(s) both must have
a zero at the origin.

Since (15.6.22) has no unstable zero, we can choose

Gi
o(s) =

s(νos+ 1)
Ko

(15.6.23)

which requires, for properness of Q(s), that FQ(s) be at least of relative degree
2. Also, with this choice Q(s) = FQ(s)Gi

o(s) automatically satisfies one of the
constraints (Q(0) = 0). The second constraint is satisfied if FQ(s) is chosen such
that FQ(0) = 1. A valid choice for FQ(s) is, for instance, the one given in (15.4.46).
This leads to

C(s) =
FQ(s)[Go(s)]−1

1− FQ(s)
=

s(νos+ 1)
Kos(α2s+ α1)

(15.6.24)
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Again we notice that the controller (15.6.24) is obtained after an unstable pole
zero cancellation. This cancellation must be carried out analytically, i.e. prior to
implementation, see Remark 15.4 on page 429.

From a design point of view, (15.6.24) still has the shortcoming of not rejecting
constant input disturbances. This happens since Sio(s) does not have a zero at
the origin even though So(s) does. This is remedied if, by choosing FQ(s), the
sensitivity So(s) is forced to have two poles at the origin, then Sio(s) will have one
zero at the origin. The simplest choice for FQ(s) leading to this desired result is

FQ(s) =
FN (s)
FD(s)

=
α1s+ 1

α3s3 + α2s2 + α1s+ 1
(15.6.25)

Observe that the coefficients in the numerator coincide with the coefficients of
the same power of s in the denominator. The resulting sensitivity function is then

So(s) = 1− FQ(s) =
s2(α3s+ α2)

α3s3 + α2s2 + α1s+ 1
(15.6.26)

As a result, the input sensitivity becomes

Sio(s) = So(s)Go(s) =
Kos(α3s+ α2)

(α3s3 + α2s2 + α1s+ 1)(νos+ 1)
(15.6.27)

Hence, constant input disturbances are indeed rejected with zero steady state
error. The associated unity feedback controller is given by

C(s) =
(νoα1)s2 + (νo + α1)s+ 1

Kos(α3s+ α2)
(15.6.28)

which is once again a PID controller with

KP =
(νo + α1)α2 − α3

Koα2
2

(15.6.29)

KI =
1

Koα2
(15.6.30)

KD =
α2

2α1νo − α3α2νo − α3α2α1 + α2
3

Koα2
2

(15.6.31)

τD =
α3

α2
(15.6.32)

(15.6.33)

As in the previous cases, the PID parameters (15.6.29) to (15.6.32) are given
explicitly in terms of the parameters of the integrating model (15.6.22) and the
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design filter (15.6.25). This filter, in turn, is designed by first selecting the closed
loop characteristic polynomial α3s

3 + α2s
2 + α1s+ 1, which then induces the zero

of α1s + 1. We recall that a general third order characteristic polynomial can be
obtained by combining a complex conjugate pair and a simple real pole, i.e. we can
write

FD(s) =
(

1
ω2
cl

s2 +
2ψcl

ωcl
s+ 1
)
(αcs+ 1) (15.6.34)

leading to

FN (s) =
(
2ψcl + αcωcl

ωcl
s+ 1
)

(15.6.35)

Typically the single real pole is placed at the same distance from the origin as
the complex pair, that is,

αc =
1
ωcl

(15.6.36)

and the damping factor is chosen as ψcl = 0.7; thus the third order filter, and
hence the PID controller, are parameterized in terms of a single convenient tuning
parameter, ωcl.

Nominally, if the true system equals the model, the complementary sensitivity
is given by FQ(s). We see that there is a zero located at

zo = − ωcl
2ψcl + 1

(15.6.37)

Hence, the closed loop characteristic polynomial induces a zero which is slower
(smaller), the smaller ωcl is, and slower zeros produce larger overshoots as discussed
in Chapter 8. Observe that the overshoot producing zero of FQ(s) was induced by
the desire to obtain zero steady state error in response to a step disturbance at the
input of an integrating system.

15.7 Affine Parameterization: The Unstable Open Loop Case

In the examples given above we went to some trouble to ensure that the poles of
all closed loop sensitivity functions (especially the input disturbance sensitivity,
Sio) lay in desirable regions of the complex plane. In this section, we will simplify
this procedure by considering a general design problem in which the open loop
plant can have one (or many) poles in undesirable regions. We will not give a
formal definition of an undesirable region but heuristically one would expect this
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to include all unstable poles, stable poles that were “close” to the origin (i.e. those
leading to slow transients) and lightly damped poles (i.e. those leading to ringing
transients).

In the last section we found that extra interpolation constraints on Q(s) were
needed to eliminate undesirable poles from the input sensitivity Sio(s). In the
design examples presented to date we have chosen Q(s) to explicitly account for the
interpolation constraints. However, this is a tedious task and one is lead to ask the
following question: Can we reparameterize C(s) in such a way that the interpolation
constraints given in Lemma 15.4 on page 428 are automatically satisfied? The
answer is yes and the solution is described in the following lemma.

Lemma 15.6 (Affine parameterization undesirable open loop poles). Con-
sider a one d.o.f. control loop for the plant with nominal model Go(s) =

Bo(s)
Ao(s)

. We
assume that Bo(s) and Ao(s) are coprime polynomials and that Go(s) may contain
undesirable poles (including unstable poles).

Then the nominal closed loop will be internally stable and all sensitivity functions
will contain only desirable poles if and only if C(s) is parameterized by

C(s) =

P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

L(s)
E(s)

−Qu(s)
Bo(s)
E(s)

(15.7.1)

where

(a) Qu(s) is a proper stable transfer function having desirable poles.

(b) P (s) and L(s) are polynomials satisfying the following pole assignment equa-
tion

Ao(s)L(s) +Bo(s)P (s) = E(s)F (s) (15.7.2)

where E(s) and F (s) are polynomials of suitable degrees which have zeros lying
in the desirable region of the complex plane, but they are otherwise arbitrary.

Proof

For simplicity we assume all poles in Ao(s) lie in an undesirable region (see Re-
mark 15.7 on page 440 for the more general case when there exists a mixture of
poles). Without loss of generality we write Q(s) as the ratio of two polynomials



438 SISO Controller Parameterizations Chapter 15

Q(s) =
P̃ (s)
Ẽ(s)

(15.7.3)

Giving

C(s) =
Q(s)

1−Q(s)Go(s)
=

P̃ (s)Ao(s)
Ẽ(s)− P (s)Bo(s)

(15.7.4)

From equation (15.7.3) we see that necessary and sufficient conditions for the
interpolation constraints of Lemma 15.4 on page 428 to be satisfied are

(i) the zeros of Ẽ(s) lie in the desirable region,

(ii) Ao(s) is a factor of P̃ (s), i.e. there exists a P (s) such that P̃ (s) = Ao(s)P (s),
and

(iii) Ao(s) is a factor of [1−Q(s)G(s)].

However

1−Q(s)Go(s) = 1− P̃ (s)Bo(s)
Ẽ(s)Ao(s)

(15.7.5)

= 1− P (s)Bo(s)
Ẽ(s)

=
Ẽ(s)− P (s)Bo(s)

Ẽ(s)

Hence, to satisfy (iii), there must exist a polynomial L(s) such that

Ẽ(s)− P (s)Bo(s) = L(s)Ao(s) (15.7.6)

or

L(s)Ao(s) + P (s)Bo(s) = E(s)F (s) (15.7.7)

where we have set Ẽ(s) = E(s)F (s).
We recognize (15.7.7) as the standard pole assignment equation of Chapter 7.

Thus by choosing the orders of E(s), F (s), L(s), P (s) we know that a unique solution
L(s), P (s) can be found.
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Given one solution (L(s), P (s)) to (15.7.7) it is a standard result of algebra that
any other solution

(
L(s), P (s)

)
can be expressed as:

L(s)
E(s)

=
L(s)
E(s)

−Qu(s)
Bo(s)
E(s)

(15.7.8)

P (s)
E(s)

=
P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

(15.7.9)

where Qu(s) is a stable proper transfer function having no undesirable poles (check
that the solutions satisfy (15.7.7)).

Substituting (15.7.7) into (15.7.4) shows that

C(s) =
P (s)
L(s)

(15.7.10)

Finally using (15.7.8), (15.7.9) in (15.7.10), we see that any controller satisfying
the desired conditions can be parameterized as in (15.7.1), (15.7.2).

✷✷✷

Remark 15.5. Equation (15.7.2) provides a link between the affine parameterized
result and the pole assignment methods studied in Chapter 7.

✷✷✷

Remark 15.6. Actually Lemma 15.6 on page 437 simply gives an automatic way
of parameterizing Q(s) so that the interpolation constraints given in Lemma 15.4 on
page 428 are automatically satisfied. Indeed, substituting (15.7.7), (15.7.8), (15.7.9)
into (15.7.3) we find that the original Q(s) is now constrained to the form:

Q(s) =
Ao(s)
F (s)

[
P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

]
(15.7.11)

where Qu(s) has desirable poles. It is then verified that this form for Q(s) auto-
matically ensures that the interpolation constraints (i) to (iii) of Lemma 15.4 on
page 428 hold.

���

Remark 15.7. If Ao(s) has a mixture of desirable and undesirable poles, then we
can write

Ao(s) = Ad(s)Au(s) (15.7.12)
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where Au(s) contains the undesirable poles. In this case, we can write E(s) =
Ad(s)E(s) and (15.7.2) becomes

Ad(s)Au(s)L(s) +Bo(s)P (s) = Ad(s)E(s)F (s) (15.7.13)

Clearly, this equation requires the existence of a P̃ (s) such that P (s) = P̃ (s)Ad(s)
and hence (15.7.2) reduces to

Au(s)L(s) +Bo(s)P̃ (s) = E(s)F (s) (15.7.14)

When Ao(s) contains only desirable poles, then Ao(s) = E(s), Au(s) = 1, Ẽ(s) =
1 and we can take L(s) = F (s) ; P̃ (s) = 0.

The result in Lemma 15.6 on page 437 then reduces to the one given in Lemma 15.1
on page 407. Also, we clearly have

Q(s) = Qu(s) (15.7.15)

✷✷✷

We illustrate the application of Lemma 15.6 on page 437 by the following ex-
ample.

Example 15.5. Consider a nominal plant model

Go(s) =
s− 4

(s− 1)(s+ 4)
(15.7.16)

Say we require all closed loop poles to lie to the left of −0.5 in the complex plane.
We also require that the controller include integral action.

(a) Find a particular controller satisfying these conditions

(b) Parameterize all controllers satisfying this condition.

Solution

(a) We note that the open loop pole at −4 lies in the desirable region. Also, since
the controller is required to have integral action, L(s) in (15.7.10) must be of
the form sL̃(s).

Then equation (15.7.14) becomes

s(s− 1)L̃(s) + (s− 4)P̃ (s) = E(s)F (s) (15.7.17)
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For a unique solution, we choose the degrees of E(s)F (s), L̃(s) and P̃ (s) as
3, 1, and 1 respectively. To be specific we choose

E(s)F (s) =
(
s2 + 4s+ 9

)
(s+ 10) (15.7.18)

We find

L̃(s) = s+
263
6

; P̃ (s) = −1
6
(173s+ 135) (15.7.19)

Hence a particular solution is

C(s) = − (173s+ 135)(s+ 4)
s(6s+ 263)

(15.7.20)

(b) All possible solutions can be expressed as in (15.7.1), and after some simpli-
fications, we have

C(s) =

[
− (173s+ 135)
6(s2 + 4s+ 9)

]
+Qu(s)

[
(s− 1)

(s2 + 4s+ 9)

]
[

s (6s+ 263)
6(s2 + 4s+ 9)(s+ 4)

]
−Qu(s)

[
(s− 4)

(s2 + 4s+ 9)(s+ 4)

] (15.7.21)

where Qu(s) is any proper transfer function having poles in the desirable re-
gion.

✷✷✷

The parameterization in Equation (15.7.1) leads to the following parameterized
version of the nominal sensitivities:

So(s) =
Ao(s)L(s)
E(s)F (s)

−Qu(s)
Bo(s)Ao(s)
E(s)F (s)

(15.7.22)

To(s) =
Bo(s)P (s)
E(s)F (s)

+Qu(s)
Bo(s)Ao(s)
E(s)F (s)

(15.7.23)

Sio(s) =
Bo(s)L(s)
E(s)F (s)

−Qu(s)
(Bo(s))

2

E(s)F (s)
(15.7.24)

Suo(s) =
Ao(s)P (s)
E(s)F (s)

+Qu(s)
(Ao(s))

2

E(s)F (s)
(15.7.25)
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P (s)
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Stabilising structure

Plant
U(s) Y (s)

Figure 15.9. Q parameterization for unstable plants.

The controller parameterization developed above can also be described in block
diagram form. The equation for C(s) directly implies that the controller is as in
Figure 15.9.

We observe that, by superposition, the input signal U(s) in Figure 15.9 can be
written as the sum of two signals, one coming from the upper loop via P (s)

L(s) and the
other via Qu(s).

It is also interesting to examine the class of all stabilizing controllers for a pre-
stabilized plant. Thus, consider the configuration shown in Figure 15.10 on the
facing page. Note that the pre-stabilized plant has closed loop transfer function
Bo(s)
F (s) , where Ao(s)L(s) + Bo(s)P (s) = E(s)F (s). Hence Figure 15.10 corresponds
to Figure 15.1 on page 408 where Go(s) has been replaced by the pre-stabilized
plant.

A simple calculation shows that the equivalent unity feedback controller in Fig-
ure 15.10 is

C(s) =
Qx(s)E(s)F (s) + P (s)(F (s) −Qx(s)Bo(s))

L(s)(F (s)−Qx(s)Bo(s))
(15.7.26)

Using the expression Ao(s)L(s) +Bo(s)P (s) = E(s)F (s), the above expression
can be simplified to



Section 15.7. Affine Parameterization: The Unstable Open Loop Case 443

+

+

+

−+

R(s)

+

Qx(s)

Nominal closed loop model

Bo(s)
F (s)
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P (s)
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Pre-stabilized plant

Plant

+

Figure 15.10. Q interpretation for a pre-stabilized plant

C(s) =
Qx(s)Ao(s)L(s) + P (s)F (s)
L(s)F (s)− L(s)Qx(s)Bo(s)

(15.7.27)

We then have the following result:

Lemma 15.7. Consider the control structures shown in Figures 15.9 and 15.10.

(i) If Qx(s) is stable, then Figure 15.10 can always be redrawn as in Figure 15.9
on the facing page where Qu(s) takes the particular value

Qu(s) =
Qx(s)L(s)

F (s)
(15.7.28)

(ii) If Qu(s)
L(s) is stable, then Figure 15.9 on page 442 can be redrawn as in Fig-

ure 15.10 on the preceding page, where Qx(s) takes the particular value

Qx(s) =
F (s)Qu(s)

L(s)
(15.7.29)
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Proof

Equating C(s) to C(s) we find that the relationship between Qu(s) and Qx(s) is
given by (15.7.28). Then the result follows.

✷✷✷

Remark 15.8. Part (i) of the above result is unsurprising, since the loop in Figure
15.10 is clearly stable for Qx(s) stable, and hence, by Lemma 15.6 on page 437, the
controller can be expressed as in Figure 15.9 on page 442 for some stable Qu(s).
The converse given in part (ii) is more interesting since it shows that there exist
structures of the type shown in Figure 15.9 on page 442 which cannot be expressed
as in Figure 15.10. However, inspection of equation (15.7.22) indicates that low
sensitivity is achieved if Qu(s) is chosen close to L(s)

Bo(s)
over the frequency band of

interest. Thus, it may be reasonable to choose Qu(s) so that Qu(s)
L(s) is stable. In this

case, part (ii) of Lemma 15.7 shows it is possible to pre-stabilize the plant and then
use the simple representation of Lemma 15.1.

15.8 Discrete Time Systems

Throughout this chapter we have illustrated the affine parameterization by using
the case of continuous time plants. However, since all the methods are algebraically
based, they can be immediately extended to discrete time the systems. As a simple
illustration, consider the following example:

Example 15.6. Consider a discrete time control loop, where the plant model is

Goq(z) =
Boq(z)
Aoq(z)

(15.8.1)

and Aoq(z) has at least one root outside the open unit disk.
Determine the equivalent form of Lemma 15.2 on page 410 for discrete time

open loop unstable systems.

Solution

We first note that the affine parameterization in the unstable discrete time case
leads to

Toq(z) =
Boq(z)Pq(z)
Eq(z)Fq(z)

+Qq(z)
Boq(z)Aoq(z)
Eq(z)Fq(z)

(15.8.2)

where

Aoq(z)Lq(z) +Boq(z)Pq(z) = Eq(z)Fq(z) (15.8.3)
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and where we assume that Boq(z) does not vanish on the unit circle. Then, with a
constant input disturbance, zero steady state tracking error can only be achieved if

Sioq(z)|z=1 = 0 =⇒ Lq(1)−Qq(1)Boq(1) = 0 (15.8.4)

Thus, the discrete counterpart of (15.3.15) is

Qq(z) = (z − 1)Qq(z) +
Lq(1)
Boq(1)

Qaq(z) (15.8.5)

where Qq(z) is any stable transfer function and Qaq(z) is any stable transfer func-
tion which additionally satisfies Qaq(1) = 1.

Note that the delta form of equation (15.8.5) is given by

Qδ(γ) = γQδ(γ) +
Lδ(0)
Boδ(0)

Qaδ(γ) (15.8.6)

where Qδ(γ) is any stable transfer function and Qaδ(γ) is any stable transfer func-
tion which additionally satisfies Qaδ(0) = 1.

✷✷✷

A final point in connection with digital Q synthesis is that sampling zeros
must always be considered as undesirable closed loop pole locations
(whether they are stable or not). This follows from the points made in Chapter
14 relating to intersample response.

15.9 Summary

• The previous part of the book established that closed loop properties are
interlocked in a network of trade offs. Hence, tuning for one property auto-
matically impacts on other properties. This necessitates an understanding of
the interrelations and conscious trade-off decisions.

• The fundamental laws of trade-off presented in previous chapters allow one to
both identify unachievable specifications as well as to establish where further
effort is warranted or wasted.

• However, when pushing a design maximally towards a subtle trade-off, the
earlier formulation of the fundamental laws falls short because it is difficult to
push the performance of a design by tuning in terms of controller numerator
and denominator: The impact on the trade-off determining sensitivity-poles
and zeros is very nonlinear, complex and subtle.

• This shortcoming raises the need for an alternative controller representation
that
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◦ allows one to design more explicitly in terms of the quantities of interest
(the sensitivities),

◦ makes stability explicit, and

◦ makes the impact of the controller on the trade-offs explicit.

• This need is met by the affine parameterization, also known as Youla param-
eterization

• Summary of results for stable systems:

◦ C = Q(1 − QGo)−1, where the design is carried out by designing the
transfer function Q

◦ Nominal sensitivities:

To = QGo (15.9.1)
So = 1−QGo (15.9.2)
Sio = (1−QGo)Go (15.9.3)
Suo = Q (15.9.4)

◦ Achieved sensitivities 1:

S∆ =
1

1 +QGoG∆
=

1
1 +QGε

(15.9.5)

T = QGS∆ (15.9.6)
S = SoS∆ (15.9.7)
Si = GSoS∆ (15.9.8)
Su = QS∆ (15.9.9)

• Observe the following advantages of the affine parameterization:

◦ nominal stability is explicit

◦ the known quantity Go and the quantity sought by the control engineer
(Q) occur in the highly insightful relation To = QGo (multiplicative
in the frequency domain); whether a designer chooses to work in this
quantity from the beginning or prefers to start with a synthesis technique
and then convert, the simple multiplicative relation QGo provides deep
insights into the trade-offs of a particular problem and provides a very
direct means of pushing the design by shaping Q

1See the definitions of modeling errors in section §3.9
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◦ the sensitivities are affine in Q, which is a great advantage for synthesis
techniques relying on numerical minimization of a criterion (see Chapter
16 for a detailed discussion of optimization methods which exploit this
parameterization)

• The following points are important to avoid some common misconceptions:

◦ the associated trade-offs are not a consequence of the affine parameteri-
zation: they are perfectly general and hold for any linear time invariant
controller including LQR, PID, pole placement based, H∞, etc.

◦ we have used the affine parameterization to make the general trade-
offs more visible and to provide a direct means for the control engineer
to make trade-off decisions; this should not be confused with synthesis
techniques that make particular choices in the affine parameterization to
synthesize a controller

◦ the fact that Q must approximate the inverse of the model at frequencies
where the sensitivity is meant to be small is perfectly general and high-
lights the fundamental importance of inversion in control. This does not
necessarily mean that the controller, C, must contain this approximate
inverse as a factor and should not be confused with the pros and cons of
that particular design choice

• PI and PID design based on affine parameterization.

◦ PI and PID controllers are traditionally tuned in terms of their parame-
ters.

◦ However, systematic design, trade-off decisions and deciding whether a
PI(D) is sufficient or not, is significantly easier in the model-based affine
structure.

◦ Inserting a first order model into the affine structure automatically gen-
erates a PI controller.

◦ Inserting a second order model into the Q-structure automatically gen-
erates a PID controller.

◦ All trade-offs and insights of the previous chapters also apply to PID
based control loops.

◦ Whether a PI(D) is sufficient for a particular process is directly related to
whether or not a first (second) order model can approximate the process
well up to the frequencies where performance is limited by other fac-
tors such as delays, actuator saturations, sensor noise or fundamentally
unknown dynamics.

◦ The first and second order models are easily obtained from step response
models (Chapter 3).
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◦ The chapter provides explicit formulas for first-order, time-delay, second
order and integrating processes.

◦ Using this method, the control engineer works directly in terms of observ-
able process properties (rise time, gain, etc) and closed loop parameters
providing an insightful basis for making trade-off decisions. The PI(D)
parameters follow automatically.

◦ Since the PI(D) parameter formulas are provided explicitly in terms of
physical process parameters, the PI(D) gains can be scheduled to measur-
ably changing parameters without extra effort (it is possible, for example,
to schedule for a speed-dependent time-delay).

◦ The approach does not preempt the design choice of canceling or shifting
the open-loop poles - both are possible and associated with different
trade-offs.

• Summary of results for systems having time-delays:

◦ The key issue is that delays cannot be inverted.
◦ In that sense, delays are related to NMP plant zeros, which cannot be
stably inverted either.

◦ A delay of magnitude T , causes similar trade-offs as an unstable zero at
s = T/2.

◦ An early controller conceived to deal with the non-invertibility of delays
is the famous Smith-predictor.

◦ The trade-offs made in the Smith-predictor can be nicely analyzed in the
affine structure. Indeed, the structures are very similar. Caution should
be exercised, however, not to confuse the generic controller representation
of the affine parameterization with the particular synthesis technique of
the Smith-predictor.

• Summary of results for unstable systems:

◦ All stabilizing controllers for an unstable plant have the form

C(s) =

P (s)
E(s)

+Qu(s)
Ao(s)
E(s)

L(s)
E(s)

−Qu(s)
Bo(s)
E(s)

(15.9.10)

where Qu(s) is any proper rational stable transfer function.
◦ Polynomials Ao(s), Bo(s), E(s), P (s) and L(s) satisfy

Ao(s)L(s) +Bo(s)P (s) = E(s)F (s) (15.9.11)

where E(s) and F (s) are polynomials of suitable degrees which are arbi-
trary, save that they must have desirable zeros.
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◦ Any stabilizing controller can be used to obtain an initial set of polyno-
mials {E(s), P (s), L(s)}
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15.11 Problems for the reader

Problem 15.1. For a plant having nominal model

Go(s) = 2
−s+ 15

(s+ 5)(s+ 10)
(15.11.1)

describe the class of controller Q(s) such that it provides zero steady state error for
constant references.

Problem 15.2. For the same plant as in problem 15.1, find a Q(s) such that the
complementary sensitivity has dominant poles, located at −2± j1.5.

Problem 15.3. Given a plant with nominal model Go(s) = (s+1)−2, characterize
the class of controllers which provide zero state state errors for sinusoidal references
of frequency 0.5 [trad/s].

Problem 15.4. Consider a unstable plant having nominal model Go(s) = (s −
1)−1. Describe, with the simplest P (s) and L(s), the class of all stabilizing con-
trollers. Hint: note that this plant can be stabilized using a simple proportional
controller.

Problem 15.5. Consider a plant having a model given by

Go(s) =
2(−0.1s+ 1)
(s+ 1)(s+ 3)

(15.11.2)

Assume that the output of this plant has to be regulated to a constant value in the
presence of an input disturbance. Further assume that the input disturbance has a
D.C. component and a variable component with energy distributed in the frequency
band [0, 4] [rad/s].

15.5.1 Synthesize Q(s), using cancellation of the stable dynamics of Go(s). The
dominant component in the denominator of To(s) must be s2 + 6s+ 16.

15.5.2 Test your design using the SIMULINK schematic in file nmpq.mdl.

15.5.3 Redesign your controller to improve disturbance compensation, without sig-
nificantly affecting the performance tracking of a step reference.
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Problem 15.6. Consider the IMC structure shown in Figure 15.1 on page 408.
and your final design for problem 15.5 on the preceding page.

Assume now that the true model for the plant is given by

G(s) = Go(s)
1

τs + 1
=

2(−0.1s+ 1)
(s+ 1)(s+ 3)(τs+ 1)

(15.11.3)

Analyze the performance of your design for τ = 0.05 and τ = 0.2. Redesign your
controller if necessary.

Problem 15.7. Consider a discrete time controller having a transfer function
given by

Cq(z) =
z − 0.5
z − 1

(15.11.4)

Find a general characterization for the transfer function of all discrete time
plants which are stabilized by this control. (Hint: use, in reverse form, the parame-
terization of all stabilizing controllers for unstable plants, i.e. interchange the roles
of plant and controller.)

Problem 15.8. Consider a continuous time plant having a model given by

Go(s) =
e−0.4s

s+ 1
(15.11.5)

Assume that one desires to control this plant digitally, through a zero order sample
and hold, with sampling period ∆ = 0.1[s]. Then, we require a discrete time model,
which is given by (see 12.6 on page 337):

Gh0Go(z) =
1− e−0.1

z4(z − e−0.1)
(15.11.6)

Use the IMC architecture to design Qq(z) in such a way that the closed loop
modes are, at least, as fast as (0.6)k. Note that this requirement has also to be
satisfied when compensating input disturbances.

Problem 15.9. Consider a plant having a nominal model given by

Go(s) =
−αs+ 1

(s+ 1)(s+ 2)
where α ∈ R

+ (15.11.7)

15.9.1 Propose a method to synthesize PID controllers, along the lines followed in
section §15.4. Evaluate your methodology, via simulation, for α ∈ [0.1, 20].
Integrate into your analysis the ideas presented in Chapter 8.
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15.9.2 Compare your results with those obtained from the Cohen-Coon tuning strat-
egy and evaluate the results for the same range of values for α.

Problem 15.10. Assume that an unstable plant has a transfer function Go(s) =
Bo(s)/Ao(s) such that the polynomial Ao(s) + Bo(s) has all its roots with negative
real parts.

Parameterize all stabilizing controllers for this plant, as a function of Ao(s) and
Bo(s).

Problem 15.11. Develop an anti wind-up mechanism for the IMC architecture,
which parallels the structure developed in Chapter 11.





Chapter 16

CONTROL DESIGN BASED
ON OPTIMIZATION

16.1 Preview

Thus far we have seen that design constraints arise from a number of different
sources

• structural plant properties, such as NMP zeros or unstable poles

• disturbances, their frequency content, point of injection and measurability

• architectural properties and the resulting algebraic laws of trade-off

• integral constraints and the resulting integral laws of trade-off

The subtlety as well as complexity of the emergent trade-off web into which the
designer needs to ease a solution, motivates interest in what is known as criterion
based control design or optimal control theory: the aim here is to capture the control
objective in a mathematical criterion and solve it for the controller that (depending
on the formulation) maximizes or minimizes it.

Three questions arise:

(1) Is optimization of the criterion mathematically feasible?

(2) How good is the resulting controller?

(3) Can the constraint of the trade-off web be circumvented by optimization?

Question (1) has an affirmative answer for a number of criterion. In particular,
quadratic formulations tend to favor tractability. Also, the affine parameterization
of Chapter 15 is a key enabler, since it renders the sensitivity functions affine in the
sought variable, Q.

The answer to question (2) has two facets: how good is the controller as mea-
sured by the criterion? Answer: it is optimal by construction; but how good is
the resulting control loop performance as measured by the original performance

455
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specifications? Answer: as good, or as poor, as the criterion in use can capture
the design intention and active trade-offs. A poorly formulated criterion will sim-
ply yield a controller which optimally implements the poor design. However when
selected well, a design criterion can synthesize a controller which would have been
difficult to conceive of by the techniques covered thus far; this is particularly true
for multivariable systems covered in the next part of the book.

Question (3) is simply answered by no: all linear time invariant controllers,
whether they were synthesized by trial and error, pole assignment or optimization,
are subject to the same fundamental trade-off laws.

16.2 Optimal Q (Affine) Synthesis

16.2.1 General ideas

Chapter 15 showed how Q synthesis could be used to control stable and unstable
plants. The main difficulties in the methods arise from the need to ensure inter-
nal stability while, at the same time, achieving acceptable loop performance. The
stability requirement forces certain structures on the sensitivity functions. This
makes it hard to simultaneously satisfy structural requirements and prescribed per-
formance specifications. An alternative approach to those presented above can be
formulated by first specifying a performance target for a loop property, e.g. the
complementary sensitivity. Then, a function Q(s) can be found, within the class
of all Q(s) which ensures internal stability, in such a way that the distance of the
achieved complementary sensitivity to the target is minimized. This approach is
facilitated by the already observed fact that the nominal sensitivity functions are
affine functions of Q(s). The specific measure used for the distance defines the
particular optimization procedure to be used. There exists a wide variety of pos-
sible choices. We will illustrate by using a particular approach based on quadratic
optimization. This has been chosen since it is simple and can be presented without
the need for extensive mathematical background beyond that already covered.

16.2.2 Quadratic optimal Q synthesis

Assume that a target function Ho(s) is chosen for the complementary sensitivity
To(s). We have seen in Chapter 15 that if we are given some stabilizing controller
C(s) = P (s)/L(s), then all stabilizing controllers can be expressed as in (15.7.1) for
stable Qu(s). Also, the nominal complementary sensitivity function is then given
be (15.7.23); i.e.

To(s) = H1(s) +Qu(s)V (s) (16.2.1)

where H1(s) and V (s) are stable transfer functions of the form:
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H1(s) =
Bo(s)P (s)
E(s)F (s)

; V (s) =
Bo(s)Ao(s)
E(s)F (s)

(16.2.2)

Let S denote the set of all real rational stable transfer functions, then the
quadratic optimal synthesis problem can be stated as follows:

Problem (Quadratic optimal synthesis problem). Find Qo
u(s) ∈ S such

that

Qo
u(s) = arg min

Qu(s)∈S

∥∥Ho − To
∥∥2

2
= arg min

Qu(s)∈S

∥∥Ho −H1 −QuV
∥∥2

2
(16.2.3)

where the quadratic norm, also called H2 − norm, of a function 1 X(s) is defined
as

∥∥X∥∥
2
=
[
1
2π

∫ ∞

−∞
X(jω)X(−jω)dω

]1
2

(16.2.4)

Remark 16.1. The optimization approach can also be used in the synthesis of dis-
crete time controllers. In this case the quadratic norm of a function Xq(z) is defined
as

∥∥Xq

∥∥
2
=
[
1
2π

∫ 2π

0

Xq(ejω)Xq(e−jω)dω
] 1

2

(16.2.5)

✷✷✷

To solve this problem we first need a preliminary result, which is an extension
of Pythagoras’ theorem.

Lemma 16.1. Let So ⊂ S be the set of all real strictly proper stable rational func-
tions and let S⊥

o be the set of all real strictly proper rational functions which are
analytical for �{s} ≤ 0. Furthermore assume that Xs(s) ∈ So and Xu(s) ∈ S⊥

o .
Then

∥∥Xs +Xu

∥∥2
2
=
∥∥Xs

∥∥2
2
+
∥∥Xu

∥∥2
2

(16.2.6)

Proof

∥∥Xs +Xu

∥∥2
2
=
∥∥Xs

∥∥2
2
+
∥∥Xu

∥∥2
2
+ 2�
[
1
2π

∫ ∞

−∞
Xs(jω)Xu(−jω)dω

]
(16.2.7)

1We here assume that X(s) is a real function of s
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but

1
2π

∫ ∞

−∞
Xs(jω)Xu(−jω)dω =

1
2πj

∮
C

Xs(s)Xu(−s)ds (16.2.8)

where C is the closed contour shown in Figure ?? on page ??. We note that
Xs(s)Xu(−s) is analytic on the closed region encircled by C. We then see, on
applying Theorem ?? on page ??, that the integral in (16.2.8) is zero, and the result
follows.

✷✷✷

In the sequel we will need to split a general function X(s) into stable part Xs(s)
and unstable part Xu(s). We can do this via a partial fraction expansion. The
stable poles and their residues constitute the stable part.

We note that the cost function given in (16.2.3) has the general form:

Qo
u(s) = arg min

Qu(s)∈S

∥∥W (s)−Qu(s)V (s)
∥∥2

2
(16.2.9)

where W (s) = Ho(s) − H1(s), Ho(s) is the target complementary sensitivity and
H1(s) is as in (16.2.2).

The solution to the above problem is then described in

Lemma 16.2. Provided that V (s) has no zeros on the imaginary axis, then

arg min
Qu(s)∈S

∥∥W (s)−Qu(s)V (s)
∥∥2

2
= (Vm(s))−1[Va(s)−1W (s)]s (16.2.10)

where

V (s) = Vm(s)Va(s) (16.2.11)

such that Vm(s) is a factor with poles and zeros in the open LHP, and Va(s) is an
all pass factor with unity gain and where [X ]s denotes the stable part of X.

Proof

Substituting (16.2.11) into (16.2.10) gives∥∥W −QuVmVa
∥∥2

2
=
∥∥Va(V −1

a W −QuVm)
∥∥2

2
=
∥∥V −1

a W −QuVm
∥∥2

2
(16.2.12)

where we used the fact that |Va| is constant since Va is all pass
We then decompose V −1

a (s)W (s) into a stable term, [V −1
a (s)W (s)]s, and an

unstable term, [V −1
a (s)W (s)]u, i.e. we write

V −1
a (s)W (s) = [V −1

a (s)W (s)]s + [V −1
a (s)W (s)]u (16.2.13)
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With the decomposition (16.2.13) we obtain

∥∥V −1
a W −QuVm

∥∥2
2
=
∥∥[V −1

a W ]u + [V −1
a W ]s −QuVm

∥∥2
2

(16.2.14)

If we now apply Lemma 16.1 on page 457 we obtain

∥∥W −QuVmVa
∥∥2

2
=
∥∥[V −1

a W ]u
∥∥2

2
+
∥∥[V −1

a W ]s −QuVm
∥∥2

2
(16.2.15)

From where the optimal Qu(s) is seen to be

Qo
u(s) = (Vm(s))−1[(Va(s))−1W (s)]s (16.2.16)

Remark 16.2. The factorization (16.2.11) is also known as an inner-outer factor-
ization in the literature.

Remark 16.3. The solution will be proper only if V has relative degree zero or
V has relative degree one with W having relative degree of at least one. However,
improper solutions can be readily turned into approximate proper solutions by adding
an appropriate number of fast poles to Qo

u(s).

✷✷✷

Returning to the problem posed in equation (16.2.3), we see that Lemma 16.2
provides an immediate solution by setting:

W (s) = Ho(s)−H1(s) (16.2.17)
V (s) = Vm(s)Va(s) (16.2.18)

We note that, for this case, the poles of [V −1
a (s)W (s)] are the poles of W (s) (since

this is a stable transfer function here).

Remark 16.4. The above procedure can be modified to include a weighting function
Ω(jω). In this framework the cost function is now given by

∥∥(Ho − To)Ω
∥∥2

2
(16.2.19)

No additional difficulty arises, since it is enough to simply redefine V (s) and
W (s) to convert the problem into the form of equation (16.2.9).

Remark 16.5. It is also possible to restrict the solution space to satisfy additional
design specifications. For example, forcing an integration is achieved by parame-
terizing Q(s) as in (15.3.15) and by introducing a weighting function Ω(s) = s−1

(Ho(0) = 1 is also required). This does not alter the affine nature of To(s) on the
unknown function. Hence the synthesis procedure developed above can be applied
provided we first redefine the function V (s) and W (s).
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Remark 16.6. A MATLAB program to find the solution for the quadratic optimal
Q synthesis problem, is included in the accompanying diskette in file oph2.m.

The synthesis procedure is illustrated in the following two examples.

Example 16.1 (Unstable plant). Consider a plant with nominal model

Go(s) =
2

(s− 1)(s+ 2)
(16.2.20)

Assume that the target function for To(s) is given by

Ho(s) =
9

s2 + 4s+ 9
(16.2.21)

We first choose the observer polynomial E(s) = (s+4)(s+10) and the controller
polynomial F (s) = s2 + 4s + 9. Note that, for simplicity, F (s) was chosen to be
equal to the denominator of Ho(s).

We then solve the pole assignment equation Ao(s)L(s) +Bo(s)P (s) = E(s)F (s)
to obtain the prestabilizing control law expressed in terms of P (s) and L(s) (use
the routine paq.m which is provided on the accompanying diskette). The resultant
polynomials are

P (s) = 115s+ 270; L(s) = s2 + 17s+ 90 (16.2.22)

Now consider any controller from the class of stabilizing control laws as param-
eterized in (15.7.1). The quadratic cost function is then as in (16.2.9) where

W (s) = Ho(s)− Bo(s)P (s)
E(s)F (s)

=
9s2 − 104s− 180

E(s)F (s)
(16.2.23)

V (s) =
Bo(s)Ao(s)
E(s)F (s)

= Va(s)Vm(s) =
[
s− 1
s+ 1

] [
2(s+ 2)(s+ 1)

E(s)F (s)

]
(16.2.24)

Consequently

[V −1
a (s)W (s)]s =

(
1
7

)
5s3 + 158s2 + 18s− 540

E(s)F (s)
(16.2.25)

The optimal Qu(s) is then obtained from (16.2.16), i.e.

Qo
u(s) = (Vm(s))−1[(Va(s))−1W (s)]s =

(
1
14

)
5s3 + 158s2 + 18s− 540

(s+ 1)(s+ 2)
(16.2.26)



Section 16.2. Optimal Q (Affine) Synthesis 461

We observe that since Qo
u(s) is improper. However, we can approximate it by a

sub optimal, but proper transfer function, Q̃(s), by adding one fast pole to Qo
u(s) ,

i.e.

Q̃(s) = Qo
u(s)

1
τs + 1

where τ � 1 (16.2.27)

✷✷✷

Example 16.2 (Non-minimum phase plant). Consider a plant with nominal
model

Go(s) =
−3s+ 18

(s+ 6)(s+ 3)
(16.2.28)

It is required to synthesize, using H2 optimization, a one d.o.f. control loop with
target function

Ho(s) =
16

s2 + 5s+ 16
(16.2.29)

and to provide exact model inversion at ω = 0.

Solution

We adopt the strategy suggested in Remark 16.5 on page 459. The cost function is
thus defined as

J(Q) =
∥∥(Ho(s)− (sQ(s) + [Go(0)]−1)Go(s))Ω(s)

∥∥2
2

where Ω(s) =
1
s

(16.2.30)

Then the cost function takes the form

J(Q) =
∥∥W −QV

∥∥2
2

(16.2.31)

where

V (s) = Go(s) =
−s+ 6
s+ 6

3
s+ 3

; W (s) =
3s2 + 13s+ 102

(s2 + 5s+ 16)(s2 + 9s+ 16)
(16.2.32)

We first note that

Va(s) =
−s+ 6
s+ 6

; Vm(s) =
3

s+ 3
(16.2.33)
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The optimal Q(s) can then be obtained on using (16.2.16), yielding

Q
o
(s) =

0.1301s2 + 0.8211s+ 4.6260
s2 + 5s+ 16

(16.2.34)

from where Qo(s) can be obtained as Qo(s) = sQ
o
(s) + 1. One fast pole has to be

added to make this function proper.
✷✷✷

16.3 Robust Control Design with Confidence Bounds

We next briefly show how optimization methods can be used to change a nominal
controller so that the resultant performance is more robust to model errors. Methods
for doing this range from ad-hoc procedures to sophisticated optimization methods
that preserve stability in the presence of certain types of model error. Our objective
is to give the flavor of these methods.

16.3.1 Statistical Confidence Bounds

We have argued in section §3.9 that no model can give an exact description of a
real process. This realization is the key driving force for the modern idea of robust
control design. Robust control design methods include H∞ methods, L1 methods
and H2 methods. Here we will use the latter approach since it nicely falls into the
framework described above.

Our starting point will be to assume the existence of statistical confidence
bounds on the modeling error. Obtaining these confidence bounds is a research
area in its own right, but approximations can be obtained from uncertainty esti-
mates provided by standard system identification methods. The interested reader
is referred to the literature cited at the end of the chapter.

We will show how these statistical confidence bounds can be used for robust
control design. The essential idea of the procedure is to modify the nominal con-
troller so as to minimize the expected variation (variance) of the actual system
performance from an a-priori given desired performance.

We assume we are given a nominal frequency response, Go(jω), together with a
statistical description of the associated errors of the form:

G(jω) = Go(jω) +Gε(jω) (16.3.1)

where G(jω) is the true (but unknown) frequency response and Gε(jω), as usual,
represents the additive modeling error. We assume that Gε possesses the following
probabilistic properties:
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E{Gε(jω)} = 0 (16.3.2)

E{Gε(jω)Gε(−jω)} = α(jω)α(−jω) = α̃2(ω) (16.3.3)

In (16.3.3), α(s) is the stable, minimum phase spectral factor. Also, in (16.3.3),
α̃ is the given measure of the modeling error. In order to use this measure for
control design we require that it is a rational function.

16.3.2 Robust control design

Based on the nominal model Go(jω), we assume that a design is carried out which
leads to acceptable nominal performance. This design will typically account for the
usual control design issues such as non-minimum phase behavior, the available input
range, unstable poles, etc. Let us say that this has been achieved with a nominal
controller Co and that the corresponding nominal sensitivity function is So. Of
course, the true plant is assumed to satisfy (16.3.1)-(16.3.3) and hence the value So
will not be achieved in practice due to the variability of the achieved sensitivity, S,
from So. Let us assume, to begin, that the open loop system is stable (the more
general case will be treated in section §16.3.6). We may thus use the simple form
of the parameterization of all stabilizing controllers to express Co and So in terms
of a stable parameter Qo:

Co(s) =
Qo(s)

1−Go(s)Qo(s)
(16.3.4)

So(s) = 1−Go(s)Qo(s) (16.3.5)

The achieved sensitivity, S1, when the nominal controller Co is applied to the
true plant is given by

S1(s) =
So(s)

1 +Qo(s)Gε(s)
(16.3.6)

Our proposal for robust design is now to adjust the controller so that the distance
between the resulting achieved sensitivity, S2, and So is minimized. If we change
Qo to Q and hence Co to C, then the achieved sensitivity changes to

S2(s) =
1−Go(s)Q(s)
1 +Gε(s)Q(s)

(16.3.7)
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where

C(s) =
Q(s)

1−Go(s)Q(s)
(16.3.8)

and

S2(s)− So(s) =
1−Go(s)Q(s)
1 +Gε(s)Q(s)

− (1−Go(s)Qo(s)) (16.3.9)

Observe that S2 and So denote, respectively, the sensitivity achieved when the
plant is G and the controller is parameterized by Q, and the sensitivity when the
plant is Go and the controller is parameterized by Qo. Unfortunately, (S2 − So) is
a nonlinear function of Q and Gε. However, in the next section we show that this
problem can be remedied by using a weighted sensitivity error.

16.3.3 Frequency weighted errors

In place of minimizing some measure of the sensitivity error given in (16.3.9), we
instead consider a weighted version: with W2 = 1 +GεQ. Thus consider

W2(s)(S2(s)− So(s)) = (1−Go(s)Q(s))− (1−Go(s)Qo(s))(1 +Gε(s)Q(s))

= −Go(s)Q̃(s)− So(s)Qo(s)Gε(s)− So(s)Q̃(s)Gε(s).
(16.3.10)

where Q̃(s) = Q(s)−Qo(s) is the desired adjustment in Qo(s) to account for Gε(s).
Before proceeding, let us interpret (16.3.10).

Lemma 16.3. The weighted sensitivity error has bias

E {W2(jω) (S2(jω)− So(jω))} = −Go(jω)Q̃(jω) (16.3.11)

and variance

E {|W2(jω) (S2(jω)− So(jω)) |2
}
= |Go(jω)|2|Q̃(jω)|2 +

|So(jω)Qo(jω) + So(jω)Q̃(jω)|2α̃2(ω) (16.3.12)

Proof

To establish (16.3.11) and (16.3.12), we observe that

W2(s)(S2(s)− So(s)) = −Go(s)Q̃(s)− So(s)Qo(s)Gε(s)− So(s)Q̃(s)Gε(s).
(16.3.13)

The result follows on using the properties of Gε.
✷✷✷
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The procedure we now propose for choosing Q̃ is to find the value which mini-
mizes

J = ‖W2(S − So)‖2
2 =
∫ ∞

−∞
E {|W2(jω) (S2(jω)− So(jω)) |2

}
dω

=
∫ ∞

−∞
|Go(jω)|2|Q̃(jω)|2 + |So(jω)Qo(jω) + So(jω)Q̃(jω)|2α̃2(ω)dω (16.3.14)

Remark 16.7. This loss function has intuitive appeal. The first term on the right
hand side represents the bias error. It can be seen that this term is zero if Q̃ = 0 i.e.
we leave the controller unaltered. On the other hand, the second term in (16.3.14)
represents the variance error. This term is zero if Q̃ = −Qo, i.e. if we choose
open loop control. These observations suggest that there are two extreme cases. For
α = 0 (no model uncertainty) we leave the controller unaltered; as α̃ → ∞ (large
model uncertainty) we choose open loop control which is clearly robust for the case
of an open loop stable plant.

Remark 16.8. One might ask the significance of the weighting function W2. For
|Gε(jω)Q(jω)| << 1, we have |W2(jω)| ≈ 1. However, |Gε(jω)Q(jω)| < 1 is a
sufficient condition for robust stability and thus the weighting should not significantly
affect the result. (See also Remark 16.10 on the following page)

✷✷✷

Lemma 16.4. Suppose that

(i) Go is strictly proper with no zeros on the imaginary axis and

(ii) E{Gε(jω)Gε(−jω)} has a spectral factorization as in (16.3.3).

Then α(s)α(−s)So(s)So(−s) + Go(s)Go(−s) has a spectral factor, which we label
H, and the optimal Q̃, is given by

Q̃opt(s) = arg min
Q̃(s)∈S

‖W2(S2 − So)‖2

= − 1
H(s)

× stable part of
α(s)α(−s)So(s)So(−s)Qo(s)

H(−s)
(16.3.15)

Proof

First we prove that

F (s)
�
= α(s)α(−s)So(s)So(−s) +Go(s)Go(−s) (16.3.16)

has a spectral factor. By hypothesis α(s)α(−s) has a spectral factor, B, so
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F (s) = B(s)B(−s)So(s)So(−s) +Go(s)Go(−s) (16.3.17)

Since B(∞) �= 0 and by hypothesis Go(∞) = 0 and So(∞) = 1, it follows that

F (∞) = B(∞)2 > 0 (16.3.18)

and since Go has no zeros on the imaginary axis, clearly F does not either. Finally,
it is straightforward to prove that F (−s) = F (s), so it follows that F has a spectral
factor, which we label H.

By completing the squares, equation (16.3.14) can be written as

J =
∫ ∞

−∞

∣∣∣∣H(jω)Q̃(jω) +
α̃2(ω)|So(jω)|2Qo(jω)

H(−jω)
∣∣∣∣2 dω +∫ ∞

−∞
α̃2(ω)|So(jω)|2|Qo(jω)|2

(
1− α̃2(ω)|So|2(jω)

|H |2(jω)
)
dω. (16.3.19)

Since

1− α(s)α(−s)So(s)So(−s)
H(s)H(−s) =

Go(s)Go(−s)
H(s)H(−s) (16.3.20)

has relative degree at least two, we see that the second term on the right hand side
of (16.3.19) is finite. Furthermore, since this term is independent of Q̃, we can
minimize the cost by minimizing the first term on the right hand side, namely

∥∥∥∥H(s)︸ ︷︷ ︸
V (s)

Q̃(s) +
α(s)α(−s)So(s)So(−s)Qo(s)

H(−s)︸ ︷︷ ︸
W (s)

∥∥∥∥2
2

(16.3.21)

Since H is a spectral factor, V = H has no zeros on the imaginary axis and
is outer. This also means that W has no poles on the imaginary axis. By Lemma
16.2, the solution of the optimization problem is as stated.

✷✷✷

Remark 16.9. The value of Q̃ found in Lemma 16.4 gives an optimal, in the sense
of (16.3.14), trade-off between the bias error (the first term in (16.3.14)) and the
variance term (the second term in (16.3.14)).

Remark 16.10. A final check on robust stability (which is not automatically guar-
anteed by the algorithm) requires us to check that |Gε(jω)||Q(jω)| < 1 for all ω and
all “likely” values of Gε(jω). To make this more explicit, let us assume that Gε(jω)
has a gaussion distribution with zero mean and covariance P̄ (ω). [Note this would
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naturally arise when the model is estimated in the presence of gaussion measure-
ment noise - for details see the references on identification given at the end of the
chapter.]

Let us denote the real and imaginary components of Gε(jω) by g̃R(ω) and g̃I(ω)
respectively. Also, let g̃(ω) = (g̃R(ω), g̃I(ω))T . Finally let the covariance of g̃(ω) be
P (ω). Then, it is a well known result from statistics that g̃(ω)TP (ω)−1g̃(ω) has a
Chi-squared distribution on two degrees of freedom. By use of this distribution, we
can find a scalar β such that 99% (say) of the values of g̃(ω) satisfy

g̃(ω)TP (ω)−1g̃(ω) ≤ β (16.3.22)

If we now check that |Q(jω)| < [βλmaxP (ω)]−1, for all ω, then this ensures that
|Gε(jω)||Q(jω)| < 1 with probability 0.99. To verify this claim, we not that from
Equation (16.3.22), 99% of values of g̃(ω) satisfy the following stronger condition:

(g̃T g̃) ≤ βλmaxP (ω) (16.3.23)

Hence, if

|Q(jω)| < [βλmaxP (ω)]−1 (16.3.24)

then by combining (16.3.23) and (16.3.24) we see that the probability that |g̃T g̃||Q(jω)| <
1 is 0.99 as required. In principle, it is necessary to check (16.3.24) for all ω. How-
ever, a reasonable practical compromise is to check (16.3.24) for each discrete ω
used in the original quadratic optimization.

✷✷✷

Remark 16.11. Of course, the procedure outlined in Remark 16.10 only allows
one to check if a given design, Q(jω), is consistent with robust stability at a given
probabilistic confidence level. If the test fails, then one could artificially increase
the uncertainty in the design phase so as to shift the balance to a more conservative
outcome. Alternatively, it is possible to include Equation (16.3.24) as a set of side
constraints in the quadratic optimization procedure itself but we will not pursue this
option further here.

✷✷✷

Remark 16.12. As we have seen in Chapter 15 it is usually necessary to make
a distinction between stable closed loop poles and desirable closed loop poles. The
reader is asked to note the remark on input disturbance response in Chapter 15, page
424. It is possible to modify the algorithm presented here to ensure that all poles
lie in desirable regions. For example, a preliminary transformation s → s′ = s+ β
with β > 0 can be used to transform the region to the left of −β to the LHP.
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16.3.4 Incorporating integral action

The methodology given in section §16.3.3 can be extended to include integral action.
Assuming that Qo provides this property, the final controller will do so as well if Q̃
has the form

Q̃(s) = sQ̃
′
(s) (16.3.25)

with Q̃
′
strictly proper (see Lemma 15.2 on page 410).

There are a number of ways to enforce this constraint. A particularly simple
way is to follow Remark 16.5 and change the cost function to

J
′
=
∫ ∞

−∞

E {|W2(jω)|2|S2(jω)− So(jω)|2
}

|jw|2 dω (16.3.26)

Lemma 16.5. Suppose that

(i) Go is strictly proper with no zeros on the imaginary axis and

(ii) E{Gε(jω)Gε(−jω)} has a spectral factorization as in (16.3.3).

Then α(s)α(−s)So(s)So(−s) + Go(s)Go(−s) has a spectral factor, which we label
H, and

arg min
Q̃(s)∈S

J
′
= − s

H(s)
× stable part of

α(s)α(−s)So(s)So(−s)Qo(s)
sH(−s) (16.3.27)

Proof

First of all, the existence of H follows from Lemma 16.4. Second, using (16.3.25)
we have

J
′
=
∫ ∞

−∞

∣∣∣∣H(jω)Q̃
′
(jω) +

α̃2(ω)|So(jω)|2Qo(jω)
jωH(−jω)

∣∣∣∣2 dω +∫ ∞

−∞

a|So(jω)|2|Qo(jω)|2
ω2

(
1− a|So|2

|H |2
)
dω (16.3.28)

Because of the assumption that Co has integral action, it follows that So has a
zero at zero, and since

α(s)α(−s)So(s)So(−s)Qo(s)Qo(−s)
−s2

(
1− α(s)α(−s)So(s)So(−s)

H(s)H(−s)
)

has relative degree at least two, it follows that the second term in the above integral is
finite. Since this term is independent of Q̃

′
, we can minimize the cost by minimizing
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the first term on the right hand side, namely∥∥∥∥H(s)︸ ︷︷ ︸
V (s)

Q̃
′
(s) +

α(s)α(−s)So(s)So(−s)Qo(s)
sH(−s)︸ ︷︷ ︸

W

∥∥∥∥2
2

.

Since H is a spectral factor, V = H has no zeros on the imaginary axis and is
outer. This also means that W has no poles on the imaginary axis. By Lemma
16.2, the optimal Q̃

′ ∈ RH∞ is

− 1
H(s)

× stable part of
{
α(s)α(−s)So(s)So(−s)Qo(s)

sH(−s)
}

(16.3.29)

since W is strictly proper, it follows that Q̃
′

is as well, so that Q̃(s) = sQ̃
′
(s) is

proper, as required.

16.3.5 A simple example

Consider a first order system having constant variance for the model error in the
frequency domain, i.e. take

Go(s) =
1

τos+ 1
(16.3.30)

Qo(s) =
τos+ 1
τcls+ 1

(16.3.31)

So(s) =
τcls

τcls+ 1
(16.3.32)

α̃2(ω) = ε > 0 ∀ω (16.3.33)

Note that choosing α̃ to be a constant is an approximation to the case where the
identification is performed based on a finite impulse response model with a white
noise type of input and a white noise disturbance.

(a) No integral action constraint

In this case, with a1 and a2 appropriate functions of τo, τcl and ε, we can write

H(s)H(−s) = 1
1− τ2

o s
2
+

ε(−τ2
cls

2)
1− τ2

cls
2

=
1− τ2

cl(1 + ε)s2 + ετ2
clτ

2
o s

4

(1− τ2
o s

2)(1 − τ2
cls

2)

=
(1 +

√
a1s)(1 +

√
a2s)(1−√

a1s)(1 −√
a2s)

(1 + τos)(1 + τcls)(1− τos)(1 − τcls)
(16.3.34)
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Then there exist A1, A2, A3, and A4, also appropriate functions of τo, τcl and
ε, so that

α(s)α(−s)So(s)So(−s)
H(−s) Qo(s) =

(1− τos)(1− τcls)
(1−√

a1s)(1−√
a2s)

ε(−τ2
cls

2)(1 + τos)
(1− τcls)(1 + τcls)2

= Ao +
A1

1−√
a1s

+
A2

1−√
a2s

+
A3

(1 + τcls)2
+

A4

1 + τcls

(16.3.35)

The optimal Q̃ is then

Q̃(s) = − (1 + τos)(1 + τcls)
(1 +

√
a1s)(1 +

√
a2s)

[
Ao +

A3

(1 + τcls)2
+

A4

1 + τcls

]
(16.3.36)

To examine this example numerically, we take τo = 1 and τcl = 0.5 and ε = 0.4.
Then from (16.3.34)-(16.3.36), we obtain the optimal Q̃ as

Q̃(s) = −0.316s3 + 1.072s2 + 1.285s+ 0.529
0.158s3 + 0.812s2 + 1.491s+ 1.00

(16.3.37)

It is interesting to investigate how this optimal Q̃ contributes to the reduction of
the loss function (16.3.14). If Q̃(s) = 0, then

J =
∫ ∞

−∞
|So(jω)Qo(jω)|2εdω = ∞,

and if the optimal Q̃ given by (16.3.37) is used, then the total error is J = 4.9,
which has a bias error of ∫ ∞

−∞
|Go(jω)Q̃|2dω = 4.3

and a variance error of∫ ∞

−∞
|So(jω)Qo(jω) + So(jω)Q̃(jω)|2εdω = 0.6.

(b) With integral action constraint

Following section 16.3.4 we write

α(s)α(−s)So(s)So(−s)
H(−s) Qo(s) =

(1− τos)(1− τcls)
(1−√

a1s)(1−√
a2s)

ε(−τ2
cls)(1 + τos)

(1− τcls)(1 + τcls)2

=
B1

1−√
a1s

+
B2

1−√
a2s

+
B3

(1 + τcls)2
+

B4

1 + τcls



Section 16.3. Robust Control Design with Confidence Bounds 471

Then from (16.3.25) and Lemma 16.5, the optimal Q̃ is given by

Q̃(s) = − s(1 + τos)(1 + τcls)
(1 +

√
a1s)(1 +

√
a2s)

[
B3

(1 + τcls)2
+

B4

1 + τcls

]
(16.3.38)

For the same set of process parameters as above, we obtain the optimal Q̃ as

Q̃(s) = − s(0.184s2 + 0.411s+ 0.227)
0.158s3 + 0.812s2 + 1.491s+ 1.00

(16.3.39)

and the Q for controller implementation is simply

Q(s) = Qo(s) + Q̃(s) =
(0.265s+ 1)(s+ 1)
0.316s2 + 0.991s+ 1

(16.3.40)

Note that the open loop pole at −1 has been canceled. If this were not desirable
due to input disturbance considerations, then the suggestion made in Remark 16.12
could be used. For this example, if Q̃ = 0 then the loss function shown in (16.3.26)
is J

′
= 1.4. Using the optimal Q̃ of (16.3.39), the total error is reduced to J ′ = 0.94

where the bias error term is 0.22 and the variance error term is 0.72.

(c) Closed-loop system simulation results

For the same process parameters as above, we now examine how the robust con-
troller given by (16.3.40) copes with plant uncertainty by simulating closed-loop
responses with different processes, and compare the results for the cases when Qo

in (16.3.31) is used. We choose the following three different plants.
Case 1

G1(s) =
1

s+ 1
= Go(s) (16.3.41)

Case 2

G2(s) =
1.3e−0.3

0.5s+ 1
(16.3.42)

Case 3

G3(s) =
0.5

0.5s+ 1
(16.3.43)

The frequency responses of the three plants are shown in Figure 16.1 on the following
page, which are within the statistical confidence bounds centered at Go(jω) and
with standard deviation of

√
0.4. Note that the difference between these 3 plants is

much larger than might be expected in any practical situation. We have deliberately
chosen the example to highlight the issues involved.

Figures 16.2, 16.3 and 16.4 show the closed-loop responses of the three plants
for a unit set point change, controlled using C and Co. The results are discussed as
follows.
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Figure 16.1. Plant frequency response. Case 1 (solid); case 2 (dashed); case 3
(dotted)

• Case 1. Since G1(s) = Go(s), the closed-loop response based on Qo for this
case is the desired response as specified. However, there is a difference in
responses between the desired closed-loop system and the robust control sys-
tem which has accounted for uncertainty in the model. The existence of Q̃
causes degradation in the nominal closed-loop performance, but this degrada-
tion is reasonably small, as can be seen from the closeness of the closed-loop
responses; in particular, the control signal is seen to be less aggressive. This
is the price one pays to build in a robustness margin should the true plant
not be the nominal model.

• Case 2. There is a large model error between G2(s) and Go(s) shown in
Figure 16.1. This corresponds to the so called dangerous situation in robust
control. It is seen from Figure 16.3 on the facing page that without the
compensation of optimal Q̃, the closed-loop system is at the edge of instability.
However, Q̃ stabilizes the closed-loop system and achieves acceptable closed-
loop performance in the presence of this large model uncertainty.

• Case 3. Although there is a large model error between G3(s) and Go(s) in
the low frequency region, this model error is less likely to cause instability of
the closed-loop system, though more likely to result in a slower closed-loop
response. Figure 16.4 on page 474 illustrates that the closed-loop response
speed when using the optimal Q̃ is indeed slower than the response speed



Section 16.3. Robust Control Design with Confidence Bounds 473

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [s]

P
la

nt
 o

ut
pu

t

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time [s]

C
on

tr
ol

le
r 

ou
tp

ut

Figure 16.2. Closed-loop responses for case 1, using Qo (thin line) and using
optimal Q (thick line)
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Figure 16.3. Closed-loop responses for case 2, using Qo (thin line) and using
optimal Q (thick line).

from Qo, but the difference is small. It is interesting to note that in this
case the control signal from the compensated robust closed-loop system is a
smoother response than the one from Qo.

Remark 16.13. We do not want the reader to go away, having read the above
example, believing that one must always carry out some form of robust design. We
have carefully chosen this example to highlight the issues. However, in practice,
careful nominal design performed with an eye on robustness issues is likely to be an
adequate solution especially since precise bounds for model errors will be difficult to
come by. ✷✷✷
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Figure 16.4. Closed-loop responses for case 3, using Qo (thin line) and using
optimal Q (thick line).

16.3.6 Unstable plant

We next briefly show how the robust design method can be extended to the case of an
unstable open loop plant. As before, we denote the nominal model byGo(s) =

Bo(s)
Ao(s)

,

the nominal controller by Co(s) =
P (s)
L(s) , the nominal sensitivity by So, the sensitivity

when the plant remains at Go(s) (but the controller changes to C(s)) by S1 and the
achieved sensitivity when the plant changes to G(s) (and the controller changes to
C) by S2. We parameterize the modified controller by:

C(s) =
P (s)
E(s) +

Ao(s)
E(s) Q(s)

L(s)
E(s) − Bo(s)

E(s) Q(s)
(16.3.44)

where Q(s) is a stable proper transfer function.
It then follows, as in Chapter 15, that

So(s) =
Ao(s)L(s)

Ao(s)L(s) +Bo(s)P (s)
To(s) =

Bo(s)P (s)
Ao(s)L(s) +Bo(s)P (s)

(16.3.45)

S1(s) = So(s)
(
1− Bo(s)Q(s)

L(s)

)
T1(s) = To(s) +

So(s)Bo(s)Q(s)
L(s)

(16.3.46)

S2(s) =
S1(s)

1 + T1(s)G∆(s)
=

S1(s)

1 + T1(s)
Ao(s)
Bo(s)

Gε

=
So(s)− Ao(s)Bo(s)Q(s)

Ao(s)L(s)+Bo(s)P (s)

1 +
(

Ao(s)P (s)
Ao(s)L(s)+Bo(s)P (s) +

Ao(s)2Q(s)
Ao(s)L(s)+Bo(s)P (s)

)
Gε(s)

(16.3.47)
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where G∆(s), Gε(s) denote, as usual, the MME and AME respectively.
As before we used a weighted measure of S2(s)− So(s) where the weight is now

chosen as

W2(s) = (1 + T1(s)G∆(s)) (16.3.48)

In this case

W2(s)[S2(s)− So(s)] = − Ao(s)Bo(s)Q(s)
Ao(s)L(s) +Bo(s)P (s)

− L(s) [P (s) +Ao(s)Q(s)]
[Ao(s)L(s) +Bo(s)P (s)]

2Ao(s)2Gε(s) (16.3.49)

A point that will be appreciated by those who have studied identification is that
identification for unstable plant typically uses fractional models. Thus the nominal
model would typically be expressed as No

Do
where

No(s) =
Bo(s)
E(s)

(16.3.50)

Do(s) =
Ao(s)
E(s)

(16.3.51)

for some stable polynomialE(s). Also, the true plant would normally be represented
as N(s)

D(s) where

N(s) = No(s) +
Bε(s)
E(s)

(16.3.52)

D(s) = Do(s) +
Aε(s)
E(s)

(16.3.53)

Under these conditions, the additive modeling error Gε(s) would take the form:

Gε(s) =
N(s)
D(s)

− No(s)
Do(s)

=
Bo(s) +Bε(s)
Ao(s) +Aε(s)

− Bo(s)
Ao(s)

(16.3.54)

# Ao(s)Bε(s)
Ao(s)2

− Bo(s)Aε(s)
Ao(s)2

(16.3.55)

Substituting (16.3.54) into ((16.3.49))

W2(s)[S2(s)− So(s)] = − Ao(s)Bo(s)Q(s)
Ao(s)L(s) +Bo(s)P (s)

− L(s) [P (s) +Ao(s)Q(s)]

[Ao(s)L(s) +Bo(s)P (s)]
2 (Ao(s)Bε(s)−Bo(s)Aε(s)) (16.3.56)

We can then proceed essentially as in the open loop stable case.

Remark 16.14. The comments made in Remark 16.12 also apply here.
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16.4 Summary

• Optimization can often be used to assist with certain aspects of control system
design.

• The answer provided by an optimization strategy is only as good as the ques-
tion that has been asked.

• Optimization needs to be carefully employed keeping in mind the complex
web of trade-offs involved in all control system design.

• Quadratic optimization is a particularly simple strategy and leads to a closed
form solution.

• Quadratic optimization can be used for optimal Q synthesis.

• We have also shown that quadratic optimization can be effectively used to
formulate and solve robust control problems when the model uncertainty is
specified in the form of a frequency domain probabilistic error.

• Within this framework we have shown that the robust controller biases the
nominal solution arising from optimal nominal design so as to create a gap
for model uncertainty whilst attempting to minimize affecting the achieved
performance.

• This can be viewed as a formal way of achieving the bandwidth reduction
which was discussed earlier as a mechanism for providing a robustness gap in
control system design.
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16.6 Problems for the Reader

Problem 16.1. Consider the quadratic optimization problem

min
Q(s)∈S

∥∥W (s)−Q(s)V (s)
∥∥2

2
(16.6.1)

where V (s) and W (s) are stable and proper transfer functions. Solve the optimiza-
tion problem (i.e. find the minimizing, stable and possibly improper, Q(s)) for the
following pairs

Case 1 Case 2 Case 3

V (s)
1

(s+ 1)
(−s+ 1)2

s2 + 4s+ 2
1

s+ 2

W (s)
s+ 3
s+ 5

2
(s+ 1)2

(−s+ 1)
(s+ 6)(s+ 2)

Problem 16.2. Consider a plant having a nominal model with transfer function
given by

Go(s) =
−s+ 2

(s+ 2)(s+ 4)
(16.6.2)

It is required to design a one d.o.f. control loop to track a reference with nonzero
mean and significant energy in the frequency band [0, 3][rad/s].

Synthesize Q(s) as the optimal quadratic norm inverse of Go(s). (Hint: use
an appropriate weighting function and set the problem up as a standard quadratic
minimization problem, then use MATLAB program oph2.m.)

Problem 16.3. Consider a plant having a nominal model Go(s). The comple-
mentary sensitivity target is Ho(s). Assume that

Go(s) = 4
−s+ 1

(s+ 1)(s+ 8)
and Ho(s) =

b2

s2 + 1.3bs+ b2
(16.6.3)

16.3.1 Compute the optimal (quadratic) Q(s) for b = 0.5.

16.3.2 Repeat for b = 6.
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16.3.3 Compare both solutions, and discuss in connection with the fundamental
design limitations arising from NMP zeros.

Problem 16.4. Consider a plant having a nominal model Go(s). The comple-
mentary sensitivity target is Ho(s). Assume that

Go(s) = 4
s+ 4

(s+ 1)(s+ 8)
and Ho(s) =

4
s2 + 2.6s+ 4

(16.6.4)

Compute the optimal (quadratic) Q(s), with the additonal constraint that its
poles should have real parts less or equal than −2. Hint: make the substitution
v = s+2 and then solve the equivalent optimization problem in the complex variable
v.

Problem 16.5. Find the best (in a quadratic sense) stable approximation for the
unstable transfer function

F (s) =
4

(−s+ 2)(s+ 3)
(16.6.5)

in the frequency band [0; 4] [rad/s]. To do that set the optimization problem as

min
X(s)∈S

∥∥W (s)
(
1− [F (s)]−1X(s)

)∥∥2
2

(16.6.6)

where X(s) is the optimal stable approximation and W (s) is a suitable weighting
function.

Problem 16.6. A disturbance feedforward scheme (see Figure 10.2 on page 272)
is to be used in the two d.o.f. control of a plant with

Go1(s) =
−s+ 3

(s+ 1)(s+ 4)
(16.6.7)

It is also known that the disturbance dg(t) is a signal with energy distributed in
the frequency band [0, 4][rad/s].

Design the feedforward block Gf (s) by using quadratic optimization, i.e. set the
problem up so as to find a transfer function Go

f (s) such that

Go
f (s) = arg min

X∈S
||(1 −Go1X)Ω||2 (16.6.8)

where S is the set of all real rational and stable transfer functions, and Ω(s) is a
suitable weighting function which takes into account the disturbance bandwidth.
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Problem 16.7. Consider a plant with nominal model

Go(s) =
2

(−s+ 1)(s+ 4)
(16.6.9)

Design a one d.o.f control such that the feedback control loop tracks step refer-
ences in the presence of measurement noise with energy in the frequency band [5, 50]
[rad/s]

Problem 16.8. A feedback control loop is designed for a plant with nominal model

Go(s) =
2

(s+ 1)(s+ 2)
(16.6.10)

so as to compensate an input disturbance with nonzero mean and a variable compo-
nent with energy in the frequency band [0, 5] [rad/s].

16.8.1 Synthesize a nominal controller Qo(s) using quadratic optimization.

16.8.2 Use the robust control strategy presented in this chapter to design a robust
controller, Q(s), if we additionally know that the frequency response of the
additive modeling error satisfies

E{Gε(jω)Gε(−jω)} = α̃2(ω) =
2ω2

(ω2 + 64)(ω2 + 1)
(16.6.11)

Problem 16.9. Build a quadratic optimization Q synthesis theory, similar to that
developed in section §16.2.2, for the sampled data control case. To that end, assume
you want to synthesize a digital controller Qq(z) for a continuous time plant, such
that the complementary sensitivity Toq(z) is at a minimum distance, in quadratic
norm, to a prescribed design target Hoq(z).

Problem 16.10. Apply the methodology developed in Problem 16.9 to a case where
the plant has a nominal model given by

Go(s) =
−s+ 2

(s+ 1)(s+ 2)
(16.6.12)

The digital controller output is applied to the plant through a zero order sample
and hold device and the plant output is sampled every 0.2 [s].

Synthesize the controller Qq(z) which minimizes
∥∥Hoq − Toq

∥∥
2
, where the com-

plementary sensitivity target, Hoq(z), is given by

Hoq(z) =
0.1(z + 0.7)

z2 − 1.2z + 0.45
(16.6.13)





Chapter 17

LINEAR STATE SPACE
MODELS

17.1 Preview

We have seen that there are many alternative model formats that can be used for
linear dynamic systems. In simple SISO problems, any representation is probably
as good as any other. However, as we move to more complex problems (especially
multivariable problems) it is desirable to use special model formats. One of the
most flexible and useful structures is the state space model. As we saw in Chapter
3, this model takes the form of a coupled set of first order differential (or differ-
ence) equations. This model format is particularly useful with regard to numerical
computations.

State space models were briefly introduced in Chapter 3. Here we will examine
linear state space models in a little more depth for the SISO case. Note, however,
that many of the ideas will directly carry over to the multivariable case presented
later. In particular, we will study

• similarity transformations and equivalent state representations

• state space model properties

◦ controllability, reachability and stabililizability
◦ observability, reconstructability and detectability

• special (canonical) model formats

The key tools used in studying linear state space methods are linear algebra
and vector space methods. The reader is thus encouraged to briefly review these
concepts as a prelude to reading this chapter.

17.2 Linear Continuous Time State Space Models

As we have seen in Chapter 3, a continuous time linear time invariant state space
model takes the form

483
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ẋ(t) = Ax(t) +Bu(t) x(to) = xo (17.2.1)
y(t) = Cx(t) +Du(t) (17.2.2)

where x ∈ Rn is the state vector, u ∈ Rm is the control signal, y ∈ Rp is the output,
xo ∈ Rn is the state vector at time t = to and A,B,C and D are matrices of
appropriate dimensions.

Equation (17.2.1) is called the state equation and (17.2.2) is called to the output
equation.

17.3 Similarity Transformations

It is readily seen that the definition of the state of a system is non-unique. Consider,
for example, a linear transformation of x(t) to x(t) defined as:

x(t) = T−1x(t) x(t) = Tx(t) (17.3.1)

where T is any nonsingular matrix, called a similarity transformation. If (17.3.1)
is substituted into (17.2.1) and (17.2.2) the following alternative state description
is obtained:

ẋ(t) =Ax(t) +Bu(t) x(to) = T−1xo (17.3.2)

y(t) =Cx(t) +Du(t) (17.3.3)

where

A
�
= T−1AT B

�
= T−1B C

�
= CT D

�
= D (17.3.4)

The model (17.3.2), (17.3.3 ) is an equally valid description of the system. In-
deed, there are an infinite number of (equivalent) ways of expressing the state space
model of a given system. All equivalent models are related via a similarity trans-
form as in (17.3.4). We shall see below that certain choices for the transformation
T make various aspects of the system response easier to visualize and compute.

As an illustration, say that the matrix A can be diagonalized by a similarity
transformation T, then

A = Λ
�
= T−1AT (17.3.5)

where, if λ1, λ2, . . . λn are the eigenvalues of A, then

Λ = diag(λ1, λ2, . . . λn) (17.3.6)
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Because Λ is diagonal, we have

xi(t) = eλi(t−to)xo +
∫ t

to

eλi(t−τ)biu(τ)dτ (17.3.7)

where the subscript i denotes the ith component of the state vector. Equation
(17.3.7) gives a direct connection between the system output and the eigenvalues of
the matrix A. Note that, in the case of complex conjugate eigenvalues, xi(t) will
also be complex, although the output y(t) is necessarily real

y(t) =
n∑
i=1

cie
λi(t−to)xo +

n∑
i=1

ci

∫ t

to

eλi(t−τ)biu(τ)dτ +Du(t) (17.3.8)

Example 17.1. Consider a system with a state space description given by

A =



−4 −1 1

0 −3 1

1 1 −3


 ; B =



−1

1

0


 ; C =

[
−1 −1 0

]
D = 0 (17.3.9)

Using the MATLAB command eig we find that the eigenvalues of A are −5,
−3 and −2. The matrix A can be diagonalized using a similarity transformation
matrix T whose columns are a set of linearly independent eigenvectors of A. The
matrix T can also be obtained using the MATLAB command eig, which yields

T =



0.8018 0.7071 0.0000

0.2673 −0.7071 0.7071

−0.5345 −0.0000 0.7071


 (17.3.10)

Using (17.3.4) and (17.3.10) we obtain the similar state space description given
by
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A = Λ =



−5 0 0

0 −3 0

0 0 −2


 ; B =




0.0

−1.414

0.0


 ; (17.3.11)

C =
[
−0.5345 −1.4142 0.7071

]
D = 0 (17.3.12)

17.4 Transfer Functions Revisited

As might be expected, the transfer function of a system does not depend on the
basis used for the state space. Consider, for example, the alternative description
given in (17.3.2) to (17.3.4).

Then, the solution to equation (17.3.3) using Laplace Transforms is given by

Y (s) = [C(sI−A)−1B+D]U(s) +C(sI−A)−1x(0) (17.4.1)

= [CT(sI−T−1AT)−1T−1B+D]U(s) +CT(sI −T−1AT)−1T−1x(0)
(17.4.2)

= [C(sI−A)−1B+D]U(s) +C(sI−A)−1x(0) (17.4.3)

which is identical to (4.5.10), as anticipated.
The previous analysis shows that different choices of state variables lead to

different internal descriptions of the model, but to the same input-output model
since

C(sI−A)−1B+D = C(sI−A)−1B+D (17.4.4)

for any nonsingular T.

Hence, given a transfer function, there exists an infinite number of input-output
equivalent state space models.

This is consistent with physical understanding, as illustrated in the following
example.

Example 17.2. Consider again the D.C. motor of Example 3.4 on page 47. Phys-
ically, the angle of the shaft is an objective observation, which is clearly independent
of the units used to measure the other state: angular speed. If x2(t) is a measure-
ment of the angular speed in one unit, and x2(t) in another unit with conversion
factor x2(t) = αx2(t), then
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x(t) =


x1(t)

x2(t)


 = T−1


x1(t)

x2(t)


 = T−1x(t) where T−1 =


1 0

0 α



(17.4.5)

The input-output relation is, both physically and mathematically independent of
this transformation.

✷✷✷

In this example, we transformed from one set of physical states to another
set of physical states (namely the same quantities measured in different units).
A common application of such similarity transformations is to convert to a state
vector such that the A matrix has particular properties; the associated states can
then loose their physical meaning (if they had one) but the original state can always
be recovered by the inverse transformation.

For example, we can carry out a transformation to highlight the set of natural
frequencies of the system which correspond to the eigenvalues of the matrix A.
We note that

det(sI−A) = det(sI−T−1AT) (17.4.6)

which verifies that the eigenvalues are invariant with respect to a similarity trans-
formation.

Example 17.3. Consider the 4-tuple (A,B,C,D) used in Example 17.1 on page 485.
Then, the transfer function G(s), obtained from (4.5.13) is given by

G(s) =
2s2 + 14s+ 20

s3 + 10s2 + 31s+ 30
(17.4.7)

Note that the computation of G(s) can be done using MATLAB command ss2tf.

✷✷✷

Remark 17.1. We observe that G(s) can be expressed as

G(s) =
CAdj(sI−A)−1B

det(sI−A)
(17.4.8)

Hence the poles of G(s) are eigenvalues of A, i.e. they are roots of the charac-
teristic polynomial of matrix A

det(sI−A) =
n∏
i=1

(s− λi) (17.4.9)

where λ1, λ2, . . . , λn are the eigenvalues of A.
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17.5 From Transfer Function to State Space Representation

We have seen above how to go from a state space description to the corresponding
transfer function. The converse operation leads to the following question: given a
transfer function G(s) how can a state representation for this system be obtained?
In this section we present one answer to this question.

Consider a transfer function G(s) as in (4.5.3) to (4.5.5). We can then write

Y (s) =
n∑
i=1

bi−1Vi(s) where Vi(s) =
si−1

A(s)
U(s) (17.5.1)

We note from the above definitions that

vi(t) = L−1 [V (s)] =
dvi−1(t)

dt
for i = 1, 2, . . . , n (17.5.2)

We can then choose, as state variables, xi(t) = vi(t), which on using (17.5.1)
leads to

A =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...

−a0 −a1 −a2 · · · −an−2 −an−1



; B =




0

0

...

0

1




(17.5.3)

C =
[
b0 b1 b2 · · · bn−1

]
D = 0 (17.5.4)

This is illustrated by the following example.

Example 17.4. Consider building a state space description using (17.5.1) to (17.5.4)
for the transfer function in (17.4.7). This leads to

A =




0 1 0

0 0 1

−30 −31 −10


 ; B =



0

0

1


 (17.5.5)

C =
[
20 14 2

]
D = 0 (17.5.6)
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As an exercise for the reader, we suggest the problem of finding similarity trans-
formations to convert this description into the other two given previously for the
same system in equations (17.3.9) and (17.3.11).

Of course, a similar procedure applies to discrete time models. For example,
consider the transfer function Gq(z) given by

Yq(z) = Gq(z)Uq(z) (17.5.7)

Gq(z) =
Bq(z)
Aq(z)

=
bn−1z

n−1 + bn−2z
n−2 + . . .+ b1z + b0

zn + an−1zn−1 + . . .+ a1z + a0
(17.5.8)

This can be expressed as

Yq(z) =
n∑
i=1

bi−1Vi(z) where Vi(z) =
zi−1

Aq(z)
Uq(z) (17.5.9)

From the above definitions, we have that

vi[k] = Z−1 [V (z)] = qvi−1[k] for i = 1, 2, . . . , n (17.5.10)

where q is the forward shift operator.
We can then choose, as state variables, xi[k] = vi[k], which leads to

Aq =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...

−a0 −a1 −a2 · · · −an−2 −an−1



; Bq =




0

0

...

0

1




(17.5.11)

Cq =
[
b0 b1 b2 · · · bn−1

]
; Dq = 0 (17.5.12)

17.6 Controllability and Stabilizability

An important question that lies at the heart of control using state space models is
whether or not we can steer the state via the control input to certain locations in
the state space. Technically this property is called controllability or reachability. A
closely related issue is that of stabilizability. We begin with controllability:
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The issue of controllability is concerned with, whether or not, a given initial
state x0 can be steered to the origin in finite time using the input u(t).

Formally, we have

Definition 17.1. A state xo is said to be controllable if there exists a finite interval
[0, T ] and an input {u(t), t ∈ [0, T ]} such that x(T ) = 0. If all states are controllable,
then the system is said to be completely controllable.

✷✷✷

Remark 17.2. A related concept is that of reachability. This concept is sometimes
used in discrete time systems. It is formally defined as follows:

Definition 17.2. A state x �= 0 is said to be reachable, from the origin, if given
x(0) = 0, there exists a finite time interval [0, T ] and an input {u(t), t ∈ [0, T ]}
such that x(T ) = x. If all state are reachable the system is said to be completely
reachable.

✷✷✷

For continuous, time-invariant, linear systems, there is no distinction between
complete controllability and reachability. However, the following example illustrates
that there is a subtle difference in discrete time.

Consider the following shift operator state space model

x[k + 1] = 0 (17.6.1)

This system is obviously completely controllable since the state immediately goes
to the origin. However, no nonzero state is reachable.

✷✷✷

In view of the subtle distinction between controllability and reachability in dis-
crete time, we will use the term “controllability” in the sequel to cover the stronger
of the two concepts. The discrete time proofs for the results presented below are a
little easier. We will thus prove the results using the following discrete time (delta
domain) model:

δx[k] = Aδx[k] +Bδu[k] (17.6.2)
y[k] = Cδx[k] +Dδu[k] (17.6.3)

where x ∈ Rn, u ∈ Rm and y ∈ Rl.
For simplicity of notation we will drop the subscript δ from the matricesAδ,Bδ,Cδ

and Dδ in the remainder of this section.
Our next step will be to derive a simple algebraic test for controllability that

can be easily applied to a given state space model. In deriving this result, we will
use a result from linear algebra known as the Cayley-Hamilton Theorem. For the
convenience of the reader, we briefly review this result:
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Theorem 17.1 (Cayley-Hamilton theorem). Every matrix satisfies its own char-
acteristic equation; i.e. if

det(sI−A) = sn + an−1s
n−1 + . . .+ a0 (17.6.4)

Then

An + an−1An−1 + . . .+ a0I = 0 (17.6.5)

Proof

Let

Adj(sI−A) = Bns
n +Bn−1s

n−1 + . . .+B0 (17.6.6)

Then, since [det(sI−A)]I = (Adj[sI−A]) (sI−A) we have

(sn + an−1s
n−1 + . . .+ a0)I =

(
Bns

n +Bn−1s
n−1 + . . .+B0

)
(sI−A) (17.6.7)

Equating coefficients gives:

Bn = 0 (17.6.8)
Bn−1 = I (17.6.9)

−Bn−1A+Bn−2 = an−1I (17.6.10)
−Bn−2A+Bn−3 = an−2I (17.6.11)

...
−B1A+B0 = a1I (17.6.12)

−B0A = a0I (17.6.13)

Successively eliminating the B′s gives (17.6.5)
✷✷✷

Armed with the above result, we can now easily establish the following result
on controllability.

Theorem 17.2. Consider the state space model (17.6.2)–(17.6.3).

i) The set of all controllable states is the range space of the controllability matrix
Γc[A,B] where

Γc[A,B]
�
=
[
B AB A2B . . . An−1B

]
(17.6.14)

ii) The model is completely controllable if and only if Γc[A,B] has full row rank.
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Proof

The solution of (17.6.2) is

x[N ] = (I+A∆)Nx[0] + ∆B
N∑
i=1

(I+A∆)i−1u[N − i] (17.6.15)

and so

x[N ] = (I+A∆)Nx[0] + ∆
[
B AB A2B . . . AN−1B

]
Ξ ς (17.6.16)

where

Ξ
�
=




I I I · · · I

0 ∆I 2∆I

0 0 ∆2I

...
...

. . .
...

0 0 0 . . . ∆N−1I




ς
�
=




u[N − 1]

u[N − 2]

...

u[0]




(17.6.17)

Since the matrix Ξ is nonsingular, the result follows from the Cayley-Hamilton
theorem (Theorem 17.1 on the preceding page).

✷✷✷

Example 17.5. Consider the state space model

A =


−3 1

−2 0


 ; B =


 1

−1


 (17.6.18)

Check complete controllability

Solution

The controllability matrix is given by

Γc[A,B] = [B,AB] =


 1 −4

−1 −2


 (17.6.19)
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Clearly, rank Γc[A,B] = 2, thus the system is completely controllable
✷✷✷

Example 17.6. Repeat for

A =


−1 1

2 0


 ; B =


 1

−1


 (17.6.20)

Solution

Γc[A,B] = [B,AB] =


 1 −2

−1 2


 (17.6.21)

Thus, rank Γc[A,B] = 1 < 2, thus the system is not completely controllable.
✷✷✷

Remark 17.3. Although we have derived the above result using the delta model, it
holds equally well for shift and/or continuous time models.

Remark 17.4. We see that controllability is a black and white issue, i.e. a model
is either completely controllable or it is not. Clearly to know that something is
uncontrollable is a valuable piece of information. However, to know that something
is controllable really tells us nothing about the degree of controllability, i.e. of the
difficulty that might be involved in achieving a certain objective. The latter issue
lies at the heart of fundamental design trade-offs in control which were the subject
of Chapters 8 and 9.

Remark 17.5. We notice that controllability is a system property which does not
depend on the particular choice of state variables. This can be easily seen as follows:

• Consider a transformation defined by the nonsingular matrix T, i.e. x(t) =
Tx(t) yielding

A = T−1AT (17.6.22)

A i = T−1AiT (17.6.23)

B = T−1B (17.6.24)

A iB = T−1AiB (17.6.25)
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• From equations (17.6.22) to (17.6.25) it can be seen that

Γc[ A,B ] = T−1Γc[A,B] (17.6.26)

which implies that Γc[ A,B ] and Γc[A,B] have the same rank.

If a system is not completely controllable, it can be decomposed into a control-
lable and a completely uncontrollable subsystem as explained below.

Lemma 17.1. Consider a system having rank{Γc[A,B]} = k < n, then there
exists a similarity transformation T such that x = T−1x,

A = T−1AT; B = T−1B (17.6.27)

and A,B have the form

A =


Ac A12

0 Anc


 ; B =


Bc

0


 (17.6.28)

where Ac has dimension k and (Ac,Bc) is completely controllable.

Proof

Let T1 be any basis for the range space of Γc. Choose T2 arbitrarily, subject to
T = [T1 T2] being nonsingular. Define

T−1 =


S1

S2


 (17.6.29)

Then T−1T = I implies

S1T1 = I S1T2 = 0 S2T1 = 0 S2T2 = I (17.6.30)

Applying the transformation (17.6.27), the transformed system has the form:

B =


S1

S2


B =


S1B

0


 (17.6.31)
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A =


S1

S2


A[T1 T2] =


S1AT1 S1AT2

0 S2AT2


 (17.6.32)

The zero entries in (17.6.31) follow since the values of B belong to the range
space of Γc and S2T1 = 0. Similarly, the zero elements in (17.6.32) are a conse-
quence of the columns of AT1 belonging to the range space of Γc by the Cayley–
Hamilton theorem and S2T1 = 0. This establishes (17.6.28). Furthermore, we see
that


Bc AcBc . . . Ac

n−1 Bc

0 . . . . . . 0


 =

Γc[ Ac,Bc ] Ac

kBc . . . Ac
n−1Bc

0 . . . . . . 0




(17.6.33)

= T−1Γc[A,B] (17.6.34)

Hence

rank{Γc[ Ac,Bc ]} = rank{Γc[A,B]} = k (17.6.35)

✷✷✷

The above result has important consequences regarding control. To appreciate
this, express the (transformed) state and output equations in partitioned form as

δ


 xc[k]
xnc[k]


 =

Ac A12

0 Anc




 xc[k]
xnc[k]


+

Bc

0


 u[k] (17.6.36)

y[k] =
[
Cc Cnc

] xc[k]
xnc[k]


+Du[k] (17.6.37)

A pictorial representation of these equations is shown in Figure 17.1.
Equations (17.6.36) and (17.6.37), and Figure 17.1 show that problems can arise

when controlling a system, or designing a controller using a model which is not
completely controllable, since the output has a component Cncxnc[k] which does
not depend on the manipulated input u[k]. For example, if xnc[k] grows unbounded,
i.e. one or more eigenvalues of Anc are outside the stability region, then the plant
cannot be stabilized by feedback using the input u[k].
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u[k] y[k]
Cc

Cncpart

+

u[k]

D

+

+

Uncontrollable
xnc[k]

xc[k]
part

Controllable

Figure 17.1. Controllable-uncontrollable decomposition

Definition 17.3. The controllable subspace of a state space model is composed of
all states generated through every possible linear combination of the states in xc.
The stability of this subspace is determined by the location of the eigenvalues of Ac.

Definition 17.4. The uncontrollable subspace of a state space model is composed
of all states generated through every possible linear combination of the states in xnc.
The stability of this subspace is determined by the location of the eigenvalues of Anc.

Definition 17.5. A state space model is said to be stabilizable if its uncontrollable
subspace is stable.

A fact that we will find useful in the sequel is that, if the system given by equa-
tions (17.6.2) and (17.6.3) is completely controllable, there exist similarity trans-
formations that convert it into special forms, known as canonical forms. This is
established in the following two lemmas.

Lemma 17.2. Consider a completely reachable state space model for a SISO sys-
tem. Then, there exists a similarity transformation which converts the state space
model into the following controllability canonical form:

A′ =




0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 . . . 0 −α2

...
...

. . .
...

...

0 0 . . . 1 −αn−1




B′ =




1

0

0

...

0




(17.6.38)

where
λn + αn−1λn−1 + · · ·+ α1λ+ α0 = det(λI−A) is the characteristic polynomial

of A.



Section 17.6. Controllability and Stabilizability 497

Proof

We first note that Γc(A′,B′) = I. Using this result and equation (17.6.26) we have
that the similarity transformation should be given by T = Γc(A,B). We now verify
that this transformation yields (17.6.38). By comparing the first column in both
sides of equation (17.6.26), it is clear that this choice of T transforms B into B′

given by (17.6.38). We next note that

Γc[A,B]A′ =
[
AB A2B · · · An−1B − (α0I + α1A+ · · ·+ αn−1An−1)B

]
(17.6.39)

By applying the Cayley-Hamilton Theorem we have that −(α0I + α1A + · · · +
αn−1An−1) = An. Then

Γc[A,B]A′ = AΓc[A,B] ⇒ Γc[A,B]A′Γc[A,B]−1 = A (17.6.40)

which completes the proof.
✷✷✷

Lemma 17.3. Consider a completely controllable state space model for a SISO
system. Then, there exists a similarity transformation which converts the state
space model into the following controller canonical form:

A′′ =




−αn−1 −αn−2 . . . −α1 −α0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0




B′′ =




1

0

0

...

0




(17.6.41)

where
λn + αn−1λn−1 + · · ·+ α1λ+ α0 = det(λI−A) is the characteristic polynomial

of A.

Proof

Using (17.6.26) and the controllability property of the SISO system, we note that
there exists a unique similarity transformation to take the model (17.6.41) into the
model (17.6.38). The appropriate similarity transformation is
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x = Γc[A,B]Mx′′ (17.6.42)

where

M
�
=




1 αn−1 . . . α2 α1

. . . α2

. . .
...

. . . αn−1

1




(17.6.43)

The similarity transformation gives

A′′ =M−1Γ−1
c [A,B]AΓc[A,B]M B′′ =M−1Γ−1

c [A,B]B (17.6.44)

or

A′′ =M−1A′M B′′ =M−1B′ (17.6.45)

where A′ = Γ−1
c [A,B]AΓc[A,B], B′ = Γ−1

c [A,B]B is in controllability form in
view of Lemma 17.2 on page 496. From the definition of M, it can be seen that
M−1 is also an upper triangular matrix with unit diagonal elements. Thus

B′′ =M−1B′ =




1

0

...

0




(17.6.46)

The rest of the proof follows on separately computing MA′′ and A′M and ver-
ifying that both matrices are equal. Since M is a nonsingular matrix, the result
follows.

✷✷✷
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Remark 17.6. Finally, we remark that, as we have seen in Chapter 10, it is very
common indeed to employ uncontrollable models in control system design. This
is because they are a convenient way of describing various commonly occurring
disturbances. For example, a constant disturbance can be modeled by the following
state space model:

ẋd = 0 (17.6.47)

which is readily seen to be non-stabilizable.
More generally, disturbances are frequently described by models of the form:

ξ〈xd〉 = Adxd (17.6.48)

where ξ is an appropriate operator (differential, shift, delta) and Ad is a matrix
which typically has roots on the stability boundary.

These models can be combined with other models to include the disturbances in
the total system description. For example, a system with an input disturbance might
be modeled with A′ or B′ given by

A′ =


A B

0 Ad


 ; B′ =


B
0


 (17.6.49)

17.7 Observability and Detectability

Consider again the state space model (17.6.2) and (17.6.3).
In general, the dimension of the observed output, y, may be less than the dimen-

sion of the state, x. However, one might conjecture that if one observed the output
over some non-vanishing time interval then this might tell us something about the
state. The associated properties are called observability (or reconstructability). A
related issue is that of detectability. We begin with observability:

Observability is concerned with the issue of what can be said about the state
given measurements of the plant output.

A formal definition is as follows:

Definition 17.6. The state xo �= 0 is said to be unobservable if given x(0) = xo,
and u[k] = 0 for k ≥ 0, then y[k] = 0 for k ≥ 0. The system is said to be completely
observable if there exists no non-zero initial state that it is unobservable.
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Remark 17.7. A related concept to observability is that of reconstructibility. This
concept is sometimes used in discrete time systems. Reconstructibilty is concerned
with what can be said about x(T ) having observed the past values of the output,
i.e. y[k] for 0 ≤ k ≤ T . For linear time invariant, continuous time systems, the
distinction between observability and reconstructibility is unnecessary. However, the
following example illustrates that in discrete time, the two concepts are different.
Consider

x[k + 1] = 0 x[0] = xo (17.7.1)
y[k] = 0 (17.7.2)

This system is clearly reconstructible for all T ≥ 1, since we know for certain
that x[T ] = 0 for T ≥ 1. However, it is completely unobservable since y[k] = 0, ∀k
irrespective of xo.

✷✷✷

In view of the subtle difference between observability and reconstructibility, we
will use the term “observability” in the sequel to cover the stronger of the two
concepts.

A test for observability of a system is established in the following theorem.

Theorem 17.3. Consider the the state model (17.6.2) and (17.6.3)

i) The set of all unobservable states is equal to the null space of the observability
matrix Γo[A,C] where

Γo[A,C]
�
=




C

CA

...

CAn−1




(17.7.3)

ii) The system is completely observable if and only if Γo[A,C] has full column
rank n.

Proof

The result holds for both continuous and discrete time; here we will focus on the
discrete time (delta operator domain) proof. For zero input, the solution of equation
(17.6.2) is
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x[k + 1] = (I +∆A)x[k] (17.7.4)

Hence, for N > n− 1

YN
�
=




y[0]

y[1]

y[2]

...

y[N ]



=




C

C(I+∆A)

C(I+∆A)2

...

C(I+∆A)N



x[0] (17.7.5)

=




I 0 0 . . . 0

I ∆I 0 . . . 0

I 2∆I ∆2I . . . 0

...
...

...
. . .

...

∆NI







C

CA

CA2

...

CAN



x[0] (17.7.6)

The first matrix in (17.7.6) is nonsingular and hence YN is zero if and only if
x[0] lies in the null space of [CT ATCT . . . (AN )TCT ]T . From the Cayley-Hamilton
Theorem, this is the same as the null space of Γo[A,C].

✷✷✷

As for controllability, the above result also applies to continuous time and dis-
crete (shift) operator models.

Example 17.7. Consider the following state space model:

A =


−3 −2

1 0


 ; B =


1
0


 ; C =

[
1 −1

]
(17.7.7)

Check observability
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Solution

Γo[A,C] =


 C

CA


 =

 1 −1

−4 −2


 (17.7.8)

Hence rank Γo[A,C] = 2 and the system is completely observable.
✷✷✷

Example 17.8. Repeat for

A =


−1 −2

1 0


 ; B =


1
0


 ; C =

[
1 −1

]
(17.7.9)

Solution

Γo[A,C] =


 1 −1

−2 −2


 (17.7.10)

Hence rank Γo[A,C] = 1 < 2 and the system is not completely observable.
✷✷✷

We see a remarkable similarity between the results in Theorem 17.2 on page 491
and in Theorem 17.3 on page 500. We can formalize this as follows:

Theorem 17.4 (Duality). Consider a state space model described by the 4-tuple
(A,B,C,D). Then the system is completely controllable if and only if the dual
system (AT ,CT ,BT ,DT ) is completely observable.

Proof

Immediate from Theorems 17.2 on page 491 and 17.3.
✷✷✷

The above theorem can often be used to go from a result on controllability to one
on observability and vice versa. For example, the dual of Lemma 17.1 on page 494
is:

Lemma 17.4. If rank{Γo[A,C]} = k < n, there exists a similarity transformation
T such that with x = T−1x, A = T−1AT, C = CT, then C and A take the form
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A =


Ao 0

A21 Ano


 C =

[
Co 0

]
(17.7.11)

where Ao has dimension k and the pair (Co,Ao) is completely observable.

Proof

We consider the pair (A′,B′)
�
= (AT ,CT ), and apply Lemma 17.1 on page 494.

The result follows by duality.
✷✷✷

The above result has a relevance similar to that of the controllability prop-
erty and the associated decomposition. To appreciate this, we apply the dual of
Lemma 17.1 on page 494 to express the (transformed) state and output equations
in partitioned form as

δ


 xo[k]
xno[k]


 =

Ao 0

A21 An0




 xo[k]
xno[k]


+

 Bo

Bno


u[k] (17.7.12)

y[k] =
[
Co 0

] xo[k]
xno[k]


+Du[k] (17.7.13)

A pictorial description of these equations is shown in Figure 17.2 on the following
page.

Equations (17.7.12) and (17.7.13), together with Figure 17.2 show that problems
can arise when solely using the output to control the plant, or designing a controller
from a model, which is not completely observable. This is due to the fact that the
output does not provide any information regarding xno[k]. For example, if xnc[k]
grows unbounded, then the plant cannot be stabilized by output feedback.

Definition 17.7. The observable subspace of a plant is composed of all states gen-
erated through every possible linear combination of the states in xo. The stability of
this subspace is determined by the location of the eigenvalues of Ao.

Definition 17.8. The unobservable subspace of a plant is composed of all states
generated through every possible linear combination of the states in xno. The sta-
bility of this subspace is determined by the location of the eigenvalues of Ano.
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+

+

xno[k]

Co

part
Unobservable

part
Observable

D

xo[k]u[k]

u[k]

y[k]

Figure 17.2. Observable–unobservable decomposition

Definition 17.9. A plant is said to be detectable if its unobservable subspace is
stable.

In section §17.6 we remarked that non-controllable (indeed non-stabilizable)
models are frequently used in control system design. This is not true for non-
detectable models. Essentially all models used in the sequel can be taken to be
detectable without loss of generality.

There are also duals of the canonical forms given in Lemmas 17.2 on page 496
and 17.3 on page 497. For example the dual of Lemma 17.3 on page 497 is

Lemma 17.5. Consider a completely observable SISO system given by (17.6.2) and
(17.6.3). Then there exists a similarity transformation that converts the model to
the observer canonical form

δx′[k] =




−αn−1 1

...
. . .

... 1

−α0 0 0



x′[k] +




bn−1

...

...

b0



u[k] (17.7.14)

y[k] =
[
1 0 . . . 0

]
x′[k] +Du[k] (17.7.15)

Proof

We note that (C,A) observable ⇔ (AT ,CT ) controllable. Hence we consider the
dual system
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δx[k] = ATx[k] +CTu[k] (17.7.16)

y[k] = BTx[k] +Du[k] (17.7.17)

and convert this to controller form as in Lemma 17.3 on page 497. Finally a second
application of duality gives the form (17.7.14),(17.7.15).

✷✷✷

Remark 17.8. We note that (17.7.14),(17.7.15) is another way of writing an nth

order difference equation. The continuous time version of (17.7.14),(17.7.15) is an
alternative way of writing an nth order differential equation.

17.8 Canonical Decomposition

Further insight into the structure of linear dynamical systems is obtained by con-
sidering those systems which are only partially observable or controllable. These
systems can be separated into completely observable and completely controllable
systems.

The two results of Lemmas 17.1 on page 494 and 17.4 on page 502 can be
combined as follows.

Theorem 17.5 (Canonical Decomposition Theorem). Consider a system de-
scribed in state space form. Then, there always exists a similarity transformation
T such that the transformed model for x = T−1x takes the form:

A =




Aco 0 A13 0

A21 A22 A23 A24

0 0 A33 0

0 0 A34 A44



; B =




B1

B2

0

0



; C =

[
C1 0 C2 0

]

(17.8.1)

where

i) The subsystem [Aco,B1,C1] is both completely controllable and completely
observable and has the same transfer function as the original system (see
Lemma 17.6 on the next page).

ii) The subsystem
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Aco 0

A21 A22


 ,

B1

B2


 ,
[
C1 0

]
(17.8.2)

is completely controllable.

iii) The subsystem


Aco A13

0 A33


 ,

B1

0


 ,
[
C1 C2

]
(17.8.3)

is completely observable.

Proof

Consequence of Lemmas 17.1 on page 494 and 17.4 on page 502.
✷✷✷

The canonical decomposition described in Theorem 17.5 on the preceding page
leads to

Lemma 17.6. Consider the transfer function matrix H(s) given by

Y (s) = H(s)U(s) (17.8.4)

Then

H = C(sI−A)−1B+D = C1(sI−Aco)−1B1 +D (17.8.5)

where C1, Aco and B1 are as in equations (17.8.1).

Proof

Straightforward from the definitions of the matrices, followed by the application of
the formula for inversion of triangular partitioned matrices.

✷✷✷
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Remark 17.9. Lemma 17.6 shows that the uncontrollable and the unobservable
parts of a linear system do not appear in the transfer function. Conversely, given
a transfer function, it is possible to generate a state space description which is both
completely controllable and observable. We then say that this state description is a
minimal realization of the transfer function. As mentioned earlier, non-minimal
models are frequently used in control system design to include disturbances.

Remark 17.10. If M is any square matrix and we denote by Λ{M} the set of
eigenvalues of M, then

Λ{A} = Λ{Aco} ∪ Λ{A22} ∪ Λ{A33} ∪ Λ{A44} (17.8.6)

where

Λ{A} Eigenvalues of the system

Λ{Aco} Eigenvalues of the controllable and observable subsystem

Λ{A22} Eigenvalues of the controllable but unobservable subsystem

Λ{A33} Eigenvalues of the uncontrollable but observable subsystem

Λ{A44} Eigenvalues of the uncontrollable and unobservable subsystem

Although the definition of the system properties refer to the states in certain
subsystems, it is customary to use the same terminology for the eigenvalues and
natural modes associated with those subsystems. For example, if a controllable but
unobservable continuous time subsystem has two distinct eigenvalues, λa and λb,
then it is usually said that the modes eλat and eλbt and the eigenvalues λa and λb
are controllable but unobservable.

Remark 17.11. We observe that controllability for a given system depends on the
structure of the input ports, i.e. where, in the system, the manipulable inputs are
applied. Thus, the states of a given subsystem may be uncontrollable for a given
input, but completely controllable for another. This distinction is of fundamental
importance in control system design since not all plant inputs can be manipulated
(consider, for example, disturbances), and can therefore not be used to steer the
plant to reach certain states.

Similarly, the observability property depends on which outputs are being con-
sidered. Certain states may be unobservable from a given output, but they may be
completely observable from some other output. This also has a significant impact
on output feedback control systems, since some states may not appear in the plant
output being measured and fed back. However they may appear in crucial internal
variables and thus be important to the control problem.
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17.9 Pole Zero Cancellation and System Properties

The system properties described in the previous sections are also intimately related
to issues of pole-zero cancellations. The latter issue was discussed in Chapter 15,
(in particular, see Remark 15.4 on page 429) when we made a distinction between
analytic (or exact) cancellations and implementation cancellations. To facilitate the
subsequent development, we introduce the following test which is useful for studying
issues of controllability and observability.

Lemma 17.7 (PBH Test). Consider a state space model (A,B,C). Then

(i) The system is not completely observable if and only if there exists a nonzero
vector x ∈ Cn and a scalar λ ∈ C such that

Ax = λx (17.9.1)
Cx = 0

(ii) The system is not completely controllable if and only if there exists a nonzero
vector x ∈ C

n and a scalar λ ∈ C such that

xTA = λxT (17.9.2)

xTB = 0

Proof

(i) If: The given conditions imply




C

CA

...

CAn−1



x = 0 (17.9.3)

This implies that the system is not completely observable.

Only if: Let us assume the system is not completely observable. It can then
be decomposed as in (17.7.12), (17.7.13). Now choose λ as an eigenvalue of
Ano and define
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x =


 0

xno


 (17.9.4)

where xn0 �= 0 is an eigenvector of An0 corresponding to λ. Clearly we have


A0 0

A21 Ano




 0

xno


 = λ


 0

xno


 (17.9.5)

and

[
Co 0

] 0

xno


 = 0 (17.9.6)

(ii) Similar to part (i) using properties of controllability.

✷✷✷

We will next use the above result to study the system properties of cascaded
systems.

Consider the cascaded system in Figure 17.3.
We assume that u(t), u2(t), y1(t), y(t) ∈ R, both subsystems are minimal and

that

System 1 : has a zero at α and pole at β

System 2 : has a pole at α and zero at β

Then the combined model has the property that

(a) The system pole at β is not observable from Y

(b) The system pole at α is not controllable from u

To establish this, we note that the combined model has state space description
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u(t) u2(t) = y1(t)
ẋ1 = A1x1 +B1u

y1 = C1x1 y = C2x2

System 1 System 2

ẋ2 = A2x2 +B2u2 y(t)

Figure 17.3. Pole zero cancellation


 A1 0

B2C1 A2


 ;

B1

0


 ;
[
0 C2

]
(17.9.7)

To establish (a), let λ = β and choose x �= 0 defined as follows:

x =
[
xT1 xT2

]T
(17.9.8)

0 = (A1 − βI) x1 (17.9.9)

x2 = (βI−A2)
−1 B2C1x1 (17.9.10)

Then clearly

[
0 C2

]x1

x2


 = C2x2 (17.9.11)

= C2 (βI−A2)
−1 B2C1x1

= 0 since β is a zero of System 2

Also from (17.9.8), (17.9.10)


 A1 0

B2C1 A2




x1

x2


 = β


x1

x2


 (17.9.12)

Thus using the PBH test the composite system is not completely observable.
Part (b) is established similarly by choosing x so that
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xT =
[
xT1 xT2

]
(17.9.13)

0 = xT2 (αI−A2)

xT1 = xT2 B2C1 (αI−A1)
−1

Then

[
xT1 xT2

]B1

0


 = xT2 B2C1 (αI−A1)B1 = 0 (17.9.14)

[
xT1 xT2

] A1 0

B2C1 A2


 = α

[
xT1 xT2

]
(17.9.15)

Thus, using the PBH test the composite system is not completely controllable.
✷✷✷

17.10 Summary

• State variables are system internal variables, upon which a full model for the
system behavior can be built. The state variables can be ordered in a state
vector.

• Given a linear system, the choice of state variables is not unique. However,

◦ the minimal dimension of the state vector is a system invariant,

◦ there exists a nonsingular matrix which defines a similarity transforma-
tion between any two state vectors, and

◦ any designed system output can be expressed as a linear combination of
the states variables and the inputs.

• For linear, time invariant systems the state space model is expressed in the
following equations:

continuous time systems

ẋ(t) = Ax(t) +Bu(t) (17.10.1)
y(t) = Cx(t) +Du(t) (17.10.2)
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discrete time systems, shift form

x[k + 1] = Aqx[k] +Bqu[k] (17.10.3)
y[k] = Cqx[k] +Dqu[k] (17.10.4)

discrete time systems, delta form

δx[k] = Aδx[k] +Bδu[k] (17.10.5)
y[k] = Cδx[k] +Dδu[k] (17.10.6)

(17.10.7)

• Stability and natural response characteristics of the system can be studied
from the eigenvalues of the matrix A (Aq, Aδ).

• State space models facilitate the study of certain system properties which are
paramount in the solution control design problem. These properties relate to
the following questions

◦ By proper choice of the input u, can we steer the system state to a desired
state (point value)? (controllability)

◦ If some states are or uncontrollable, will these states generate a time
decaying component? (stabilizability)

◦ If one knows the input, u(t) for t ≥ t0, can we infer the state at time
t = t0 by measuring the system output, y(t) for t ≥ t0? (observability)

◦ If some of the states are unobservable, do these states generate a time
decaying signal? (detectability)

• Controllability tells us about the feasibility to control a plant.

• Observability tells us about whether it is possible to know what is happening
inside a given system by observing its outputs.

• The above system properties are system invariants. However, changes in the
number of inputs, in their injection points, in the number of measurements
and in the choice of variables to be measured may yield different properties.

• A transfer function can always be derived from a state space model.

• A state space model can be built from a transfer function model. However,
only the completely controllable and observable part of the system is described
in that state space model. Thus the transfer function model might be
only a partial description of the system.

• The properties of individual systems do not necessarily translate unmodified
to composed systems. In particular, given two systems completely observable
and controllable, their cascade connection:
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◦ is not completely observable if a pole of the first system coincides with
a zero of the second system (pole-zero cancellation),

◦ is not detectable if the pole-zero cancellation affects an unstable pole,
◦ is not completely controllable if a zero of the first system coincides with
a pole of the second system (zero-pole cancellation), and

◦ is not stabilizable if the zero-pole cancellation affects a NMP zero

• this chapter provides a foundation for the design criteria which states that
one should never attempt to cancel unstable poles and zeros.

17.11 Further Reading

Linear state space models

Chen, C. (1984). Introduction to Linear System Theory. Holt, Rinehart and
Winston.

Kailath, T. (1980). Linear Systems. Prentice–Hall, Englewood Cliffs, N.J.

Ogata, K. (1967). State Space Analysis of Control Systems. Prentice–Hall, Engle-
wood Cliffs, N.J.

Rosenbrock, H. (1970). State Space and Multivariable Theory. Wiley, New York.

Schultz, D. and Melsa, J. (1967). State Function and Linear Control Systems.
McGraw–Hill, New York.

Wiberg, D. (1971). Theory and Problems of State Space and Linear Systems.
McGraw–Hill, New York.

Controllability, observability and canonical forms

Gilbert, E. (1963). Controllability and observability in multivariable control sys-
tems. SIAM J. Control, 1:128–151.

Kailath, T. (1980). Linear Systems. Prentice–Hall, Englewood Cliffs, N.J

Kalman, R.E., Ho, Y.C. and Narendra, K.S. (1962). Controllability of linear dy-
namical systems. Contrib. Differ. Equations, 1(2):189–213.

Luenberger, D. (1967). Canonical forms for linear multivariable systems. IEEE
Transactions on Automatic Control, 12(6):290–293.

Poles and zeros

Brockett, R. (1965). Poles, zeros, and feedback: State space interpretation. IEEE
Transactions on Automatic Control, 10:129–135, April.

Kailath, T. (1980). Linear Systems. Prentice–Hall, Englewood Cliffs, N.J.



514 Linear State Space Models Chapter 17

Observers

Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems. Wiley–
Interscience, New York.

Luenberger, D. (1964). Observing the state of a linear system. IEEE Trans.
Military Electr., 8:74–80.

Luenberger, D. (1971). An introduction to observers. IEEE Transactions on
Automatic Control, 16(6):596–602.
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17.12 Problems for the Reader

Problem 17.1. Consider the following differential equations describing system
input-output relationships.

d2y(t)
dt2

+ 4
dy(t)
dt

+ 5y(t) = 2u(t) (17.12.1)

d3y(t)
dt3

− 2y(t) = u(t) (17.12.2)

d2y(t)
dt2

− 4
dy(t)
dt

+ 3y(t) =
du(t)
dt

+ 2u(t) (17.12.3)

d2y(t)
dt2

+ 4
dy(t)
dt

+ 5y(t) = −d2u(t)
dt2

+
du(t)
dt

+ 2u(t) (17.12.4)

For each case, build a steady state representation.

Problem 17.2. Build a state space representation for a system having a unit step
response given by

y(t) = 2− 3e−t + e−t − te−t (17.12.5)

Problem 17.3. Build a state space representation for the system with the follow-
ing transfer functions

(a)
9

s2 + 4s+ 9
(b)

2
(−s+ 2)2

(c)
−s+ 8

(s+ 2)(s+ 3)
(d)

−s+ 4
s+ 4

(e
z − 0.5

(z + 0.5)(z − 0.4)
(f)

0.4
z2(z − 0.8)

Problem 17.4. Consider a one d.o.f. control loop, with controller C(s) and
nominal plant model Go(s). The state space models for plant and controller are
(Ao,Bo,Co,0) and (Ac,Bc,Cc,Dc) respectively.

17.4.1 Prove that for a biproper controller it is necessary and sufficient that Dc is
a nonzero scalar.
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17.4.2 Build a state space representation for the whole loop, having the reference
as the input and the plant output as the output of the composite system.

Problem 17.5. A continuous time system has a state space model given by

A =


−3 1

0 −2


 ; B =


1
ε


 (17.12.6)

C =
[
c1 c2

]
; D = 0 (17.12.7)

17.5.1 Compute the system transfer function.

17.5.2 Verify that, as ε → 0, the transfer function has a near pole-zero cancellation.
Interpret this in terms of controllability.

17.5.3 Build a dual example with respect to observability.

Problem 17.6. A continuous time system has a state space model given by

A =


−3 1

−1 2


 ; B =


 1

−1


 (17.12.8)

C =
[
1 0

]
; D = 0 (17.12.9)

17.6.1 Determine whether the system is stable

17.6.2 Compute the transfer function

17.6.3 Investigate the system properties (i.e. controllability, stabilizability, observ-
ability, and detectability )

Problem 17.7. A discrete time system has an input-output model given by

δ2y[k] + 5δy[k] + 6y[k] = δu[k] + u[k] (17.12.10)

Build a state space model
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Problem 17.8. Consider a generic state space description (A,B,C,D) where
B = 0, D = 0.

17.8.1 Determine a pair of matrices A and C, and initial state x(0) such that
y(t) = 5, ∀t ≥ 0.

17.8.2 Repeat for y(t) = −3 + 2 sin(0.5t+ π/3)

17.8.3 Try to generalize the problem

Problem 17.9. Consider the cascaded system in Figure 17.3 on page 510. Assume
that the transfer functions are given by

G1(s) =
2s+ 3

(s− 1)(s+ 5)
; G2(s) =

2(s− 1)
s2 + 4s+ 9

(17.12.11)

Prove that at the output of System 1 there exists an unbounded mode et which can
not be detected at the output of the cascaded system (i.e. at the output of System 2).

Problem 17.10. Consider the same cascaded system in Figure 17.3 on page 510.
Assume now that the systems have been connected in reverse order, i.e.

G1(s) =
2(s− 1)

s2 + 4s+ 9
; G2(s) =

2s+ 3
(s− 1)(s+ 5)

(17.12.12)

Prove that, for nonzero initial conditions, the output of System 2 includes an
unbounded mode et which is not affected by the input, u(t), to the cascaded system.

Problem 17.11. Consider a system composed by a continuous time plant and a
zero order hold at its input. The plant transfer function is given by

Go(s) =
e−0.5s

s+ 0.5
(17.12.13)

Assume that the input and the output of this composed system are sampled every
∆[s].

17.11.1 Build a discrete time state space model for the sampled system, for ∆ =
0.5[s].
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17.11.2 Repeat for ∆ = 0.75[s]

17.11.3 Assume that one would like to build a continuous time state space model
for Go(s), what would be the main difficulty?

Problem 17.12. Consider again Problem 12.4 on page 347. Interpret the appar-
ent loss of a pole at certain sampling rates by constructing a discrete time state space
model of the original continuous time system and then checking for observability and
controllability.



Chapter 18

SYNTHESIS VIA STATE
SPACE METHODS

18.1 Preview

Here we will give a state space interpretation to many of the results described earlier
in Chapter 7 and 15. In a sense this will duplicate the earlier work. Our reason
for doing so, however, is to gain additional insight into linear feedback systems.
Also, it will turn out that the alternative state space formulation carries over more
naturally to the multivariable case.

Results to be presented here include

• pole assignment by state variable feedback

• design of observers to reconstruct missing states from available output mea-
surements

• combining state feedback with an observer

• transfer function interpretation

• dealing with disturbances in state variable feedback

• reinterpretation of the affine parameterization of all stabilizing controllers

18.2 Pole Assignment by State Feedback

We will begin by examining the problem of closed loop pole assignment. For the
moment, we make a simplifying assumption that all of the system states are mea-
sured. We will remove this assumption in section §18.4. We will also assume that
the system is completely controllable. The following result then shows that the
closed loop poles of the system can be arbitrarily assigned by feeding back the state
through a suitably chosen constant gain vector.

519
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Lemma 18.1. Consider the state space nominal model

ẋ(t) = Aox(t) +Bou(t) (18.2.1)
y(t) = Cox(t) (18.2.2)

Let r̄(t) denote an external signal.

Then, provided that the pair (Ao,Bo) is completely controllable, there exists
state variable feedback of the form

u(t) = r̄ −Kx(t) (18.2.3)

K
�
= [k0, k1, . . . , kn−1] (18.2.4)

such that the closed loop characteristic polynomial is Acl(s), where Acl(s) is an
arbitrary polynomial of degree n.

Proof

Since the model is completely controllable, it can be transformed into controller form
(see Chapter 17), using a similarity transformation

x = Txc =⇒ Ac
�
= T−1AoT; Bc

�
= T−1Bo; Cc

�
= CoT (18.2.5)

where

ẋc(t) = Acxc(t) +Bcu(t) (18.2.6)
y(t) = Ccxc(t) (18.2.7)

and

Ac =




−an−1 . . . . . . −a0

1 0

. . .
...

1 0




Bc =




1

0

...

0




(18.2.8)

Now, if one uses state feedback of the form
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u(t) = −Kcxc(t) + r̄(t) (18.2.9)

where

Kc
�
=
[
kcn−1 kcn−2 . . . kc0

]
(18.2.10)

then, the closed loop state space representation becomes

ẋc(t) =




−an−1 . . . . . . −a0

1

. . .

1 0



xc(t) +




1

0

...

0



(−Kcxc(t) + r̄(t)) (18.2.11)

ẋc(t) =




−an−1 − kcn−1 . . . . . . −a0 − kc0

1

. . .

1 0



xc(t) +




1

0

...

0



r̄(t) (18.2.12)

Thus the closed loop poles satisfy

sn + (an−1 + kcn−1)s
n−1 + . . . (a0 + kc0) = 0 (18.2.13)

It is therefore clear that by choice of Kc the closed loop polynomial, and therefore
the nominal closed loop poles, can be assigned arbitrarily. We can also express
the above result in terms of the original state space description by reversing the
transformation (18.2.5). This leads to

u(t) = −KcT−1x(t) + r̄(t) = −Kx(t) + r̄(t) where K = KcT−1 (18.2.14)

✷✷✷

Note that state feedback does not introduce additional dynamics in the loop,
since the scheme is based only on proportional feedback of certain system variables.
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We can easily determine the overall transfer function from r̄(t) to y(t). This is given
by

Y (s)
R̄(s)

= Co(sI−Ao +BoK)−1Bo =
CoAdj{sI−Ao +BoK}Bo

F (s)
(18.2.15)

where

F (s)
�
= det{sI−Ao +BoK} (18.2.16)

and Adj stands for adjoint matrix.
We can further simplify the expression given in equation (18.2.15). To do this,

we will need to use the following two results from Linear Algebra.

Lemma 18.2 (Matrix inversion lemma). Consider three matrices, A ∈ Cn×n,
B ∈ Cn×m and C ∈ Cm×n. Then, if A+BC is nonsingular, we have that

(A+BC)−1 = A−1 −A−1B
(
I+CA−1B

)−1
CA−1 (18.2.17)

Proof

Multiply both sides by (A+BC)
✷✷✷

Remark 18.1. In the case when B = g ∈ Rn and CT = h ∈ Rn, equation (18.2.17)
becomes

(
A+ ghT

)−1
=
(
I−A−1 ghT

1 + hTA−1g

)
A−1 (18.2.18)

Lemma 18.3. Given a matrix W ∈ Rn×n and a pair of arbitrary vectors φ1 ∈ Rn

and φ2 ∈ Rn, then, provided that W and W + φ1φ
T
2 are nonsingular,

Adj(W + φ1φ
T
2 )φ1 = Adj(W )φ1 (18.2.19)

φT2 Adj(W + φ1φ
T
2 ) = φT2 Adj(W ) (18.2.20)

Proof

Using the definition of matrix inverse and applying the matrix inversion lemma
(18.2) to the inverse of W + φ1φ

T
2 , we have that

(W + φ1φ
T
2 )

−1φ1 =
Adj(W + φ1φ

T
2 )

det(W + φ1φT2 )
φ1 (18.2.21)

= W−1φ1 − W−1φ1φ
T
2 W

−1φ1

1 + φT2 W
−1φ1

(18.2.22)

=
W−1φ1

1 + φT2 W
−1φ1

(18.2.23)
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It is also known that

W−1 =
Adj(W )
det(W )

(18.2.24)

1 + φT2 W
−1φ1 = det(1 + φT2 W

−1φ1) = det(I +W−1φ1φ
T
2 ) (18.2.25)

=
det(W + φ1φ

T
2 )

det(W )
(18.2.26)

We first use (18.2.24 ) and (18.2.26 ) on the right hand side of (18.2.23). Then,
comparing the resulting expression with the right hand side of (18.2.21), the result
(18.2.19) is obtained. The proof of (18.2.20) follows along the same lines.

✷✷✷

Application of Lemma 18.3 on the facing page to equation (18.2.15) leads to:

CoAdj{sI−A+BoK}Bo = CoAdj{sI−Ao}Bo (18.2.27)

We then see that the right hand side of the above expression is the numerator
Bo(s) of the nominal model, Go(s). Hence, state feedback assigns the closed loop
poles to a prescribed position, while the zeros in the overall transfer function remain
the same as those of the plant model.

State feedback encompasses the essence of many fundamental ideas in control de-
sign and lies at the core of many design strategies. However, this approach requires
that all states be measured. In most cases this is an unrealistic requirement. For
that reason the idea of observers is next introduced as a mechanism for estimating
the states from the available measurements.

18.3 Observers

In the previous section we found that state variable feedback could assign the closed
loop poles arbitrarily. Frequently, however, not all states can be measured. We thus
introduce the idea of an observer. This is basically a mechanism to estimate the
unmeasured states from the available output measurements. This is a special form
of virtual sensor.

We consider again the state space model

ẋ(t) = Aox(t) +Bou(t) (18.3.1)
y(t) = Cox(t) (18.3.2)

A general linear observer then takes the form

˙̂x(t) = Aox̂(t) +Bou(t) + J(y(t)−Cox̂(t)) (18.3.3)
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where the matrix J is called the observer gain and x̂(t) is the state estimate.Note
that for the particular choice J = 0, the observer (18.3.3) degenerates into an open
loop model of (18.3.1).

The term

ν(t)
�
= y(t)−Cox̂(t) (18.3.4)

is known as the innovation process. For nonzero J in (18.3.3), ν(t) represents
the feedback error between the observation and the predicted model output.

The following result shows how the observer gain J can be chosen such that the
error, x̃(t) defined as

x̃(t)
�
= x(t)− x̂(t) (18.3.5)

can be made to decay at any desired rate.

Lemma 18.4. Consider the state space model (18.3.1)–(18.3.2) and an associated
observer of the form (18.3.3).

Then the estimation error x̃(t), defined by (18.3.5), satisfies

˙̃x(t) = (Ao − JCo)x̃(t) (18.3.6)

Moreover, provided the model is completely observable, then the eigenvalues of
(Ao − JCo) can be arbitrarily assigned by choice of J.

Proof

Subtracting (18.3.1) and (18.3.3) and using (18.3.2) and (18.3.5) gives (18.3.6).
Also, if the model is completely observable, then there always exists a similarity

transformation:

x = Txo =⇒ Ā
�
= T

−1
AoT; B̄

�
= T

−1
Bo; C̄

�
= CoT (18.3.7)

which takes the system state description to observer canonical form (see Chap-
ter 17):

ẋo(t) = Āxo(t) + B̄u(t) (18.3.8)
y(t) = C̄xo(t) (18.3.9)

where



Section 18.3. Observers 525

Ā =




−an−1 1

−an−2
. . .

... 1

−a0 0 . . . 0



; B̄ =




bn−1

bn−2

...

b0



; C̄ =

[
1 0 . . . 0

]

(18.3.10)

In this form the observer becomes:

˙̂xo(t) = Āx̂o(t) + B̄u(t) + Jo(y(t)− C̄x̂o(t)) (18.3.11)

Now let

Jo
�
=
[
jon−1 jon−2 . . . jo0

]T
(18.3.12)

The error then becomes

x̃o(t) = xo(t)− x̂o(t) (18.3.13)

leading to

˙̃xo(t) = (Ā− JoCo)x̃o(t) =




−an−1 − jon−1 1

−an−2 − jon−2

. . .

... 1

−a0 − jo0 0 . . . 0



x̃o(t) (18.3.14)

The error dynamics is therefore governed by the roots of the following charac-
teristic equation

det(sI− Ā− JoC̄) = sn + (an−1 + jon−1)s
n−1 + . . . (a0 + jo0) = 0 (18.3.15)

Hence, by choice of Jo, the error dynamics can be arbitrarily assigned.
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Finally, transforming the state back to the original representation we can see
that in equation (18.3.3), we require that

J = TJo (18.3.16)

✷✷✷

Example 18.1 (Tank Level Estimation). As a simple application of a linear
observer to estimate states we consider the problem of two coupled tanks in which
only the height of the liquid in the second tank is actually measured but where we
are also interested in estimating the height of the liquid in the first tank. We will
design a virtual sensor for this task.

A system of this type is also discussed on the book’s web page where a photograph
of a real system is given.

A schematic diagram is shown in Figure 18.1.

Figure 18.1. Schematic diagram of two coupled tanks

Water flows into the first tank through pump 1 a rate of fi(t) which obviously
affects the height of the water in tank 1 (denoted by h1(t)). Water flows out of tank
1 into tank 2 at a rate of f12(t), affecting both h1(t) and h2(t). Water then flows
out of tank 2 at a rate of fe controlled by pump 2.

Given this information, the challenge is to build a virtual sensor (or observer)
to estimate the height of liquid in tank 1 based on measurements of the height of
liquid in tank 2 and the flows f1(t) and f2(t).

Before we continue with the observer design, we first make a model of the system.
The height of liquid in tank 1 can be described by the equation

dh1(t)
dt

=
1
A
(fi(t)− f12(t)) (18.3.17)
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Similarly, h2(t) is described by

dh2(t)
dt

=
1
A
(f12(t)− fe) (18.3.18)

The flow between the two tanks can be approximated by the free fall velocity for
the difference in height between the two tanks.

f12(t) =
√
2g(h1(t)− h2(t)) (18.3.19)

Now, if we measure the liquid heights in the tanks in % (where 0% is empty and
100% is full), we can convert the flow rates into equivalent values in % per second
(where f1(t) is the equivalent flow into tank 1 and f2(t) is the equivalent flow out
of tank 2). The model for the system is then

d

dt


h1(t)

h2(t)


 =

−K
√
h1(t)− h2(t)

K
√
h1(t)− h2(t)


+

1 0

0 −1




f1(t)

f2(t)


 (18.3.20)

where

K =
√
2g
A

= 0.26 (18.3.21)

We can linearise this model for a nominal steady state height difference (or
operating point). Let

h1(t)− h2(t) = ∆h(t) = H + hd(t) (18.3.22)

then

K
√
h1(t)− h2(t) = K

√
∆h (18.3.23)

= K
√
H + hd(t)

= K
√
H

√
1 +

hd(t)
H

≈ K
√
H

(
1 +

hd(t)
2H

)

since
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√
1 + ε ≈ 1 +

ε

2
(18.3.24)

then

K
√
H

(
1 +

hd(t)
2H

)
= K

√
H +

K

2
√
H
hd(t) (18.3.25)

= K
√
H +

K

2
√
H
(h1(t)− h2(t)−H)

= K
√
H +

K

2
√
H
(h1(t)− h2(t))− K

2
√
H
H

=
K
√
H

2
+

K

2
√
H
(h1(t)− h2(t))

This yields the following linear model

d

dt


h1(t)

h2(t)


 =

−k k

k −k




h1(t)

h2(t)


+

1 0

0 −1




f1(t)− K

√
H

2

f2(t) + K
√
H

2


 (18.3.26)

where

k =
K

2
√
H

(18.3.27)

Since we are assuming that h2(t) can be measured and h1(t) cannot, we set

C =
[
0 1

]
and D =

[
0 0

]
. The resulting system is both controllable and

observable (which you can easily verify). Now we wish to design an observer

J =


J1

J2


 (18.3.28)

to estimate the value of h2(t). The characteristic polynomial of the observer is
readily seen to be

s2 + (2k + J1)s+ J2k + J1k (18.3.29)
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so we can choose the observer poles which gives us values for J1 and J2. If we
assume that the operating point is H = 10%, then k = 0.0411. If we wanted poles
at s = −0.9822 and s = −0.0531, then we calculate that J1 = 0.3 and J2 = 0.9. If
we wanted two poles at s = −2, then J1 = 3.9178 and J2 = 93.41.

The equation for the final observer is then

d

dt


ĥ1(t)

ĥ2(t)


 =

−k k

k −k




ĥ1(t)

ĥ2(t)


+

1 0

0 −1




f1(t)− K

√
H

2

f2(t) + K
√
H

2


+ J(h2(t)− ĥ2(t))

(18.3.30)

✷✷✷

Notice that the above observer allows us to estimate the missing height h1(t)
using measurements of h2(t) and knowledge of the flows f1(t) and f2(t). It thus
provides a virtual sensor for h2(t).

The reader can interactively experiment with this observer on the book’s web
page.

18.4 Combining State Feedback with an Observer

A reasonable conjecture arising from the last two sections is that, it would be a good
idea in the presence of unmeasurable states, to proceed by estimating these states
by an observer and then to complete the feedback control strategy by feeding back
these estimates in lieu of the true states. Such a strategy is indeed very appealing,
since it separates the task of observer design from that of controller design. A priori,
however, it is not clear how the observer poles and the state feedback interact. Nor
is it clear how they impact on the closed loop. The following theorem indicates
that the resultant closed loop poles are the combination of the observer and state
feedback poles.

Theorem 18.1 (Separation Theorem). Consider the state space model (18.3.1)-
(18.3.2) and assume that it is completely controllable and completely observable.
Consider also an associated observer of the form (18.3.3) and state variable feed-
back of the form (18.2.3), where the state estimates are used in lieu of the true
states, i.e.

u(t) = r̄(t)−Kx̂(t) (18.4.1)

K
�
=
[
k0 k1 . . . kn−1

]
(18.4.2)

Then
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(i) The closed loop poles are the combination of the poles from the observer and
the poles that would have resulted from using the same feedback on the true
states. Specifically, the closed loop polynomial Acl(s) is given by

Acl(s) = det(sI−Ao +BoK) det(sI−Ao + JCo) (18.4.3)

(ii) The state estimation error x̃(t) is uncontrollable from the external signal r̄(t).

Proof

(i)
We note from Lemma 18.4 on page 524 that x(t), x̂(t) and x̃(t) satisfy

˙̃x(t) = (Ao − JCo)x̃(t) (18.4.4)
ẋ(t) = Aox(t) +Bo[r̄(t)−Kx̂(t)] (18.4.5)

= Aox(t) +Bo[r̄(t)−K(x(t) + x̃(t))] (18.4.6)

Equations (18.4.4) and (18.4.6) can be jointly written as

d

dt


x(t)
x̃(t)


 =

Ao −BoK BoK

0 Ao − JCo




x(t)
x̃(t)


+

Bo

0


 r̄(t) (18.4.7)

y(t) =
[
Co 0

]x(t)
x̃(t)


 (18.4.8)

The result follows upon noting that the eigenvalues of a block triangular matrix
are equal to the combination of the eigenvalues of the diagonal blocks.

(ii)
The structure of equation (18.4.7) immediately implies that the state estimation

error x̃(t) is uncontrollable from the external signal r̄(t), as can be readily checked
using the controllability matrix. This observation implies that the state estimation
error cannot be improved by manipulating r̄(t).

✷✷✷

The above theorem makes a very compelling case for the use of state estimation
feedback. However, the reader is cautioned that the location of closed loop poles is
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only one among many other factors which come into control system design. Indeed,
we shall see later that state estimate feedback is not a panacea, since it is subject
to the same issues of sensitivity to disturbances, model errors, etc. as all feedback
solutions. Indeed all of the schemes turn out to be essentially identical. These
connections are the subject of the next section.

18.5 Transfer Function Interpretations

In the material presented above we have developed a seemingly different approach
to SISO linear control systems synthesis. This may leave the reader wondering what
the connection is between this and the transfer function ideas presented earlier in
Chapter 7. We next show that these two methods are actually different ways of
expressing the same end result.

18.5.1 Transfer function form of observer

We first give a transfer function interpretation to the observer. We recall from
(18.3.3) that the state space observer takes the form:

˙̂x(t) = Aox̂(t) +Bou(t) + J(y(t) −Cox̂(t)) (18.5.1)

where J is the observer gain and x̂(t) is the state estimate.
A transfer function interpretation for this observer is given in the following

lemma.

Lemma 18.5. The Laplace transform of the state estimate in (18.5.1) has the fol-
lowing properties

a) The estimate can be expressed in transfer function form as:

X̂(s) = (sI−Ao + JCo)−1(BoU(s) + JY (s)) = T1(s)U(s) + T2(s)Y (s)
(18.5.2)

where T1(s) and T2(s) are the following two stable transfer functions

T1(s)
�
= (sI−Ao + JCo)−1Bo (18.5.3)

T2(s)
�
= (sI−Ao + JCo)−1J (18.5.4)

Note that T1(s) and T2(s) have a common denominator of

E(s)
�
= det(sI−Ao + JCo) (18.5.5)
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b) The estimate is related to the input and initial conditions by:

X̂(s) = (sI−Ao)−1BoU(s)− f0(s)
E(s)

(18.5.6)

where f0(s) is a polynomial vector in s with coefficients depending linearly on
the initial conditions of the error x̃(t).

c) The estimate is unbiased in the sense that:

T1(s) + T2(s)Go(s) = (sI−Ao)−1Bo (18.5.7)

where Go(s) is the nominal plant model.

Proof

a)

Equation (18.5.2) is obtained directly by applying the Laplace transform to equa-
tion (18.5.1), and using the definition for T1(s) and T2(s). Zero initial conditions
are assumed.

b)

Equation (18.5.6) is derived on noting that

X̂(s) = X(s)− X̃(s) (18.5.8)

using the fact that X(s) = (sI−Ao)−1BoU(s) and also using equation (18.4.7) to
find the expression for X̃(s).

c)

Using the fact that Go(s) = Co(sI − Ao)−1Bo and equations (18.5.3) and
(18.5.4) we have that

T1(s) + T2(s)Go(s) = (sI−Ao + JCo)−1(Bo + JCo(sI−Ao)−1Bo) (18.5.9)

= (sI−Ao + JCo)−1(sI−Ao + JCo)(sI−Ao)−1Bo

(18.5.10)

from where the result follows.
✷✷✷

Part b) of the above lemma is known as the property of asymptotic unbi-
asedness of the estimate. It shows that the transfer function from U to X̂ is the
same as that from U to X . Thus the only difference (after transients have decayed)
between the true state and the estimated state are due to effects we have not yet
included (e.g. noise, disturbances, model errors etc.).
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18.5.2 Transfer function form of state estimate feedback

We next give a transfer function interpretation to the inter-connection of an observer
together with state variable feedback as was done in Section §18.4. The key result
is described in:

Lemma 18.6. (a) The state estimate feedback law (18.4.1) can be expressed in
transfer function form as:

L(s)
E(s)

U(s) = −P (s)
E(s)

Y (s) + R̄(s) (18.5.11)

where E(s) is the polynomial defined in equation (18.5.5) and

L(s)
E(s)

= 1 +KT1(s) =
det(sI−Ao + JCo +BoK)

E(s)
(18.5.12)

P (s)
E(s)

= KT2(s) =
KAdj(sI−Ao)J

E(s)
(18.5.13)

P (s)
L(s)

= K[sI−Ao + JCo +BoK]−1J (18.5.14)

where K is the feedback gain and J is the observer gain.

(b) The closed loop characteristic polynomial is

Acl(s) = det(sI−Ao +BoK) det(sI−Ao + JCo) (18.5.15)
= F (s)E(s) = Ao(s)L(s) +Bo(s)P (s) (18.5.16)

(c) The transfer function from R̄(s) to Y (s) is given by

Y (s)
R̄(s)

=
Bo(s)E(s)

Ao(s)L(s) +Bo(s)P (s)
(18.5.17)

=
Bo(s)

det(sI−Ao +BoK)

=
Bo(s)
F (s)

where Bo(s) and Ao(s) are the numerator and denominator of the nominal
loop, respectively. P (s) and L(s) are the polynomials defined in (18.5.12) and
(18.5.13), respectively. F (s) is the polynomial defined in (18.2.16).
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Proof

(a) Substituting (18.5.2) into (18.4.1) yields

U(s) = −K[T1(s)U(s) + T2(s)Y (s)] + R̄(s)
⇐⇒ (1 +KT1(s))U(s) = −KT2(s)Y (s) + R̄(s) (18.5.18)

We next note that

1 +K(sI−Ao + JCo)−1Bo = det(I+ (sI−Ao + JCo)−1BoK) (18.5.19)

= det
(
[sI−Ao + JCo]−1(sI−Ao + JCo +BoK)

)
(18.5.20)

KAdj(sI−Ao + JCo)J = KAdj(sI−Ao)J (18.5.21)

where (18.5.21) was obtained by application of Lemma 18.3 on page 522.

Finally, result 18.5.14 follows after applying Lemma 18.3 twice to show that

KAdj(sI−Ao)J =KAdj(sI−Ao + JCo +BoK)J (18.5.22)

(b) Using (18.4.3) the closed loop polynomial is given by

Acl(s) = det(sI−Ao +BoK) det(sI−Ao + JCo) (18.5.23)
= F (s)E(s) = Ao(s)L(s) +Bo(s)P (s) (18.5.24)

(c) From equation (18.5.11) and the nominal model Go(s) = Bo(s)/Ao(s) we have
that

Ȳ (s)
R̄(s)

=
Bo(s)E(s)

Ao(s)L(s) +Bo(s)P (s)
(18.5.25)

Then the result follows by using (18.5.16) to simplify the expression (18.5.25).

✷✷✷

The above lemma shows that polynomial pole assignment and state estimate
feedback lead to the same end result. Thus the only difference is in the terms of
implementation. Actually, in the form that we have presented it, the state space
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formulation makes certain assumptions about the form of the polynomial solution.
In particular, we see from equations (18.5.2) to (18.5.4) that the observer is based
on strictly proper transfer functions. According to remark ( 7.2 on page 182), this
requires that the closed loop polynomial be chosen of, at least, degree 2n.

Note that the cancellation of the factor det(sI − Ao + JCo) in (18.5.17) is
consistent with the fact that the observer states are uncontrollable from the external
signal r̄(t).

The combination of observer and state estimate feedback has some simple in-
terpretations in terms of a standard feedback loop. A first possible interpretation
derives directly from equation (18.5.11) by expressing the controller output as

U(s) =
E(s)
L(s)

(
R̄(s)− P (s)

E(s)
Y (s)
)

(18.5.26)

This is graphically depicted in part a) of Figure 18.2 on the following page. We
see that this is a two degree of freedom control loop. A standard one degree of
freedom loop can be obtained if we generate r̄(t) from the loop reference r(t) as
follows

R̄(s) =
P (s)
E(s)

R(s) (18.5.27)

We then have that (18.5.26) can be written as

U(s) =
P (s)
L(s)

(R(s)− Y (s)) (18.5.28)

This corresponds to the one degree of freedom loop shown in part b) of Fig-
ure 18.2 on the next page.

Note that in part a) of Figure 18.2 on the following page, the transfer function
from R̄(s) to Y (s) is given by (18.5.17), whereas in part b) of the same figure, the
transfer function from R(s) to Y (s) is given by

Y (s)
R(s)

=
Bo(s)P (s)
E(s)F (s)

(18.5.29)

where F (s) is given in (18.2.16). Here E(s) appears in the denominator due to the
particular choice of R̄(s) which re-introduces the above polynomial.

Remark 18.2. Note that (18.5.14) says that the feedback controller can be imple-
mented as a system defined, in state space form, by the 4 − tuple (Ao − JCo −
BoK,J,K, 0) (MATLAB provides a special command, reg, to obtain the transfer
function form).
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−+

Y (s)R(s)

b)

−+

a)

R̄(s) Y (s)

P (s)
E(s)

E(s)
L(s) Go(s)

P (s)
L(s)

Go(s)

Figure 18.2. Separation theorem in standard loop forms.

18.5.3 Transfer function for innovation process

We finally give an interpretation to the innovation process introduced in (18.3.4).
Recall that

ν(t) = y(t)−Cox̂(t) (18.5.30)

This equation can also be expressed in terms of Laplace transfer functions using
(18.5.2) to (18.5.4) as

Eν(s) = L [ν(t)] = Y (s)−Co[T1(s)U(s) + T2(s)Y (s)]
= (1−CoT2(s))Y (s)−CoT1U(s)

(18.5.31)

We can use the above result to express the innovation process ν(t) in terms of
the original plant transfer function. In particular we have

Lemma 18.7. Consider the state space model (18.3.1)-(18.3.2) and the associated
nominal transfer function Go(s) = Bo(s)/Ao(s) (we recall that state space descrip-
tion matrices are set in bold face, to distinguish them from polynomials defined with
the same symbol). Then, the innovations process, ν(t), can be expressed as

Eν(s) =
Ao(s)
E(s)

Y (s)− Bo(s)
E(s)

U(s) (18.5.32)

where E(s) is the polynomial defined in (18.5.5), called the observer characteristic
polynomial.

Proof

We see that the term multiplying Y (s) in (18.5.31) is given by
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1−CoT2(s) = 1−Co(sI−Ao + JCo)−1J (18.5.33)

= det(I − (sI−Ao + JCo)−1JCo) (18.5.34)

= det((sI −Ao + JCo)−1) det(sI−Ao + JCo − JCo) (18.5.35)

=
det(sI−Ao)

det(sI−Ao + JCo)
(18.5.36)

=
Ao(s)
E(s)

(18.5.37)

Similarly, the term multiplying U(s) in (18.5.31) is the negative of

CoT1(s) = Co(sI−Ao + JCo)−1Bo (18.5.38)

= Co
Adj(sI−Ao + JCo)
det(sI−Ao + JCo)

Bo (18.5.39)

= Co
Adj(sI−Ao)

det(sI−Ao + JCo)
Bo (18.5.40)

=
Bo(s)
E(s)

(18.5.41)

where we used Lemma 18.3 on page 522 to derive (18.5.40) from (18.5.39).
✷✷✷

For the moment the above result is simply an interesting curiosity. However, we
will show that this result has very interesting implications. For example, we use it
in the next section to re-interpret the parameterization of all stabilizing controllers
given earlier in Chapter 15.

18.6 Reinterpretation of the Affine Parameterization of all Sta-
bilizing Controllers

We recall the parameterization of all stabilizing controllers given in section §15.7 -
see especially Figure 15.9 on page 442. In the sequel we take R(s) = 0, since the
reference signal can always be re-introduced if desired. We note that the input U(s)
in Figure 15.9 on page 442 satisfies

L(s)
E(s)

U(s) = −P (s)
E(s)

Y (s) +Qu(s)
[
Bo(s)
E(s)

U(s)− Ao(s)
E(s)

Y (s)
]

(18.6.1)

We can connect this result to state estimate feedback and innovations feedback
from an observer using the results of section §18.5. In particular we have
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Lemma 18.8. The class of all stabilizing linear controllers can be expressed in state
space form as:

U(s) = −KX̂(s)−Qu(s)Eν(s) (18.6.2)

where K is a state feedback gain, X̂(s) is a state estimate provided by any stable
linear observer, and Eν(s) denotes the corresponding innovation process.

Proof

The result follows immediately on comparing (18.6.1) with (18.5.32) and (18.5.26).
✷✷✷

This alternative form of the class of all stabilizing controllers is shown in Figure
18.3.

Figure 18.3. State estimate feedback interpretation of all stabilizing controllers

18.7 State Space Interpretation of Internal Model Principle

A generalization of the above ideas on state estimate feedback is the Internal Model
Principle (IMP) described in Chapter 10. We explore the state space form of IMP
from two alternative perspectives below.
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(a) Disturbance estimate feedback

One way that the IMP can be formulated in state space, is to assume that we have
a general deterministic input disturbance d(t) with a generating polynomial Γd(s).

We then proceed by building an observer so as to generate a model state estimate
x̂o(t) and a disturbance estimate d̂(t). These estimates can then be combined in a
control law of the form:

u(t) = −Kox̂o(t)− d̂(t) + ¯r(t) (18.7.1)

We observe that this law ensures asymptotic cancellation of the input distur-
bance from the input signal, provided that the estimate of the disturbance; d̂(t), is
stable and unbiased. We will show below that the control law (18.7.1) automati-
cally ensures that the polynomial Γd(s) appears in the denominator, L(s), of the
corresponding transfer function form of the controller.

Before examining the general situation, we first present a simple example to
illustrate the key ideas:

Example 18.2. Consider a linear plant with input u(t), input disturbance d(t) and
measurable output y(t), where

Y (s) =
1

s+ 1
(U(s) +D(s)) (18.7.2)

and where d(t) is a constant but unknown signal. Use an observer to estimate
d(t). Then design a feedback control law as in (18.7.1).

Solution

The basic idea is to model d(t) as the output of a particular system, which reflects
our knowledge regarding the nature of the disturbance.

Once the overall model is built, the states in the disturbance generating model
can be observed from y(t), and thus the disturbance can be estimated.

A combined state representation for a constant disturbance is given by

[
ẋ1(t)
ẋ2(t)

]
=
[−1 1
0 0

] [
x1(t)
x2(t)

]
+
[
1
0

]
u(t);

[
y(t)
d(t)

]
=
[
1 0
0 1

] [
x1(t)
x2(t)

]
(18.7.3)

where the state x1(t) is the plant state and x2(t) is the state in the disturbance
generating model.

Then the state estimate, x̂(t), and disturbance estimate d̂(t) are given by
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x̂(t) = L−1 [T1(s)U(s) + T2(s)Y (s)] (18.7.4)

d̂(t) = x̂2(t) =
[
0 1
]
x̂(t) (18.7.5)

where T1(s) and T2(s) are the transfer functions defined in (18.5.3) and (18.5.4),
respectively.

If the observer gain is J =
[
j1 j2

]T
, then the observer polynomial defined in

(18.5.5) is

E(s) = s2 + (1 + j1)s+ j2 (18.7.6)

As usual, j1 and j2 are chosen to make E(s) stable.
Once T1(s) and T2(s) have been computed we have that

d̂(t) = x̂2(t) = L−1

[
j2(s+ 1)
E(s)

Y (s) +
−j2
E(s)

U(s)
]

(18.7.7)

The fact that d̂(t) tends to d(t) as t → ∞ is easily proven by substituting (18.7.2)
in (18.7.7) and considering that the disturbance satisfies

D(s) =
β

s
for some unknown β to be estimated (18.7.8)

This yields

d̂(t) = L−1

[
j2

s2 + (1 + j1)s+ j2

β

s

]
(18.7.9)

from where, on applying the Final Value Theorem, we have that

lim
t→∞ d̂(t) = β (18.7.10)

The transient in d̂(t) is a linear combination of the observer modes.
Also

x̂(t) = L−1

[
(sj1 + j2)

E(s)
Y (s) +

s

E(s)
U(s)
]

(18.7.11)

We see that the transfer function from U(s) to X̂(s) is 1
s+1 as required. Also,

choosing K to place the controllable poles at −2 gives K = 1 and the final control
law becomes
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u(t) = −x̂(t)− d̂(t) (18.7.12)

In terms of transfer functions, we see that this control is of the form:

U(s) = −
[
(sj1 + j2)

E(s)
Y (s) +

s

E(s)
U(s)
]
−
[
j2(s+ 1)
E(s)

Y (s)− j2
E(s)

U(s)
]

(18.7.13)

This simplifies to

U(s) = −
[
(j1 + j2)s+ 2j2
s(s+ j1 + 2)

]
Y (s) (18.7.14)

Thus, as expected, the controller incorporates integral action and the closed loop
characteristic polynomial is (s+ 2)(s2 + (j1 + 1)s+ j2).

✷✷✷

Returning to the general case, we begin by considering a composite state de-
scription, which includes the plant model state, as in (18.2.1)-(18.2.2), and the
disturbance model state, as below

ẋd(t) = Adxd(t) (18.7.15)
d(t) = Cdxd(t) (18.7.16)

We note that the corresponding 4-tuples which define the partial models are
(Ao,Bo,Co, 0) and (Ad, 0,Cd, 0) for the plant and disturbance, respectively. For
the combined state x(t) =

[
xTo (t) xTd (t)

]T , we have
ẋ(t) = Ax(t) +Bu(t) where A =

[
Ao BoCd

0 Ad

]
B =
[
Bo

0

]
(18.7.17)

The plant model output is given by

y(t) = Cx(t) where C =
[
Co 0

]
(18.7.18)

Note that this composite model will in general be observable but not controllable
(due to the disturbance modes). Thus, we will only attempt to stabilize the plant
modes by choosing Ko so that (Ao −BoKo) is a stability matrix.

The observer and state feedback gains can then be partitioned as
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J =
[
Jo
Jd

]
; K =

[
Ko Kd

]
(18.7.19)

When the control law (18.7.1) is used, then clearly Kd = Cd. We thus obtain

sI−A =
[
sI−Ao −BoCd

0 sI−Ad

]
; JC =

[
JoCo 0
JdCo 0

]
; BK =

[
BoKo BoCd

0 0

]
(18.7.20)

The final control law is thus seen to correspond to the following transfer function:

C(s) =
P (s)
L(s)

=
[
Ko Kd

] [sI−Ao +BoKo + JoCo 0
JdCo sI−Ad

]−1 [Jo
Jd

]
(18.7.21)

From where we see that the denominator of the control law in polynomial form
is

L(s) = det(sI−Ao + JoCo +BoKo) det(sI−Ad) (18.7.22)

Using (18.7.15) in (18.7.22) we finally see that Γd(s) is indeed a factor of L(s)
as in the polynomial form of IMP.

(b) Forcing the internal model principle via additional dynamics

Another method of satisfying the internal model principle in state space is to filter
system output by passing it through the disturbance model. To illustrate this, say
that the system is given by

ẋ(t) = Aox(t) +Bou(t) +Bodi(t) (18.7.23)
y(t) = Cox(t) (18.7.24)
ẋd(t) = Adxd(t) (18.7.25)
di(t) = Cdxd(t) (18.7.26)

We then modify the system by passing the system output through the following
filter:

ẋ′(t) = AT
d x

′(t) +CT
d y(t) (18.7.27)

where observability of (Cd,Ad) implies controllability of (AT
d ,C

T
d ). We then esti-

mate x(t) using a standard observer ignoring the disturbance leading to



Section 18.8. Trade-Offs in State Feedback and Observers 543

˙̂x(t) = Aox̂(t) +Bou(t) + Jo(y(t)−Cox̂(t)) (18.7.28)

The final control law is then obtained by feeding back both x̂(t) and x′(t) to
yield:

u(t) = −Kox̂(t)−Kdx
′(t) (18.7.29)

where
[
Ko Kd

]
is chosen to stabilize the composite system (18.7.23), (18.7.24),

(18.7.27).
Indeed, the results in section §17.9 establish that the cascaded system is com-

pletely controllable provided the original system does not have a zero coinciding
with any eigenvalue of Ad.

The resulting control law is finally seen to have the following transfer function:

C(s) =
P (s)
L(s)

=
[
Ko Kd

] [sI−Ao +BoKo + JoCo BoKo

0 sI−AT
d

]−1 [ Jo
CT

d

]
(18.7.30)

The denominator polynomial is thus seen to be

L(s) = det(sI−Ao + JoCo +BoKo) det(sI−Ad) (18.7.31)

and we see again that Γd(s), as defined in (10.2.4), is a factor of L(s) as required.
Indeed one sees that there is an interesting connection between the result in (18.7.21)
and in (18.7.30). They are simply alternative ways of achieving the same end result.

18.8 Trade-Offs in State Feedback and Observers

In section §18.2 it was shown that, under the assumption of controllability and by a
suitable choice of the feedback gainK, the closed loop poles could be assigned to any
desired set of locations. However, if the closed loop modes are chosen much faster
than those of the plant, then the gain K will be large, leading to large magnitudes
for the plant input u(t). We have thus restated the known trade-off between speed
and the required input energy.

A similar (dual) problem arises in state estimation. To illustrate this point, con-
sider the state space model given by (18.3.1)-(18.3.2), and assume that measurement
noise, v(t), is present, so that the model becomes

ẋ(t) = Aox(t) +Bou(t) (18.8.1)
y(t) = Cox(t) + v(t) (18.8.2)
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Then the state estimate and the estimation error are respectively given by

˙̂x(t) = Aox̂(t) +Bou(t) + JCo(x(t) − x̂(t)) + Jv(t) (18.8.3)
˙̃x(t) = (Ao − JCo)x̃(t)− Jv(t) (18.8.4)

We then see, on applying the Laplace transform to (18.8.4), that

X̃(s) = [sI−Ao + JCo]−1x̃(0)− [sI−Ao + JCo]−1JV (s) (18.8.5)

Equation (18.8.5) reveals a trade-off in the observer design. We see that if J is
chosen so as to have the eigenvalues of Ao − JCo well into the left half plane, we
will quickly eliminate the effect of the initial error x̃(0). However, this will almost
certainly require a large value for J. We then see that the second term on the right
hand side of equation (18.8.5) will enhance the effect of the measurement noise,
since this is usually a high frequency signal.

The problem is compounded if, in addition to measurement noise, we also have
unmodeled disturbances, i.e. signals which appear in additive form in the state
equation (18.8.1).

The above analysis suggests that, in many real cases, the problem of observer
design requires a compromise to be made between speed of response and noise
immunity.

We thus see that both state feedback and observer design require compromises
to be made between conflicting requirements. One way to formulate the resolution
of these compromises is to pose them as optimization problems with a suitable
cost function which balances the competing requirements. A particularly nice cost
function to use is one with quadratic terms, since this leads to simplifications in
the solution of the problem. Thus, quadratic optimal control theory and quadratic
optimal filter theory have become widely used tools in feedback design.

The theoretical foundation of quadratic optimal control and filter design will be
presented later in Chapter 22 of Part VII.

18.9 Dealing with Input Constraints in the Context of State Es-
timate Feedback

Finally, we give a state space interpretation to the anti-windup schemes presented
in Chapter 11.

We remind the reader of the two conditions placed on an anti-windup imple-
mentation of a controller given in section §11.3; i.e.
(i) the states of the controller should be driven by the actual plant input

(ii) the states should have a stable realization when drawn by the actual plant
input.
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The above requirements are easily met in the context of state variable feedback.
This leads to the anti-windup scheme shown in Figure 18.4

Limit

Limit

Plant

Stable
Observer

gain

x̂

u y

Figure 18.4. Anti wind-up scheme

In Figure 18.4 the state x̂ should also include estimates of disturbances. Actually
to achieve a one degree of freedom architecture for reference injection, then all one
need do is subtract the reference prior to feeding the plant output into the observer.

We thus see that anti-windup has a particularly simple interpretation in state
space.

18.10 Summary

• We have shown that controller synthesis via pole placement can also be pre-
sented in state space form:

Given a model in state space form, and given desired locations of the closed
loop poles, it is possible to compute a set of constant gains, one gain for each
state, such that feeding back the states through the gains results in a closed
loop with poles in the pre-specified locations.

• Viewed as a theoretical result, this insight complements the equivalence of
transfer function and state space models by an equivalence of achieving pole
placement by either synthesizing a controller as transfer function via the Dio-
phantine equation or as constant gain state variable feedback.

• Viewed from a practical point of view, implementing this controller would
require sensing the value of each state. Due to physical, chemical and eco-
nomical constraints, however, one hardly ever has actual measurements of all
system states available.

• This raises the question of alternatives to actual measurements and introduces
the notion of so called observers, sometimes also called soft sensors, virtual
sensors, filters or calculated data.

• The purpose of an observer is to infer the value of an unmeasured state from
other states that are correlated with it and that are being measured.
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• Observers have a number of commonalities with control systems:

◦ they are dynamical systems

◦ they can be treated in either the frequency or time domain

◦ they can be analyzed, synthesized and designed

◦ they have performance properties, such as stability, transients, sensitiv-
ities, etc.

◦ these properties are influenced by the pole/zero patterns of their sensi-
tivities.

• State estimates produced by an observer are used for several purposes:

◦ constraint monitoring

◦ data logging and trending

◦ condition and performance monitoring

◦ fault detection

◦ feedback control

• To implement a synthesized state feedback controller as discussed above, one
can use state variable estimates from an observer in lieu of unavailable mea-
surements; the emergent closed loop behavior is due to the interaction between
the dynamical properties of system, controller and observer.

• The interaction is quantified by the third fundamental result presented in the
chapter: the nominal poles of the overall closed loop are the union of the
observer poles and the closed loop poles induced by the feedback gains if all
states could be measured. This result is also known as the separation theorem.

• Recall, that controller synthesis is concerned with how to compute a controller
that will give the emergent closed loop a particular property, the constructed
property.

• The main focus of the chapter is on synthesizing controllers that place the
closed loop poles in chosen locations; this is a particular constructed property
that allows certain design insights to be discussed in the next chapter.

• There are, however, other useful constructed properties as well.

• Examples of constructed properties for which there exist synthesis solutions
include:

◦ arrive at a specified system state in minimal time with an energy con-
straint
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◦ minimize the weighted square of the control error and energy consump-
tion

◦ minimum variance control

• One approach to synthesis is to cast the constructed property into a so-called
cost-functional, objective function or criterion which is then minimized nu-
merically

◦ This approach is sometimes called optimal control, since one optimizes
a criterion.

◦ One must remember, however, that the result can only be as good as the
criterion.

◦ Optimization shifts the primary engineering task from explicit controller
design to criterion design, which then generates the controller automat-
ically.

◦ Both approaches have benefits, including personal preference and expe-
rience.

18.11 Further Reading
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Chen, C. (1984). Introduction to Linear System Theory. Holt, Rinehart and
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Doyle, J.C., Francis, B.A., and Tannenbaum, A.R. (1992). Feedback Control The-
ory. Macmillan Publishing Company.

Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems. Wiley–
Interscience, New York.
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18.12 Problems for the Reader

Problem 18.1. A state space model for a linear system is given by (Ao, Bo, Co,
0), where

Ao =
[−3 2
0 −1

]
; Bo =

[−1
1

]
; Co

T =
[−1
α

]
(18.12.1)

18.1.1 Determine, if it exists, a state feedback gain K such that the closed loop
poles are located at −5 and −6.

18.1.2 Determine, if it exists, a state feedback gain K such that the closed loop
natural modes have the form β1e

−2t cos(0.5t+ β2).

18.1.3 Find the range of values of α such that the system is completely observable.

18.1.4 Choose a particular value of α which makes the system completely observable
and build an observer, so that the observer error decays faster than e−5t

Problem 18.2. Assume a measurable signal f(t) has the form f(t) = α0+β1 sin(2t)+
β2 cos(2t), where α0, β1 and β2 are unknown constants.

18.2.1 Build a state space model to generate the signal f(t). Note that in this model
the initial state is a linear function of α0, β1 and β2.

18.2.2 Using that model, build an observer to estimate α0, β1 and β2. The estima-
tion error should be negligible after 2 [s]

Problem 18.3. Consider a discrete time linear system having transfer function
given by

Hq(z) =
z + 0.8

(z − 0.8)(z − 0.6)
(18.12.2)

18.3.1 Build a state space model for this system.

18.3.2 Design an observer for the system state, which achieves zero estimation
error in exactly 3 time units.

Problem 18.4. Assume you need to estimate a constant signal which is measured
in noise. Further assume that the noise energy is concentrated around 0.5 [rad/s].

Design an observer to estimate the unknown constant. Try an observer with its
pole located at s = −5, then repeat the design, but this time with the pole located at
s = −0.1. Compare and discuss your results (model the noise as a pure sine wave
of frequency 0.5 [rad/s]).
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Problem 18.5. Consider a plant with input u(t), input disturbance d(t), and
output y(t). The nominal model of this plant is

Y (s) = Go(s)(U(s) +D(s)) where Go(s) =
2

(s+ 2)
(18.12.3)

18.5.1 If the disturbance is constant but unknown, build an observer which gen-
erates estimates for the disturbance and for the model state. The observer
polynomial should be chosen as E(s) = s2 + 8s+ 40.

18.5.2 Use the above result to implement state estimate feedback control in the
form:

u(t) = −k1x̂1(t)− d̂(t) + r̄(t) (18.12.4)

where x̂1(t) is the plant state estimate and d̂(t) is the disturbance estimate.
Choose a convenient value for k1.

18.5.3 Compute P (s) and L(s) as defined in Lemma 18.6 on page 533, and set your
final control loop in the form shown in part b) of Figure 18.2 on page 536.
Analyze the resulting closed loop polynomial.

Problem 18.6. A continuous time plant having transfer function Go(s) has to
be digitally controlled. To that end, a zero order sample and hold with a sampling
period ∆ is implemented. Assume that

Go(s) =
e−0.5s

s+ 1
and ∆ = 0.25 (18.12.5)

18.6.1 Build a state space model for the sampled data transfer function.

18.6.2 Build an observer for the state. The estimation error should decay at a rate
of the order of (0.5)k.

Problem 18.7. Consider a plant having a linear model Go(s) controlled in a one
d.o.f. architecture with controller C(s), where

Go(s) =
2

(s+ 1)2
and C(s) =

2(s+ 1)2

s(s+ 3)(0.01s+ 1)
(18.12.6)

Find, if possible, an observer vector gain J and a controller vector gain, K, such
that the above controller can be interpreted as the outcome of a design based on state
estimate feedback.
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Problem 18.8. A linear plant has a nominal model given by Go(s) = 6(s+ 3)−2.

18.8.1 Build a control loop using state estimate feedback. The loop should achieve
zero steady state error for constant input disturbances and the closed loop poles
should have real part less than or equal to −4.

18.8.2 Design a controller using polynomial pole placement, such that the loop sat-
isfies the same requirements as above. Compare and discuss.

Problem 18.9. Consider a system having input u(t) and output y(t), and a trans-
fer function

Go(s) =
−s+ 8

(s+ 8)(−s+ 2)
(18.12.7)

18.9.1 Build a state space model.

18.9.2 Design an observer to estimate the signal y(t)−2ẏ(t). The estimation error
must decay at least as fast as e−2t.



Chapter 19

INTRODUCTION TO
NONLINEAR CONTROL

19.1 Preview

With the exception of our treatment of actuator limits, all previous material in the
book has been aimed at linear systems. This is justified by the fact that most real
world systems exhibit (near) linear behaviour and by the significantly enhanced
insights available in the linear case. However, one occasionally meets a problem
where the nonlinearities are so important that they cannot be ignored. This chapter
is intended to give a brief introduction to nonlinear control. Our objective is not to
be comprehensive but to simply give some basic extensions of linear strategies that
might allow a designer to make a start on a nonlinear problem. As far as possible,
we will build on the linear methods so as to maximally benefit from linear insights.
We also give a taste of more rigorous nonlinear theory in section §19.10.2 so as to
give the reader an appreciation for this fascinating and evolving subject. However,
this section should probably be skipped on a first reading as it depends on more
advanced mathematical ideas.

19.2 Linear Control of a Nonlinear Plant

Before turning to nonlinear control system design, per se, an initial question that
the reader might reasonably ask is what happens if a linear controller is applied to a
nonlinear plant. We know from experience that this must be a reasonable strategy
in many cases since one knows that all real plants exhibit some (presumably) mild
form of nonlinearity and yet almost all real world controllers are based on linear
designs.

We saw in section §3.10 that one can obtain an approximate linear model for
a nonlinear system by linearization techniques. The residual modeling error is, of
course, a nonlinear operator. We will thus examine here the impact of nonlinear
additive modeling errors on the performance of a linear controller.

To carry out this analysis we have to combine both linear and nonlinear descrip-
tions in the analysis. The transfer function concept is thus no longer adequate. We

551
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will therefore base the analysis on operators (transformations).
We define a nonlinear dynamic operator f as a mapping from one function space

to another. Thus f maps functions of time into other functions of time. Say, for
example, that the time functions have finite energy then we say that they belong
to the space L2 and we then say that f maps functions from L2 into L2. As in
section §2.5, we will use the symbol y (without brackets) to denote an element of a
function space, i.e. y ∈ L2 is of the form {y(t) : R → R}. We also use the notation
y = f〈u〉 to represent the mapping (transformation) from u to y via f .

To keep track of the different components of the loop, the controller is repre-
sented by a linear operator C, the nominal plant by the linear operator Go and the
modeling error will be characterized by an additive nonlinear operator Gε.

We consider a reference input and input disturbance since both can be treated
in a consistent fashion.

The nominal and the true one degree of freedom loops are shown in Figure 19.1.
Starting from the loops shown in Figure 19.1 we will obtain expressions for the

following error signals:

• Plant output error yε = y − yo, and

• Control output error uε = u− uo

−−

a) True loop

++
C

r +
Go

Gε

+

+

b) Nominal loop

C Go

di

+

+−+

r

di

u

uo

y

yo

Figure 19.1. True and nominal control loops.
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19.2.1 The effect of modeling errors

To simplify the notation, we begin by grouping the external signals at the input by
defining

di
′ = C〈r〉 + di (19.2.1)

Note that this is possible because superposition holds for the linear part of the
loop in Figure 19.1 a).

From Figure 19.1 a), we see that

y = (Go +Gε)〈u〉 (19.2.2)
u = −C〈y〉+ di

′ (19.2.3)

Substituting (19.2.3) into (19.2.2) yields

y = (Go +Gε)〈−C〈y〉+ di
′〉 (19.2.4)

= −Go

〈
C〈y〉〉 +Go〈di ′〉+Gε

〈−C〈y〉+ di
′〉 (19.2.5)

Similarly, for the nominal loop in Figure 19.1 b), we have

yo = −Go

〈
C〈yo〉
〉
+Go〈di ′〉 (19.2.6)

uo = −C〈yo〉+ di
′ (19.2.7)

Subtracting (19.2.6) from (19.2.5) yields

yε = −Go

〈
C〈yε〉
〉
+Gε

〈−C〈y〉+ di
′〉 (19.2.8)

As usual, we define linear nominal sensitivities via

So〈◦〉 = 1
1 +Go

〈
C〈◦〉〉 (19.2.9)

Suo〈◦〉 = C〈◦〉
1 +Go

〈
C〈◦〉〉 (19.2.10)

Hence, rearranging the linear terms in (19.2.8) and using (19.2.9), we have

yε = So
〈
Gε

〈−C〈y〉+ di
′〉〉 (19.2.11)

Then, replacing y by yo + yε we have

yε = So
〈
Gε

〈−C〈yo + yε〉+ di
′〉〉 (19.2.12)
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and using the linear result in (19.2.6), we have

yε = So
〈
Gε

〈−C〈yε〉+ So〈di ′〉
〉〉

(19.2.13)

Similarly, subtracting (19.2.7) from (19.2.3) yields

uε = −C〈yε〉 (19.2.14)

Equations (19.2.13) and (19.2.14) can be shown schematically as in Figure 19.2.

di´

uε yε

So

+
C

−
Gε So

+

Figure 19.2. Error feedback loop

Reintroducing r, and di via equation (19.2.1) and using (19.2.9), (19.2.10) leads
to the final representation as in Figure 19.3.

e

−Suo

So

uε

yε+ C Gε
+

So
+r(t)

di

−

Figure 19.3. Equivalent signal loop describing the effects of modeling errors

Figure 19.3 is a compact way of depicting the effect of unmodeled plant non-
linearities on the robustness and performance of the feedback loop. Stability, ro-
bustness and performance robustness can be studied using this representation. For
example, in section §19.10.2, we will show that stability is retained in the presence
of sufficiently small nonlinear undermodeling. Of course, nonlinear systems are
generally very difficult to analyze. However some simplifying assumptions allow us
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to interpret Figure 19.3. For example, it is usual for Gε to have the property that
its output will be small when its input is small. In that case, Equations (19.2.13)
and (19.2.14) suggest that errors in the feedback loop due to nonlinear modeling
errors depend on whether

• |So(jω)| is small in the frequency band where the input disturbance is signif-
icant, and

• |Suo(jω)| is small in the frequency band where the reference is significant.

These requirements might conflict. For example, if |So(jω)| is required to be
small in a frequency band which significantly exceeds the plant bandwidth, then
|Suo(jω)| will almost certainly be large outside the plant bandwidth. This situation
probably means that linear control is not a suitable strategy in this case.

Remark 19.1. Of course, Figure 19.3 is also valid in the case of linear modeling
errors. Thus, for example, the figure could be used to re-derive Theorem 5.3 on
page 144. Also, the figure could be used to gain insight into robust performance in
both the linear and nonlinear cases.

Example 19.1. Consider the nonlinear plant having a state space model given by

dx1(t)
dt

= x2(t) +
(
x2(t)
)3 (19.2.15)

dx2(t)
dt

= −2x1(t)− 3x2(t) + u(t) + 0.1
(
x1(t)
)2
u(t) (19.2.16)

y(t) = x1(t) (19.2.17)

Assume that a linear controller is designed for this plant, and also assume that
the design has been based upon a small signal linearized model. This linearized
model has been obtained for the operating point determined by a constant input
u(t) = uQ = 2 and the (linear) design achieves nominal sensitivities given by

To(s) =
9

s2 + 4s+ 9
So(s) = 1− To(s) =

s(s+ 4)
s2 + 4s+ 9

(19.2.18)

Analyze the performance of the (linear) design when used with the true (nonlin-
ear) plant.

Solution

We first need to obtain the small signal linearized model. This is done using the
SIMULINK schematic softpl1.mdl. With a step input equal to 2, we have that the
operating point is given by
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x1Q = yQ
�
= lim

t→∞x1(t) = 1.13 and x2Q
�
= lim

t→∞ x2(t) = 0 (19.2.19)

The values for uQ, x1Q and x2Q are then used, in conjunction with the MATLAB
commands linmod and ss2tf, to obtain the linearized model Go(s), which is given
by

Go(s) =
1.13

s2 + 3.0s+ 1.55
(19.2.20)

To achieve the desired To(s) we have that the controller transfer function must
be given by

C(s) = [Go(s)]−1 To(s)
So(s)

= 7.96
s2 + 3.0s+ 1.55

s(s+ 4)
(19.2.21)

We then use SIMULINK to implement the block diagram shown in Figure 19.3,
where Suo(s) is given by

Suo(s) = [Go(s)]−1To(s) = 7.96
s2 + 3.0s+ 1.55
s2 + 4s+ 9

(19.2.22)

A simulation is run with a reference, r(t), which has a mean value equal to 2
and a superimposed square wave of amplitude 0.3. A pulse is also added as an input
disturbance. Figure 19.4 on the next page shows the plant output error, yε(t).

The reader is encouraged to evaluate the performance of the linear design under
other operating conditions, and other choice for To(s). This is facilitated by the
SIMULINK schematic in file amenl.mdl.

✷✷✷

We see from the above analysis that linear designs can perform well on nonlinear
plants provided the nonlinearity is sufficiently small. However, as performance
demands grow, so one is inevitably forced to carry out an inherently nonlinear
design. A first step in this direction is described in the next section where we still
use a linear controller but a different linear controller is chosen at different operating
points (or in different regions of the state space).

19.3 Switched Linear Controllers

One useful strategy for dealing with nonlinear systems is to split the state space up
into small regions inside which a localized linear model gives a reasonable approxi-
mation to the response. One can then design a set of fixed linear controllers - one
for each region. Two issues remain to be solved



Section 19.3. Switched Linear Controllers 557

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

Time [s]

r(t) 

d
i
(t) 

y
ε
 (t) 

Figure 19.4. Effects of linear modeling of a nonlinear plant on the performance
of linear based control design.

(i) how to know which region one is in, and

(ii) how to transfer between controllers.

The first problem above is often resolved if there exists some measured variable
that is a key indicator of the dynamics of the system. These variables can be used
to schedule the controllers. For example, in high performance aircraft control, Mach
number and altitude are frequently used as scheduling variables.

The second problem requires that each controller run in a stable fashion whether
or not it is in charge of the plant. This can be achieved by the anti-windup strategies
described in Chapter 11 or section §18.9.

An alternative architecture for an anti-windup scheme is shown in Figure 19.5.
Here a controller (C̄i(s)) is used to cause the ith controller output to track the
true plant input. To describe how this might be used, let us say that we have kc
controllers and that switching between controllers is facilitated by a device which
we call a supervisor. Thus, depending on the state of the system at any given
time instant, the supervisor may select one of the kc controllers to be the active
controller. The other kc − 1 controllers will be in standby mode.

We wish to arrange bumpless transfer between the controllers as directed by
the supervisor. Bumpless transfer refers to the requirement that no bump occurs
in the control signal when switching from one controller to the others. For linear
controllers having a similar structure this can be achieved by allowing all controllers
to share a common set of states and to simply switch the output gains attached
to these states. However, in general, the controllers may have different structures
including different state dimensions, inclusion of nonlinear elements, etc. To cope
with this general situation we place each of the standby controllers under separate
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feedback control so that their outputs track the output of the active controller. This
is illustrated in Figure 19.5.

ui(t) u(t)
Plant

−
+

+

−−
Ci(s)

C̃i(s)

y(t)r(t)

Figure 19.5. Bumpless controller transfer

In Figure 19.5, u(t) denotes the active controller output (this controller is not
shown in the diagram), Ci(s) denotes a standby controller having reference signal
r(t) for the particular plant output y(t). In the figure, C̃i(s) denotes the controller
for the i − th controller, Ci(s). Thus, in a sense, C̃i(s) is a controller-controller.
This controller-controller is relatively easy to design since, at least, the plant in this
case is well known as it is actually the i−th controller. For this controller-controller
loop, the signals r(t) and y(t) act as disturbances.

In the special case, when the i− th controller is biproper and minimum phase,
it turns out that perfect tracking of the active controller past outputs is possible.
Indeed this is precisely what the arrangement in Figure 11.6 on page 296 ensures.

Examples of the application of the general structure in Figure 19.5 include:

• Saturating actuators (where the supervisor responds to input saturation).

• State constraining controllers (where the supervisor responds to imminent
changes of state constraint violation) - see section §11.4.

• Gain scheduling (where the supervisor responds to certain measured variables,
e.g. aircraft altitude or Mach number, to schedule the controller).

• Adaptive control (where the supervisor responds to estimated model param-
eters).

A final point is that the active control need not be restricted to the output of
one of the kc controllers but can be any control signal, including manual actions or
a combination of all controller outputs, etc. Thus, for example, we might have

u(t) =
kc∑
j=1

λj(t)uj(t) (19.3.1)
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where 0 ≤ λi(t) ≤ 1 and
∑kc

j=1 λj = 1, ∀t.
This can be used when the supervisor makes soft switching decisions by gener-

ating a confidence weight attached to each possible controller. These weights might,
for example, be the probability that each controller is the correct one, or some other
set membership function.

The reader will observe that we have already used this controller mixing idea in
connection with state constraints in section §11.4.

The third problem raised at the beginning of this section is partially addressed
by nonlinear robustness analysis of the type presented in section §19.2. Another
related issue is that one really needs to analyze the effect of the time-varying linear
controllers. A first step in this direction will be given in section §19.10.

19.4 Control of Systems with Smooth Nonlinearities

When the nonlinear features are significant, the above switching may lead to a
conservative design. If this is the case, inherently nonlinear strategies should be
considered in the design. To highlight some interesting features of nonlinear prob-
lems, we will begin by considering a simple scenario in which the model is both
stable and stably invertible. We will later examine more general problems.

In the analysis to follow, we will need to describe interconnections of linear
and nonlinear systems; thus, as we did in Chapter 5, we will resort to the use of
operators. One of these operators, in the continuous time case, will be the Heaviside
operator ρ.

19.5 Static Input Nonlinearities

We will first examine the nonlinear control problem as an extension of the ideas in
Chapter 15.

− +

+
+

+

+

di(t)
Controller

do(t)

u(t)
Plant

r(t) y(t)ν(t)

Go〈◦〉
+

−
eQ(t)

Q〈◦〉

Figure 19.6. IMC architecture for control of (smooth) nonlinear systems
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Consider the architecture shown in Figure 19.6. We observe that output distur-
bances have the same injection point as that of the reference. This makes analysis
more straightforward than for input disturbances. In particular, using the assump-
tion of open loop stability for the plant and di(t) ≡ 0, we see that the error eQ(t)
will converge (in the nominal case) to the value of the output disturbance.

We also recall from Chapter 15 that, in the linear case of stable and minimum
phase plants, Q(s) was chosen as

Q(s) = FQ(s)[Go(s)]−1 (19.5.1)

where FQ(s) was a suitable shaping filter, which ensures the properness of Q(s) and
indirectly determines the associated trade-offs. The simplest choice was to make
[FQ(s)]−1 a stable polynomial of degree equal to the relative degree of Go(s). In
the linear case this leads to the result:

y(t) = FQ〈ν(t)〉 (19.5.2)

The same basic principle can be applied to nonlinear systems. The simplest
situation is when the plant has a static input nonlinearity, and there is only an
output disturbance. Then, the nominal model output is given by

y(t) = Go〈u(t)〉+ do(t) = Go〈φ(u)〉 + do(t) (19.5.3)

where Go is a linear operator and φ( ) is a static invertible function of u. Intro-
ducing FQ as a linear stable operator of appropriate relative degree, the nonlinear
version of (19.5.1) becomes

Q〈◦〉 = φ−1
(
G−1

o 〈FQ〈◦〉〉
)

(19.5.4)

i.e.

u(t) = φ−1
(
G−1

o 〈FQ〈ν(t)〉〉
)

(19.5.5)

Notice that φ−1 appears adjacent to φ in the plant.
Thus, equation (19.5.5) represents an approximate inverse for the nonlinear

plant, and leads directly to

y(t) = FQ〈ν(t)〉 + do(t) (19.5.6)

19.6 Smooth Dynamic Nonlinearities for Stable and Stably In-
vertible Models

For this class of systems we can essentially use the IMC architecture shown in
Figure 19.6. The parallel model is easily constructed. We will thus focus attention
on the approximate inverse in Q〈◦〉.
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We consider a class of nonlinear systems where the nonlinear features are not
necessarily restricted to the plant input. In particular, we consider a plant having
a nominal model of the form:

ρx(t)
�
=

dx(t)
dt

= f(x) + g(x)u(t) (19.6.1)

y(t) = h(x) (19.6.2)

where x ∈ Rn, y ∈ R and u ∈ R. We assume that f(x), g(x) and h(x) are smooth
mappings, in the sense that their first k derivatives, with respect to x, are well
defined, where k is at least equal to the relative degree of the nonlinear system.
This latter concept is defined below:

Definition 19.1. Consider a nonlinear system described by (19.6.1) and (19.6.2).
Then the relative degree of the system is the minimum value η ∈ N such that

ρηy(t) = βη(x) + αη(x)u(t) (19.6.3)

where ρ is the Heaviside operator and αη(x) is not identically zero.

Example 19.2. Consider a system having the model

ρx1(t) = −x1(t)− 0.1
(
x2(t)
)2 (19.6.4)

ρx2(t) = −2x1(t)− 3x2(t)− 0.125
(
x2(t)
)3 + [1 + 0.1

(
x1(t)
)2]

u(t) (19.6.5)

y(t) = x1(t) (19.6.6)

Then, if we compute the first and second time derivatives of y(t) we obtain

ρy(t) =ρx1(t) = −x1(t)− 0.1
(
x2(t)
)2 (19.6.7)

ρ2y(t) =1.4x1(t) + 0.6x2(t) + 0.1x2(t)2 + 0.25x2(t)3

− [0.2 + 0.02x1(t)2
]
u(t) (19.6.8)

from where we see that the relative degree of the system is equal to 2.
✷✷✷

For the system described in equations (19.6.1) and (19.6.2), and having relative
degree η, we have that the ith derivative of y(t), i = 0, 1, 2, . . . , η takes the form

ρiy(t) = βi(x) + αi(x)u(t) (19.6.9)

then αi(x) ≡ 0 for i = 0, 1, 2, . . . , η − 1. Consider now the operator polynomial
p(ρ) =

∑η
i=0 piρ

i, then we see that
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p(ρ)y(t) = b(x) + a(x)u(t) (19.6.10)

where

b(x) =
η∑

i=0

piβi(x) and a(x) = pηαη(x) (19.6.11)

We next show how the design methods of Chapter 15 might be extended to the
nonlinear case. We recall that, in the linear case, we needed to invert the plant
model (after using F (s) to bring it to biproper form. The extension of these ideas
to the nonlinear case is actually quite straightforward. In particular, we see from
(19.6.10) that provided a(x) is never zero for any state x in the operation region,
the approximate inverse for the plant is simply obtained by setting p(ρ)y(t) equal
to ν(t) in (19.6.10). This leads, (after changing the argument of the equation), to
the following result for u(t),

u(t) =
(
a(x)
)−1 (ν(t) − b(x)) = Q〈ν〉 (19.6.12)

where ν(t) is defined in Figure 19.6 on page 559. Then, combining (19.6.10) and
(19.6.12), we have that

p(ρ)y(t) = ν(t) ⇐⇒ y(t) = [p(ρ)]−1〈ν〉 (19.6.13)

This means that if we define

FQ〈◦〉 �
= [p(ρ)]−1〈◦〉 (19.6.14)

then

y(t) = FQ〈ν〈t〉〉 (19.6.15)

Finally, to obtain a perfect inverse at d.c., we set p0 = 1. The control strategy
(19.6.12) is commonly known as input-output feedback linearization, because, as seen
from (19.6.15), it leads to a linear closed loop system from the input ν(t) to the
output y(t).

The reader will see that the above procedure is formally analogous to the linear
system case described in Chapter 15. As pointed out previously, however, there
are stability, internal stability, and relative degree requirements that must be sat-
isfied. These correspond to the nonlinear generalization of the linear stability and
properness requirements on Q.

A remaining issue is how to implement Q〈◦〉 as described in (19.6.12), since
it depends on the plant state, which is normally unavailable. Following the same
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f〈◦〉

g〈◦〉

x̂(t) +

+

O

ρ−1 u(t)

Figure 19.7. Nonlinear observer

philosophy as in the linear case, we can estimate the state through a nonlinear state
observer. Since we are, for the moment, assuming that the plant is open loop stable,
we can use an open loop observer (more general cases are examined in subsection
§19.8.1). An open loop observer is driven only by the plant input u(t) and its
structure is shown in Figure 19.7, where ρ−1 denotes the integral operator.

With this observer, we can use equation (19.6.12) to build the Q block, as shown
in Figure 19.8. The observer is represented by the block labelled O.

u(t)ν(t)

+ −
[a〈◦〉]−1

x̂(t)
b〈◦〉 O

Figure 19.8. Implementation of the Q block

We illustrate by two simple examples:

Example 19.3. Consider the nonlinear plant having a state space model given by
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dx1(t)
dt

= x2(t) +
(
x2(t)
)3 (19.6.16)

dx2(t)
dt

= −2x1(t)− 3x2(t) + u(t) + 0.1
(
x1(t)
)2
u(t) (19.6.17)

y(t) = x1(t) (19.6.18)

Build a nonlinear controller, based on the results of section §19.6. The desired
bandwidth is approximately 3[rad/s].

Solution

To use the IMC structure shown in Figure 19.6 we first need to compute an approx-
imate inverse for the plant, along the lines of section §19.6. We thus have, from
(19.6.16) to (19.6.18), that

ρy(t) = x2(t) +
(
x2(t)
)3 (19.6.19)

ρ2y(t) =
(
1 + 3(x2(t))2

)dx2(t)
dt

(19.6.20)

= −(1 + 3x2
2(t))(2x1(t) + 3x2(t)) + (1 + 3(x2(t))2)(1 + 0.1(x1(t))2)u(t)

(19.6.21)

We then have to choose the operator F 〈◦〉 to achieve the desired bandwidth. To
do that, we choose the operator polynomial p(ρ) as

p(ρ) = (ρ2 + 4ρ+ 9)/9 (19.6.22)

and we can then obtain a(x) and b(x) in equation (19.6.10) as

a(x) =
(1 + 3(x2(t))2)(1 + 0.1(x1(t))2)

9
(19.6.23)

b(x) =
7x1(t) + x2(t)− 5

(
x2(t)
)3 − 6x1(t)(x2(t))2

9
(19.6.24)

Finally, the control loop in Figure 19.6 on page 559 can be implemented with
Q〈◦〉 as in Figure 19.8 on the page before. Since the plant is stable, the required
(nonlinear) state observer can be built using the (nonlinear) state space plant model.

To assess the performance of this design, we compare it with the linear design
based upon a linearized plant model (see example 19.1 on page 555). In this case we
use the same operating point as in example 19.1, i.e. the one determined by uQ = 2.
This leads to the linear model
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Go(s) =
1.13

s2 + 3.0s+ 1.55
(19.6.25)

The linear controller is then designed to achieve the prescribed bandwidth. We
then choose an appropriate complementary sensitivity, say

To(s) =
9

s2 + 4s+ 9
(19.6.26)

which leads to

C(s) = [Go(s)]−1 To(s)
So(s)

= 7.96
s2 + 3.0s+ 1.55

s(s+ 4)
(19.6.27)

The linear and nonlinear control loops are simulated using SIMULINK. The
reference signal is chosen as the sum of a constant, of value 2, and a square wave
of amplitude equal to 1.

The results of the simulation are shown in Figure 19.9. This figure shows the
superior tracking performance of the nonlinear design.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

P
la

nt
 o

ut
pu

t a
nd

 r
ef

.

r(t)     
y

l
(t)   

y
nl

(t)

Figure 19.9. Tracking performance of linear (yl) and nonlinear (ynl) control de-
signs for a nonlinear plant

Both control loops are in SIMULINK file softloop1.mdl. The reader can use
this file to investigate stability of both loops with different references, disturbance
compensation performance, robustness to model errors in the nonlinear case, effect
of input saturation, etc.

✷✷✷

Example 19.4 (pH neutralization). pH control is an extremely difficult problem
in practical situations due to the large dynamic range needed in the controller. To
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deal with this issue it is often necessary to make structural changes to the physical
setup, e.g. by providing additional mixing tanks and multiple reagent valves. The
interested reader is referred, for instance, to the extensive discussion of this problem
on the web page for the book. Here we will consider a rather idealized form of the
problem. We use this as a vehicle to illustrate nonlinear IMC methods rather than
as a practical solution to the pH control problem.

It can be shown, from elementary mass balance considerations, that an appro-
priate state space model for pH neutralization of the strong acid–strong base type is
given by

dco(t)
dt

=
u(t)
V

(
cu − co(t)

)
+

q

V

(
ci + d(t)− co(t)

)
(19.6.28)

dpm(t)
dt

=
1
α

(
po(t)− pm(t)

)
(19.6.29)

po(t) = − log
[√

0.25
(
co(t)
)2 + 10−14 + 0.5co(t)

]
(19.6.30)

where
ci, co, cu : excess of hydrogen in inlet stream,

effluent and control acid stream respectively
q : flow rate of inlet stream
V : tank volume
d : disturbance in the inlet stream
u : flow rate of control acid stream

po, pm : true pH and measured pH of effluent, respectively

The purpose of the control system is to regulate the effluent pH, po(t), to a set
point value, by controlling the flow rate, u(t), of the control acid stream. Note that
the process itself is a first order nonlinear system, with the sensor introducing a lag
and second state.

We next observe that equations (19.6.28) to (19.6.30) correspond to the state
equation (19.6.1), where x1(t) = co(t) and x2(t) = pm(t). Also, equation (19.6.2)
corresponds to y(t) = x2(t).

Then, the relative degree of this nonlinear system is 2, except when co = cu. In
practice, this point of singularity can be avoided by appropriate choice of cu.

Using the theory presented in section §19.6, with

p(ρ) = αβρ2 + (α+ β)ρ+ 1 (19.6.31)

we have that an approximate inverse is obtained, for d = 0, if

u(t) =
V ln(10)

β(co(t)− cu)

√
(co(t))2 + 4× 10−14

(
ν(t) − po(t)

)
+

q(ci − co(t))
co(t)− cu

(19.6.32)
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The implementation of this inverse requires that co and po be replaced by their
estimates, ĉo and p̂o, which are obtained using a nonlinear observer.

The above design has been implemented in a SIMULINK schematic (file
phloop.mdl). To evaluate the above design strategy to this pH control problem a
simulation was run with the following data:

V : 83.67 [lt]
q : 1[lt/min]
ci : −10−3

cu : 10−4

α : 1 [s]
β : 0.5 [s]

In this case there was no control until t = 2 [s], when a step set point was
introduced to regulate the effluent pH to 7 (note that the initial effluent pH is equal
to 11). The results are shown in Figure 19.10.
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pH (measured)
pH (effluent)

Figure 19.10. pH control using a nonlinear control design strategy. The effluent
pH (thick line) and the measured pH (thin line) are shown

✷✷✷

19.7 Disturbance Issues in Nonlinear Control

We have seen in Chapter 8, that disturbances need special attention in control
system design. In particular, we found that there were subtle issues regarding
the differences between input and output disturbances. In the nonlinear case, these
same issues arise but there is an extra complication arising from nonlinear behavior.
The essence of the difficulty is captured in Figure 19.11.

In the linear case, the two strategies give the same result, i.e., c1 = c2. However,
in the nonlinear case, c1 �= c2 in general. For example, if f(a) = a2, then c1 = a2+b2

whereas c2 = (a + b)2. The implications of this observation are that, whereas in
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a

b

c1

a

b

c2
+

+

+

+

f〈◦〉

f〈◦〉

f〈◦〉

Figure 19.11. Nonlinear operators

the linear case one can freely move disturbances from input to output via linear
transformations, this does not hold, in general, in the nonlinear case.

To illustrate, consider the set-up of Figure 19.12.

+ +

++

u(t) y(t) y′(t)
Ga〈◦〉 Gb〈◦〉

di(t) do(t)

Figure 19.12. Disturbances in nonlinear systems

In Figure 19.12, Ga〈◦〉 and Gb〈◦〉 represent nonlinear dynamics, u(t), y(t) and
y′(t) represent signals and di(t), do(t) represent input and output disturbances
respectively. In this set-up Gb〈◦〉 could, for example, represent the measurement
system.

We will address the case of input and output disturbances separately.

(i) Input disturbances

Here we can operate on y′(t) and u(t) to estimate di(t) and then cancel this at
the input to the plant by action of feedback control. This leads to the strategy
illustrated in Figure 19.13.

In Figure 19.13, Hba, Ha are approximate inverses for Gb 〈Ga〈◦〉〉 and Ga〈◦〉
respectively. In particular, if the operator to be inverted is as in (19.6.1), (19.6.2),
then the approximate inverse is given by (19.6.10), (19.6.12). Finally, F in Figure
19.13 is a filter introduced to avoid an algebraic loop.

(ii) Output disturbance

Here we can operate on y′(t) and u(t) to estimate do(t), which is combined with
the reference r(t) and passed through an (approximate) inverse for Ga〈◦〉 so as to
cancel the disturbance and cause y(t) to approach r(t). This leads to the strategy
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r(t)

di(t)

++ u(t) y(t) y′(t)

−

− +

Ga GbHa Hba

F

+

Figure 19.13. Control strategy for input disturbances.

illustrated in Figure 19.14.

r(t) u(t) y(t)
Gb

+

+

+

−
Ga

+

−
Ha Hb

y′(t)

do(t)

Ga

Figure 19.14. Control strategy for output disturbances

In Figure 19.14, Hb, Ha are approximate inverses for Gb and Ga respectively
generated by the same methodology used for the input disturbance case. The reader
can verify that, in the linear case, one can commute the various inverses around the
loops in Figures 19.13 and 19.14 to obtain identical results. However, the comments
made in relation with Figure 19.11, indicate that this will not hold in the nonlinear
case.

We illustrate by continuing Example 19.4 on page 565.

Example 19.5. We consider the pH problem of Example 19.4, where Ga is given by
(19.6.28) and (19.6.30) (with y = po) whilst Gb is given by (19.6.29) (with y′ = pm).
We consider again the polynomial in (19.6.31), which we rewrite here as:

p(ρ) = f2ρ
2 + f1ρ+ 1 (19.7.1)
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Using (19.7.1), (19.6.32) becomes

u(t) =
V ln(10)

√
(ĉo(t))2 + 4× 10−14

f2α(ĉo(t)− cu)
[
α2(ν(t)− ŷ′(t))−(ŷ′(t)− ŷ(t))(f2−αf1)

]
+

q(ci(t)− ĉo(t))
ĉo(t)− cu

(19.7.2)

where ν is the driving input to the inverse and ŷ′, ŷ and ĉo are state estimates
generated by an open loop observer as in Figures 19.7 and 19.8 on page 563. For
general values of f1 and f2 in (19.7.1) and (19.7.2) generates Hba. By choosing
f1 = α + β, f2 = αβ where α is the sensor time constant in (19.6.29) and β is a
free parameter, then (19.7.2) generates Ha. Finally, Hb is easily chosen as

Hb(s) =
αs+ 1
τs+ 1

; τ � α (19.7.3)

For the purpose of simulation, we choose f1 = 0.2, f2 = 0.01 for Hba, β = 0.5
for Ha and τ = 0.2 for Hb. Finally, the filter F in Figure 19.13 on the page before
was chosen as

F (s) =
1

0.5s+ 1
(19.7.4)

To illustrate the nonlinear characteristics of the problem, we consider several
cases with set point r = 7.5.

Case 1

Configuration (i) - (Figure 19.13) input disturbance design with

(a) input disturbance-a step of magnitude 0.005 at t = 20

(b) output disturbance-a step of magnitude −1.8886 at t = 20

Note that both disturbances give the same steady state perturbation to pH.
The results are shown in Figure 19.15.
Notice that the response to the input disturbance is satisfactory, whereas the re-

sponse to the output disturbance is poor. Of course, this configuration was predicated
on the assumption that the disturbance was actually at the input.

Case 2

Configuration (ii) - (Figure 19.14) output disturbance design with

(a) input disturbance - a step of magnitude 0.005 at t = 20

(b) output disturbance -a step of magnitude −1.886 at t = 20
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Figure 19.15. Response to input (left) and output (right) disturbances in a
control loop designed for input disturbance compensation (di =
0.005, do = −1.886).
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Figure 19.16. Response to input (left) and output (right) disturbances in a con-
trol loop designed for output disturbance compensation (di =
0.005, do = −1.886).
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The results are shown in Figure 19.16.
Notice that, in this case, the response to the output disturbances is satisfactory,

whereas the response to the input disturbances is poor. Of course, this configuration
was predicated on the assumption that the disturbance was actually at the output.

Two further cases (3 and 4) were considered. These mirror cases 1 and 2 save
that the disturbances were increased in magnitude to 0.05 (for the input disturbance)
and −2.8276 (for the output disturbance). The results are shown in Figures 19.17
and 19.18.
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Figure 19.17. Response to input (left) and output (right) disturbances in a con-
trol loop designed for input disturbance compensation (di = 0.05,
do = −2.8276).

Notice that the same general comments apply as in Cases 1 and 2. Also, com-
paring Figures 19.15 and 19.16 with Figures 19.17 and 19.18 we see strong evidence
of nonlinear behavior since the very nature of the responses changes with the mag-
nitude of the disturbances.

This example highlights the point that, in nonlinear systems, certain linear in-
sights no longer hold since the principle of superposition is not valid. Thus particular
care needs to be exercised. We have seen that input and output disturbances need
to be carefully considered and that the magnitude of signals plays a role. This is all
part of the excitement associated with the control of nonlinear systems.

19.8 More General Plants with Smooth Nonlinearities

To highlight key issues, we have focused in the discussion above on plants that are
both stable and stably invertible. We next briefly examine the more general situ-
ation. By analogy with the linear case, see for example section §18.4, one might
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Figure 19.18. Response to input (left) and output (right) disturbances in a con-
trol loop designed for output disturbance compensation (di =
0.05, do = −2.8276).

conceive of solving the general problem by a combination of a (nonlinear) observer
and (nonlinear) state estimate feedback. We found this to be a very profitable
strategy in the linear case. For example, we found in section §18.4 that the closed
loop poles are simply the union of the dynamics of the observer and state feed-
back considered separately. Unfortunately, this does not hold in the nonlinear case
where, inter-alia, there will generally be interaction between the observer and state
feedback. This makes the nonlinear problem much more difficult and, indeed, it is
still the subject of on-going research. We warn the reader that the methods de-
scribed below will only work locally due to the linear approximations involved in
the deviations.

19.8.1 Nonlinear observer

Consider a plant of the form given in (19.6.1) and (19.6.2). Say that we are given
an estimate x̂(t) of the state at time t. We will use linearization methods to see
how we might propagate this estimate.

The linearized forms of (19.6.1), (19.6.2) about x̂(t) are respectively

ρx(t) ≈ f(x̂) +
∂f

∂x

∣∣∣∣
x̂

[x(t)− x̂(t)] + g(x̂)u(t) +
∂g

∂x

∣∣∣∣
x̂

[x(t) − x̂(t)]u(t)

y(t) ≈ h(x̂) +
∂h

∂x

∣∣∣∣
x̂

[x(t) − x̂(t)]
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For notational convenience, let

A =
∂f

∂x

∣∣∣∣
x̂

+
∂g

∂x

∣∣∣∣
x̂

u(t)

B = g(x̂)− ∂g

∂x

∣∣∣∣
x̂

x̂(t)

C =
∂h

∂x

∣∣∣∣
x̂

D = h(x̂)− ∂h

∂x

∣∣∣∣
x̂

x̂(t)

E = f(x̂)− ∂f

∂x

∣∣∣∣
x̂

x̂(t)

where A,B,C,D,E are time-varying and depend on x̂, u. The linearized model is
then

ρx = Ax+Bu+E
y = Cx+D

(19.8.1)

This suggests the following linearized observer:

ρx̂ = Ax̂+Bu+E+ J(y −Cx̂−D)

Before proceeding, we note that there are two common ways of designing the
observer gain J. One way is to take fixed nominal values for A,B,C,D,E (say
Ao,Bo,Co,Do,Eo) and use these to design a single fixed value Jo using linear
observer theory. In more severe nonlinear problems one can design a different J at
every instant of time based on the current values of A,B,C,D,E, which depend on
the current estimate x̂(t). For example, if quadratic optimization (see Chapter 22)
is used to design J, then this leads to the, so called, extended Kalman filter (ekf).

Substituting for A,B,C,D,E leads to the following compact representation for
the observer:

ρx̂ = f(x̂) + g(x̂)u + J[y − h(x̂)]

This result is intuitively appealing since the nonlinear observer, so obtained, com-
prises an open loop nonlinear model with (linear) feedback gain multiplying the
difference between the actual observations, y, and those given by the nonlinear
model h(x̂).

The reader is referred to the book’s web site where the above nonlinear observer
is applied to the problem of estimating the level of water in a coupled tank problem.
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19.8.2 Nonlinear feedback design

There are a legion of possibilities here. For example, if the system has a stable
inverse, then one could use feedback linearization as in (19.6.12) with x replaced
by x̂ generated, say, as in subsection §19.8.1. Another possible control algorithm,
related to linearized state feedback, is described below.

We return to the linearized model (19.8.1) and add integral action by defining
an additional state

ρx2 = r − y

where r is the reference input. The composite linearized model is then

ρ

[
x
x2

]
=
[
A 0
−C 0

] [
x
x2

]
+
[
B
0

]
u+
[
E
−D
]

We then design state estimate feedback as

u = − [K1 K2

] [ x
x2

]
More will be said about this (linear) strategy in section §22.4 of Chapter 21.

As in the case of the observer, there are several ways we could design the feedback
gain
[
K1 K2

]
. Three possibilities are:

1. Base the design on a fixed set of nominal values for A,B,C,D,E.

2. Select a set of representative state values and carry out a design for each
corresponding A,B,C,D,E. Then use some form of supervisor and anti
wind-up switch to select the appropriate controller (see section (19.2)§19.3 for
details of how this might be done).

3. Use a time-varying gain designed based on A,B,C,D,E as calculated for the
current state estimate.

19.9 Non-Smooth Nonlinearities

The control strategies described above depend on the nonlinearities being “smooth”
i.e. differentiable and invertible. In many practical cases one meets non-smooth
nonlinearities - e.g. deadzones, stiction etc. - see for example the Mould Level
Controller described in Chapter 8.

These kinds of nonlinearity are very difficult to deal with because of the inherent
problems of modeling them. (Note we resorted to simple dither in section §8.7.4 to
deal with stiction.) In some cases, it is possible to model the nonlinear element and
then corrective action can be taken. We illustrate by reference to deadzones.
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A deadzone is a phenomenon normally found in practice in connection with
mechanical actuators. Small deadzones can be ignored, since they will not produce
significant performance deterioration. However, when its size is significant, some
form of compensation is necessary.

For our purposes here, it suffices to define a dead zone v = DZ〈w〉 by

v(t) = DZ〈w(t)〉 �
=




0 if ε > w(t) > −ε,
w(t) − ε if w(t) > ε,

w(t) + ε if w(t) < −ε.
(19.9.1)

where ε is a positive number which defines the nonlinearity.
Note that a deadzone is a non smooth nonlinearity (it has a discontinuous first

derivative). However, there exists a precompensator for this nonlinearity, as shown
in Figure 19.19.

u

−ε

ε
û −ε

ε

m

u m(t)û(t) u(t)

Figure 19.19. Dead zone precompensation

From Figure 19.19 it is straightforward to verify that m(t) = û(t). The advan-
tages of this compensation is illustrated in the following example, where the size of
the deadzone has been exaggerated to emphasize the difference.

Example 19.6. Consider a plant having a model given by

Y (s) =
2
s

(
4

(s+ 2)
M(s) +Dg(s)

)
with m(t) = DZ〈u〉 (19.9.2)

We assume that the deadzone is characterized by ε = 0.5. Also, Dg(s) denotes
the Laplace transform of a generalized disturbance, dg(t).

A one d.o.f. control is designed, considering the linear part of the model. A
pole placement strategy, with integration in the controller, is used with a closed loop
polynomial Acl(s) = (s2 + 3s+ 4)(s+ 5)2 leading to the controller

C(s) =
4.625s2 + 14.375s+ 12.5

s(s+ 11)
(19.9.3)
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The loop is simulated with and without deadzone compensation. The reference is
a square wave of frequency 0.1[rad/s] and unit amplitude. The disturbance is taken
to be dg(t) = µ(t− 10). The results are shown in Figure 19.20.
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Figure 19.20. Effect of deadzone compensation in the loop performance.

In Figure 19.20, the graph labelled y1(t) describes the plant output without dead-
zone compensation. The graph labelled y2(t) describes the plant output when dead-
zone compensation, of the form shown in Figure 19.19 on the preceding page, is used.
The comparison of y1(t) and y2(t) shows the benefits of deadzone compensation.

Note that the performance difference is less significant for the step in the refer-
ence at t = 10π[s]. The reason for this is that, due to the nonzero disturbance, the
steady state input to the deadzone is no longer zero, as was the case at t = 0. Thus,
the effect of the deadzone is basically equivalent to a change in the d.c. gain of the
process.

The reader is invited to test other design ideas using the SIMULINK file dead1.mdl.
In particular, the reader is encouraged to modify the schematic, implementing the
controller in the form required to add anti wind-up control in the presence of input
saturation (as in Figure 11.6 on page 296).

✷✷✷

19.10 Stability of Nonlinear Systems

Finally, we briefly address the issue of stability of nonlinear feedback systems. We
summarize two formulations of nonlinear stability, namely Lyapunov methods and
function space methods.

19.10.1 Lyapunov stability

The basic idea of Lyapunov stability is to show that there exists a positive definite
function (similar to energy) of the states that is decreasing along trajectories of
the system. The positive definite function is usually called a Lyapunov function.
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The difficult part of applying the Lyapunov method is, to find a suitable Lyapunov
function, because once this is done, stability follows immediately.

To give some further details, we first define the idea of global asymptotic stability
for nonlinear systems. We will do this for discrete time systems (but analogous
results hold for continuous systems where differences are replaced by derivatives).

Definition 19.2. Consider a discrete time system of the form

x[k + 1] = f (x[k]) ; x[ko] = xo (19.10.1)

We say that the system is globally asymptotically stable, if for all initial states
x[ko] and for any ε > 0, there exists a T such that ‖ x[ko + τ ] ‖< ε, for all τ ≥ T .

✷✷✷

Given the above definition, then testing for global stability is facilitated if we
can find a function V (x) ∈ R (a Lyapunov function) having the following properties:

(i) V (x) is a positive definite function of x, i.e. V (x) > 0 for all x �= 0, V (x)
is continuous and is a strictly increasing function of |x| and V (x) is radially
unbounded, i.e. |V (x)| → ∞ for all ||x|| → ∞.

(ii) V is decreasing along trajectories of (19.10.1); i.e.

−(V (f(x)) − V (x)) is positive definite (19.10.2)

We then have, the following theorem due to Lyapunov.

Theorem 19.1 (Lyapunov stability). The null solution of (19.10.1) is globally
asymptotically stable if there exists a Lyapunov function for the system satisfying
properties (i) and (ii) above.

Proof

Since the system is time invariant, we can take ko = 0. Also, for ||x(0)|| <
∞, V (x(0)) < ∞. We argue by contradiction, and assume the theorem is false,
i.e. that given some ε > 0, there does not exist a T such that ||x(k)|| < ε for all
k ≥ T .

Under these conditions, there exists an unbounded sequence of integers S = {ki}
such that ||x(ki)|| ≥ ε for all kiεS. Using (19.10.2), we then know that

V (f(x(ki))) − V (x(ki)) < −ε2 (19.10.3)

for some ε2 > 0. Hence, if we add enough of these terms together, we can cause the
sum to fall below −V (x(0)). Let N denote the index of the last time instant used
in this sum. Then
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∑
kiεS

ki≤N

V (f(x(ki))) − V (x(ki)) < −V (x(0)) (19.10.4)

Along trajectories of (19.10.1), we have

V (x(N)) = V (x(0)) +
N−1∑
k=0

V (x(k + 1))− V (x(k)) (19.10.5)

≤ V (x(0)) +
∑
kiεS

ki≤N

V (x(ki + 1))− V (x(ki))

= V (x(0)) +
∑
kiεS

ki≤N

V (f(x(ki)))− V (x(ki))

≤ 0

where we have used (19.10.4)
However, this contradicts the positive definiteness of V (x).
The result follows.

✷✷✷

An application of Lyapunov methods will be given in Chapter 23 where we
use this approach to prove stability of a general nonlinear model predictive control
algorithm.

19.10.2 Input-output stability via function space methods

Here we use the nonlinear operator approach introduced in section §19.2. We will
use χ to denote a Banach space 1 and we use f to denote a nonlinear operator on
χ, i.e. a mapping between its domain D(f) ⊂ χ into χ. The domain and range of
f are defined as follows:

D(f) �
= {x ∈ χ : f〈x〉 ∈ χ} (19.10.6)

R(f)
�
= {f〈x〉 : x ∈ D(f)} (19.10.7)

We also define f−1(Y ) as the pre-image set of Y through f , i.e.

f−1(Y ) = {x ∈ D(f) : f〈x〉 ∈ Y } (19.10.8)

With the above definitions we have the following:
1A normed vector space is said to be a Banach space if all Cauchy sequences converge to limit

points in the space.
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Definition 19.3. We say that an operator is input-output stable if its domain is
χ.

Definition 19.4. We say that an operator is input-output unstable if its domain is
a strict subset of χ.

Definition 19.5. We say that an operator is input-output non-minimum phase if
the closure of its range is a strict subset of χ.

Remark 19.2. To provide motivation for the above concept of a non-minimum
phase nonlinear operator, we specialize to the case of linear time invariant systems.
In this case, if f has a non-minimum phase zero, then the range of such an operator
is the set of signals in χ that have a zero at the same frequency, i.e. a strict subset
of χ.

We will also need to define an operator gain. We will use the Lipschitz gain
defined as follows:

||f ||L �
= sup

{ |f〈x〉 − f〈y〉|
|x− y| : x, y ∈ D(f), x �= y

}
(19.10.9)

where | ◦ | is the norm on χ.

Definition 19.6. We say that f is Lipschitz stable if D(f) = χ and ||f ||L < ∞.

We next define inversion of an operator.

Definition 19.7. A Lipschitz stable operator f is Lipschitz invertible if there is a
Lipschitz stable operator f−1 such that f−1 〈f〈◦〉〉 = I (the identity operator).

✷✷✷

Remark 19.3. Note that it is clearly necessary for R(f) to be χ for f to be Lips-
chitz invertible and thus, a non-minimum phase operator is not Lipschitz invertible.

The following mathematical result is now stated without proof (for a proof see
Martin (1976)):

Theorem 19.2. Let χ be a Banach space and let f be Lipschitz stable. Suppose
that ||f ||L < 1, then (I+ f) is Lipschitz invertible and

||(I+ f)−1||L ≤ (1− ||f ||L)−1 (19.10.10)

✷✷✷

The above result can be used to analyze certain stability questions in nonlinear
feedback systems. To illustrate, we will use it to extend the robust stability theorem
of Chapter 5 to the nonlinear case. In particular we have:
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Theorem 19.3. Consider the set-up described in section §19.2. In particular, con-
sider the equivalent signal loop given in Figure 19.2 on page 554 where Gε is a
nonlinear operator describing the effect of additive nonlinear modeling errors. A
sufficient condition for robust (Lipschitz) stability is that g be Lipschitz stable and

||g||L < 1 (19.10.11)

where g is the forward path nonlinear operator in Figure 19.3, i.e.:

g〈◦〉 = Gε

〈
So
〈
C〈◦〉〉〉 (19.10.12)

Proof

We first note that in Figure 19.3 with r denoting all inputs lumped at the reference,
that

e = r − g〈e〉 (19.10.13)

Hence

(I+ g)〈e〉 = r (19.10.14)

Now, using assumption (19.10.11) and Theorem 19.2, we know that I + g is
Lipschitz invertible. (Hence, from Remark 19.3, R(I + g) = χ and D(I + g) = χ.)
The result follows from definition 19.7

✷✷✷

As a straightforward application of the above result, we can rederive Theorem 5.3
on page 144. In particular, in the case of linear operators in L2 the Lipschitz gain
reduces to the H∞ norm2. Thus in the linear case, condition (19.10.11) becomes

sup
ω∈R

|Gε(jω)So(jω)C(jω)| < 1 (19.10.15)

Note that this is identical to the condition given earlier in Equation (5.6.6).

19.11 Summary

• So far, the book has emphasized linear systems and controllers.

• This chapter generalizes the scope to include various types of nonlinearities.

• A number of properties that are very helpful in linear control are not - or not
directly-applicable to the nonlinear case.

2The H∞ norm of a transfer function F (s) is defined as ||F ||∞ = supω∈R|F (jω)|
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◦ Frequency analysis: The response to a sinusoidal signal is not necessar-
ily a sinusoid; therefore frequency analysis, Bode plots, etc, cannot be
directly carried over from the linear case.

◦ Transfer functions : The notion of transfer functions, poles, zeros and
their respective cancellation is not directly applicable.

◦ Stability becomes more involved.

◦ Inversion: It was highlighted in Chapter 15, on controller parameteriza-
tions, that whether or not the controller contains the inverse of the model
as a factor and whether or not one inverts the model explicitly - control is
fundamentally linked to the ability to invert. Numerous nonlinear func-
tions encountered, however, are not invertible (such as saturations, for
example).

◦ Superposition does not apply; that is: the effects of two signals (such
as setpoint and disturbance) acting on the system individually cannot
simply be summed (superimposed) to determine the effect of the signals
acting simultaneously on the system.

◦ Commutativity does not apply.

• As a consequence, the mathematics for nonlinear control become more in-
volved, solutions and results are not as complete and intuition can fail more
easily than in the linear case.

• Nevertheless, nonlinearities are frequently encountered and are a very impor-
tant consideration.

• Smooth static nonlinearities at input and output

◦ are frequently a consequence of nonlinear actuator and sensor character-
istics

◦ are the easiest form of nonlinearities to compensate

◦ can be compensated by applying the inverse function to the relevant
signal, thus obtaining a linear system in the pre-compensated signals
(caution, however with singular points such as division by zero, etc, for
particular signal values).

• Non-smooth nonlinearities cannot, in general, be exactly compensated or lin-
earized.

• The chapter applies a nonlinear generalization of the affine parameterization
of Chapter 15 to construct a controller that generates a feedback linearizing
controller if the model is smoothly nonlinear with stable inverse

• Nonlinear stability can be investigated using a variety of techniques. Two
common strategies are
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◦ Lyapunov methods
◦ Function Space methods

• Extensions of linear robustness analysis to the nonlinear case are possible

• There also exist nonlinear sensitivity limitations which mirror those for the
linear case
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19.13 Problems for the Reader

Problem 19.1. Consider a nonlinear plant having a model given by

d2y(t)
dt2

+ 7
dy(t)
dt

+ 12y(t) = u(t) + 0.5 (u(t))3 (19.13.1)

Use the affine parameterization and the theory developed in this chapter for
smooth input nonlinearities and design a controller to achieve a closed loop band-
width approximately equal to 5 [rad/s].

Problem 19.2. Consider a nonlinear function y = fD(u) given by

y =

{
0 if |u| < D,

u if |u| ≥ D
(19.13.2)

where D ∈ R.

19.2.1 Determine a suitable non linear function u = g(r) such that g〈◦〉 is a good
approximate inverse of fD〈◦〉.

19.2.2 Using the above result, design a one d.o.f controller for a plant having a model
given by

−y(t) = Golin

〈
fD〈u〉

〉
with Golin(s) =

1
s(s+ 1)

(19.13.3)

where D = 0.3.

19.2.3 Evaluate the tracking performance of your design for sinusoidal references of
different amplitudes and frequencies.

19.2.4 Evaluate the disturbance compensation performance of your design to step
input disturbances of different magnitudes.

Problem 19.3. Consider a nonlinear plant having a model given by

d2y(t)
dt2

+
(
1 + 0.2 sin

(
y(t)
)) dy(t)

dt
+ 0.5y(t) = 3u(t)− sign

(
u(t)
)

(19.13.4)

19.3.1 Build a state space model for this system and find its relative degree.

19.3.2 Find an approximate inverse for this plant. Assume that this approximate
inverse must have reasonable accuracy in the frequency band [0, 0.5][rad/s].
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Problem 19.4. Consider the same plant as in problem 19.3 and its approximate
inverse.

19.4.1 Design a nonlinear controller, based on the results presented in subsection
§19.6, to track sine waves of frequency in the band [0, 0.5][rad/s].

19.4.2 Compare the performance of this design with that of a loop using a linear
controller (see problem 3.9).

Problem 19.5. A discrete time linear system having a state space model

[
x1[k + 1]
x2[k + 1]

]
=
[
0.8 0.3
0.2 0.5

] [
x1[k]
x2[k]

]
(19.13.5)

19.5.1 Determine which of the functions below qualify to be Lyapunov function.

(a) x1[k] + (x2[k])2 (b) (x2[k])2

(c) 3(x1[k])2 + (x2[k])2 (d) (x1[k] + x2[k])2 + (x2[k])2

19.5.2 Choose an appropriate Lyapunov function and prove that the above system
is globally asymptotically stable.
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PREVIEW

In this part of the book we turn to systems having multiple inputs and/or multiple
outputs. Of course most (if not all) systems met in practice will be of this type.
Fortunately, it is frequently the case that the inputs and outputs can be grouped
into pairs and treated as if they were separate single-input single-output (SISO)
problems. Indeed, this is why we have treated SISO control loops in such detail
in earlier parts of the book. However, in other cases, non-negligible interactions
between the multiple inputs and outputs can occur. In this case, one really has
no option but to tackle control design as a genuine multiple-input multi-output
(MIMO) problem. This is the topic of this part of the book.
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Chapter 20

ANALYSIS OF MIMO
CONTROL LOOPS

20.1 Preview

In previous chapters we have focused on single-input, single-output problems. Other
signals in the control loop have been considered as disturbances. However it fre-
quently happens that what we have designated as disturbances in a given control
loop, are signals originating in other loops, and vice-versa. This phenomenon is
known as interaction or coupling. In some cases, interaction can be ignored, either
because the coupling signals are weak or because a clear time scale or, frequency
scale separation exists. However, in other cases it may be necessary to consider
all signals simultaneously. This leads us to consider multi-input multi-output (or
MIMO) architectures.

A useful way to describe and refer to the problem of interaction is to borrow
models and terminology from communication theory. If we assume that a MIMO
system is square (same number of inputs and outputs), all inputs and outputs in
the system can be paired. Then, the question of controlling every output yi(t),
via manipulation of an input ui(t), in the presence of interactions, is similar to a
communication channel, where interactions can be represented as channel crosstalk.
The idea can be extended to any square MIMO system, including complete control
loops, where the transmitter is, say reference ri(k), and the receiver is output yi(k).

Throughout this chapter we will adhere to the convention used in the rest of the
book, to use boldface type to denote matrices.

20.2 Motivational Examples

All real world systems comprise multiple interacting variables. The reader is asked
to think of examples from his or her own experience: For example, one tries to
increase the flow of water in a shower by turning on the hot tap, but then the
temperature goes up; one wants to spend more time on holidays but then one needs
to spend more time at work to earn more money; the government tries to bring
inflation down by reducing government expenditure but then unemployment goes
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up; and so on. A more physical example is provided by the following:

Example 20.1 (Ammonia plant). A typical industrial plant aimed at producing
ammonia from natural gas is the Kellogg Process. In an integrated chemical plant
of this type there will be hundreds (possibly thousands) of variables which interact to
some degree. Even if one focuses on one particular process unit, e.g. the ammonia
synthesis converters, one still ends up with 5 to 10 highly coupled variables. A typical
ammonia synthesis converter is shown in Figure 20.1. The process is exothermic and
thus the temperature rises across each catalyst bed. It is then cooled by mixing from
the quench flows. Many measurements will typically be made, e.g. the temperature
on either side of each bed.

The nature of the interactions can be visualized as follows: say one incremen-
tally opens quench valve 1, then all other flows will be affected, the temperature in
zone 1 will drop, this will pass down the converter from bed to bed, as the reaction
progressively slows, the heat exchanger will move to a different operating point and,
finally, the temperature of the feed into the top of the converter will be affected.
Thus, in the end, all variables will respond to the change in a single manipulated
variable.

To emphasize the wide range of physical systems exhibiting multivariable inter-
actions, we consider a second example.

Example 20.2 (Small aircraft). A small aircraft is ordered to maintain its present
speed and course, but to climb to a significantly higher altitude; the new altitude is
reached by manipulating the elevators; while manipulating this control variable in
isolation brings one output (altitude) to specification, it inherently introduces an
error into another, previously correct, output (the speed drops); thus, one control
variable disperses its effects onto several outputs. To counteract dispersion and to
change altitude without affecting speed, the elevator control action should be accom-
panied by just the right amount of additional throttle action.

Consider now the same small aircraft ready for take-off; with all control surfaces
neutral, a step change in the control variable throttle will accelerate the aircraft,
wing lift will build, and a change will occur in the output altitude. If however
(as is routinely done to build safe lift-off speed) the control variable tail elevator is
simultaneously activated downwards then the step change in throttle will accelerate
the aircraft down the runway, but without impact on altitude (until the rudder is
released!). Thus a step change in the control variable throttle is temporary blocked
from the output altitude.

Obviously these kinds of interactions are complex to understand and, as a result,
they make control system design interesting (to say the least). Of course, one could
attempt using several SISO control loops but this may or may not prove satisfactory.
For example, in the ammonia synthesis plant one could try controlling T1, T3, T5

and T7 by manipulating the four quench valves using individual PID controllers.
However, this turns out to be a somewhat non-trivial task due to the associated
interactions.
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Figure 20.1. Ammonia synthesis converter

The reader may be left wondering, how interaction of the type described in the
above examples, affects the performance of controllers.

20.3 Models for Multivariable Systems

Most of the ideas presented in early parts of the book apply (albeit with some slight
enhancements) to multivariable systems. The main difficulty in the MIMO case is
that we have to work with matrices, rather than scalar, transfer functions. This
means that care needs to be taken with such issues as the order in which transfer
functions appear (in general matrices do not commute).

We review below the ideas of state space models, transfer function, and matrix
fraction descriptions (MFD’s).
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20.3.1 State space models revisited

Linear MIMO systems can be described using the state space ideas presented in
Chapter 17. The only change is the extension of the dimensions of inputs and
outputs to vectors. In particular, if the system has input vector u(t) ∈ Rm and
output vector y(t) ∈ Rm, then its state space model can be written

ẋ(t) = Ax(t) +Bu(t) x(to) = xo (20.3.1)
y(t) = Cx(t) +Du(t) (20.3.2)

where x ∈ Rn is the state vector, xo ∈ Rn is the state vector at time t = to and
where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n and D ∈ Rm×m.

We ask the reader to revise the notions of system properties presented in sections
§17.6 and §17.7 which also hold in the MIMO case.

Of course, if we start with a SISO system and make it multivariable, by adding
extra inputs or outputs, then the system properties such as controllability, stabiliz-
ability, observability and detectability may also change. This can be appreciated by
noting for example that, if we add inputs, then we change the matrix B (by adding
columns) and we thus have the potential to reduce the dimension of the uncontrol-
lable (unreachable) subspace. Similarly, by adding outputs, we change the matrix
C (by adding rows) and thus, the dimension of the unobservable subspace may be
affected.

20.3.2 Transfer function models revisited

As in section §17.4 it is straightforward to convert a state space model to a transfer
function model.

Laplace transforming equations (20.3.1) and (20.3.2) leads to

sX(s)− x(0) = AX(s) +BU(s) (20.3.3)
Y (s) = CX(s) +DU(s) (20.3.4)

from where, on taking x(0) = 0, we have that

Y (s) = (C(sI −A)−1B+D)U(s) (20.3.5)

The matrix transfer function G(s) is then defined by

G(s)
�
= C(sI−A)−1B+D (20.3.6)

Note that, if the dimension of the unobservable and/or uncontrollable subspace
is nonzero, then the matrix G(s) will be an incomplete description of the system, in
so far that it describes only the input-output properties with zero initial conditions.
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For future reference we will use Gik(s) to denote the transfer function from the
k − th component of U(s) to the i − th component of Y (s). Then G(s) may be
expressed as

G(s) =




G11(s) G12(s) . . . G1k(s) . . . G1m(s)
G21(s) G22(s) . . . G2k(s) . . . G2m(s)

...
... . . .

... . . .
...

Gi1(s) Gi2(s) . . . Gik(s) . . . Gim(s)
...

... . . .
... . . .

...
Gm1(s) Gm2(s) . . . Gmk(s) . . . Gmm(s)




(20.3.7)

Definition 20.1. A transfer function matrix G(s) is said to be a proper matrix
if every one of its elements is a proper transfer function.

A useful observation is that Gik(s) is the Laplace transform of the i− th com-
ponent of y(t), when the k − th component of u(t) is an impulse. This motivates
the following definition.

Definition 20.2. The impulse response matrix of the system, g(t), is the in-
verse Laplace transform of the transfer function matrix G(s). For future reference,
we express g(t) as

g(t) =




g11(t) g12(t) . . . g1k(t) . . . g1m(t)
g21(t) g22(t) . . . g2k(t) . . . g2m(t)

...
... . . .

... . . .
...

gi1(t) gi2(t) . . . gik(t) . . . gim(t)
...

... . . .
... . . .

...
gm1(t) gm2(t) . . . gmk(t) . . . gmm(t)



= L−1 [G(s)] (20.3.8)

where

gik(t) = L−1 [Gik(s)] (20.3.9)

Note that for a state space model, with D = 0, then g(t) = CeAtB.

20.3.3 Matrix fraction descriptions

Clearly all matrix transfer descriptions comprise elements having numerator and
denominator polynomials. These matrices of rational functions of polynomials can
be factorized in various ways.

Consider an (n ×m) transfer function matrix G(s). Let dri (s) denote the least
common multiple of the denominator polynomials in the ith row. Also, let ei(s)
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denote a Hurwitz polynomial of the same degree as dri (s). Then it is clear that we
can write

G(s) =
[
ḠD(s)

]−1 [
ḠN (s)

]
(20.3.10)

where

ḠD(s) =



dr1(s)
e1(s)

. . .
drm(s)
em(s)


 (20.3.11)

ḠN (s) =



n11(s)
e1(s)

· · · n1m(s)
e1(s)

...
nm1(s)
em(s)

· · · nmm(s)
em(s)


 (20.3.12)

where n11(s) . . . nmm(s) are polynomials. Clearly ḠD(s) and ḠN (s) are stable
proper transfer functions.

Equations (20.3.10), (20.3.11), and (20.3.12) describe a special form of Left
Matrix Fraction Description (LMFD) for G(s).

To obtain a Right Matrix Function Description (RMFD) we need to be a little
cautious since, in general, matrices do not compute .

Hence let dci (s) denote the least common multiple of the denominator polyno-
mials in the ith column of G(s). Also let e′i(s) denote a Hurwitz polynomial of the
same degree as dci (s). Then we can write

G(s) = [GN (s)] [GD(s)]
−1 (20.3.13)

where
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GD(s) =



dc1(s)
e′1(s)

. . .
dcm(s)
e′m(s)


 (20.3.14)

GN (s) =



n′

11(s)
e′1(s)

· · · n′
1m(s)
e′m(s)

...
n′
m1(s)
e′1(s)

· · · n′
mm(s)
e′m(s)


 (20.3.15)

where n′
11(s) . . . n

′
mm(s) are polynomials. Again, GD(s) and GN (s) are stable

proper transfer functions.
Equations (20.3.13), (20.3.14), and (20.3.15) describe a special form of Right

Matrix Fraction Description (RMFD) for G(s).

20.3.4 Connection between state space models and MFD’s

Actually a RMFD and LMFD can be obtained from a state space description of
a given system by designing stabilizing state variable feedback and an observer
respectively. To illustrate this, consider the state space model:

ẋ(t) = Ax(t) +Bu(t) (20.3.16)
y(t) = Cx(t) (20.3.17)

We assume that the state space model is stabilizable. If not, we must first
eliminate non-stabilizable modes.

Let u(t) = −Kx(t) + w(t) be stabilizing feedback. The system can then be
written as follows by adding and subtracting BKx(t)

ẋ(t) = (A−BK)x(t) +Bw(t) (20.3.18)
y(t) = Cx(t) (20.3.19)
w(t) = u(t) +Kx(t) (20.3.20)

We can express these equations in the Laplace transform domain with zero initial
conditions as

U(s) = (I−K[sI−A+BK]−1B)W (s) (20.3.21)

Y (s) = C[sI−A+BK]−1BW (s) (20.3.22)
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These equations have the form

U(s) = GD(s)W (s); Y (s) =GN(s)W (s); Y (s) = GN(s)[GD(s)]−1U(s)
(20.3.23)

where GN(s) and GD(s) are the following two stable transfer function matrices

GN(s) = C[sI−A+BK]−1B (20.3.24)

GD(s) = I−K[sI−A+BK]−1B (20.3.25)

We see from (20.3.23) to (20.3.25) that (GN(s),GD(s)) is a RMFD.
Similarly, we can use an observer to develop a LMFD. We assume that the state

space model is detectable. If not, we must first eliminate non-detectable modes.
Then, consider the following observer description of (20.3.16) and (20.3.17)

˙̂x(t) = Ax̂(t) +Bu(t) + J(y(t)−Cx̂(t)) (20.3.26)
y(t) = Cx̂(t) + ν(t) (20.3.27)

We can express these equations in the Laplace domain as

Φ(s)
�
= L [ν(t)] = (I−C[sI−A+ JC]−1J)Y (s)−C[sI−A+ JC]−1BU(s)

(20.3.28)

We know that, for a stable observer, ν(t) → 0 exponentially fast, hence in steady
state we can write

GD(s)Y (s) =GN(s)U(s) (20.3.29)

where

GN(s) = C(sI−A+ JC)−1B (20.3.30)

GD(s) = I−C(sI−A+ JC)−1J (20.3.31)

Hence (GN(s),GD(s)) is a LMFD for the system.
The RMFD and LMFD developed about have the following interesting property:

Lemma 20.1. There always exists a RMFD and LMFD for a system having the
following coprime factorization property:
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[
CD(s) CN(s)
−GN(s) GD(s)

] [
GD(s) −CN(s)
GN(s) CD(s)

]
=[

GD(s) −CN(s)
GN(s) CD(s)

] [
CD(s) CN(s)
−GN(s) GD(s)

]
= I (20.3.32)

where CN(s), CD(s), CN(s) and CD(s) are stable transfer functions defined as
follows:

CN(s) = K[sI−A+BK]−1J (20.3.33)

CD(s) = I+C[sI−A+BK]−1J (20.3.34)

CN(s) = K[sI−A+ JC]−1J (20.3.35)

CD(s) = I+K[sI−A+ JC]−1B (20.3.36)

and GN(s), GD(s), GN(s) and GD(s) are defined as in (20.3.24)-(20.3.25), (20.3.30)-
(20.3.31).

Proof

We use the same construction as in (20.3.18) but applied to the observer (20.3.26).
This leads to

˙̂x(t) = (A−BK)x̂(t) +Bv′(t) + Jν(t) (20.3.37)

where

v′(t) = u(t) +Kx̂(t) or u(t) = −Kx̂(t) + v′(t) (20.3.38)
ν(t) = y(t)−Cx̂(t) or y(t) = Cx̂(t) + ν(t) (20.3.39)

Hence we can write

[
U(s)
Y (s)

]
=
[
GD(s) −CN(s)
GN(s) CD(s)

] [
V ′(s)
Φ(s)

]
(20.3.40)

where V ′(s) = L [v′(t)], Φ(s) = L [ν(t)]. Also, we have

[
V ′(s)
Φ(s)

]
=
[
CD(s) CN(s)
−GN(s) GD(s)

] [
U(s)
Y (s)

]
(20.3.41)

The result follows.
✷✷✷
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20.3.5 Poles and zeros of MIMO systems

The reader will recall that in the SISO case, the performance of control systems
was markedly dependent on the location of open loop zeros. Thus, it would seem
to be important to extend the notion of zeros to the MIMO case. As a first guess
at how this might be done, one might conjecture that the zeros could be defined in
terms of the numerator polynomials in (20.3.12) or (20.3.15). Although this can be
done, it turns out that this does not adequately capture the “blocking” nature of
zeros that was so important in the SISO case. An alternative description of zeros
that does capture this “blocking” property is to define zeros of a MIMO transfer
function as those values of s which make the matrix G(s) loose rank. This means
that there exists at least one nonzero constant vector v (zero right direction) such
that

G(c)v = 0 (20.3.42)

and, at least, another nonzero constant vector w (zero left direction) such that

wTG(c) = 0 (20.3.43)

where s = c is one of the zeros ofG(s). The vectors v and wT are part of null spaces
generated by the columns or rows of G(c), respectively. Note that the number of
linearly independent vectors which satisfy (20.3.42) depends on the rank loss of
G(s) when evaluated at s = c. This number is known as the geometric multiplicity
of the zero and it is equal to the dimension of the null space generated by the
columns of G(s).

An additional insight into the effect of zeros is obtained by considering a par-
ticular system input U(s) given by

U(s) = v
1

s− c
(20.3.44)

where v is a vector which satisfies (20.3.42). Note that (20.3.44) implies that the
input contains only one forcing mode, ect. We then see that the system output Y (s)
is given by

Y (s) = G(c)v
1

s− c
+ Yad(s) (20.3.45)

where Yad(s) is the Laplace transform of the natural component of the response.
If we now apply (20.3.42) we observe that the forcing mode ect is blocked by the
system, since it does not appear in the output. This property of zeros gives rise to
the term transmission zeros.

System zeros as defined above are not always obvious by looking at the transfer
function. This is illustrated in the following example.
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Example 20.3. Consider the matrix transfer function

G(s) =




4
(s+ 1)(s+ 2)

−1
(s+ 1)

2
(s+ 1)

−1
2(s+ 1)(s+ 2)


 (20.3.46)

It is difficult to tell from the above where the zeros are. However, it turns out
there is one zero at s = −3, as can be readily seen by noting that

G(−3) =



2

1
2

−1 −1
4


 (20.3.47)

which clearly has rank 1.

✷✷✷

Example 20.4 (Quadruple tank apparatus). A very interesting piece of labo-
ratory equipment based on four coupled tanks has recently been described by Karl
Hendrix Johansson (see references given at the end of the chapter). A photograph
and discussion of such a system, built at the University of Newcastle, are given in
the web page.

A schematic diagram is given in Figure 20.2.
Physical modeling leads to the following (linearized) transfer function linking

(u1, u2) with (y1, y2).

G(s) =




3.7γ1

62s+ 1
3.7(1− γ2)

(23s+ 1)(62s+ 1)
4.7(1− γ1)

(30s+ 1)(90s+ 1)
4.7γ2

90s+ 1


 (20.3.48)

Where γ1 and (1 − γ1) represent the proportion of the flow from pump 1 that
goes into tanks 1 and 4, respectively (similarly for γ2 and (1 − γ2). Actually the
time constants change a little with the operating point, but this does not affect us
here.

The system has two multivariable zeros which satisfy det(G(s)) = 0; i.e.

(23s+ 1)(30s+ 1)− η = 0 where η =
(1− γ1)(1 − γ2)

γ1γ2
(20.3.49)
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Figure 20.2. Schematic of a quadruple tank apparatus

A simple root locus argument shows that the system is non-minimum phase
for η > 1, i.e. for 0 < γ1 + γ2 < 1 and minimum phase for η < 1, i.e. for
1 < γ1 + γ2 < 2.

Also, the zero direction associated with a zero z > 0, satisfies (20.3.43). It then
follows that, if γ1 is small, the zero is mostly associated with the first output, whilst
if γ1 is close to 1, then the zero is mostly associated with the second output.

✷✷✷

It is also possible to relate zeros to the properties of a coprime factorization of
a given transfer function matrix. In particular, if we write

G(s) = GN (s)[GD(s)]−1 = [ḠD(s)]−1[ḠN (s)] (20.3.50)

where GN (s),GD(s), ḠD(s), ḠN (s) satisfy the coprime identity given in (20.3.32),
then the zeros ofG(s) correspond to those values of s where eitherGN (s) or ḠN (s),
or both loose rank.

Similarly, we can define the poles of G(s) as those values of s where GD(s) or
ḠD(s), or both loose rank.
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20.3.6 Smith-McMillan forms

Further insight into the notion of plant poles and zeros is provided by the Smith-
McMillan form of the transfer function. This result depends on further mathe-
matical ideas that are outside the core scope of this book. We therefore leave the
interested reader to follow up the ideas in Appendix B.

20.4 The Basic MIMO Control Loop

In this section we will develop the transfer functions involved in the basic MIMO
control loop.

Unless otherwise stated, the systems we consider will be square (the input vector
has the same number of components as the output vector). Also, all transfer func-
tions matrices under study will be assumed to be nonsingular almost everywhere,
which means that these matrices will be singular only at a finite set of “zeros”.

We consider the control of a plant having a nominal model, with an output,
Y (s), given by

Y (s) = Do(s) +Go(s)(U(s) +Di(s)) (20.4.1)

where Y (s), U(s), Di(s) and Do(s) are the vectors of dimension m corresponding
to the output, input, input disturbance and output disturbance respectively. Go(s)
is an m×m matrix (the nominal transfer function) with entries Gik(s).

We will consider the same basic feedback structure as in the SISO case, i.e. the
structure shown in Figure 20.3.

We will emphasize the multivariable nature of these systems, by using boldface
to denote matrix transfer functions.

The nominal MIMO control loop in Figure 20.3 can be described as in the SISO
case by certain key transfer functions. In particular, we define

So(s) - the (matrix) transfer function connecting Do(s) to Y (s)
To(s) - the (matrix) transfer function connecting R(s) to Y (s)
Suo(s) - the (matrix) transfer function connecting R(s) to U(s)
Sio(s) - the (matrix) transfer function connection Di(s) to Y (s)

As in the SISO case, we call So, To, Suo, Sio the nominal sensitivity, nominal
complementary sensitivity, nominal input sensitivity and nominal input disturbance
sensitivity respectively.

Expressions for these quantities can be readily obtained from Figure 20.3. How-
ever, care must be taken to respect the vector nature of all signals. The result of
this analysis is
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Di(s) Do(s)

+

+

−
+

Dm(s)

R(s) E(s) Y (s)++

U(s)

Ym(s)

C(s)
+

+
Go(s)

Figure 20.3. MIMO feedback loop

Y (s) = To(s)R(s)−To(s)Dm(s) + So(s)Do(s) + Sio(s)Di(s) (20.4.2)
U(s) = Suo(s)R(s)− Suo(s)Dm(s)− Suo(s)Do(s)− Suo(s)Go(s)Di(s)

(20.4.3)

E(s) = So(s)R(s)− So(s)Dm(s)− So(s)Do(s)− Sio(s)Di(s) (20.4.4)

where

So(s) = [I+Go(s)C(s)]−1 (20.4.5)

To(s) = Go(s)C(s)[I +Go(s)C(s)]−1 = [I+Go(s)C(s)]−1Go(s)C(s)
(20.4.6)

= I− So(s) (20.4.7)

Suo(s) = C(s)[I+Go(s)C(s)]−1 = C(s)So(s) = [Go(s)]−1To(s) (20.4.8)

Sio(s) = [I+Go(s)C(s)]−1Go(s) =Go(s)[I+C(s)Go(s)]−1 = So(s)Go(s)
(20.4.9)

From equations (20.4.5)-(20.4.9) we can also derive the true, or achievable, ma-
trix sensitivity functions by substituting the transfer function of the nominal model
Go(s) by the transfer function of the true system G(s). This leads to
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S(s) = [I+G(s)C(s)]−1 (20.4.10)

T(s) =G(s)C(s)[I +G(s)C(s)]−1 = [I+G(s)C(s)]−1G(s)C(s) (20.4.11)
= I− S(s) (20.4.12)

Su(s) = C(s)[I +G(s)C(s)]−1 = [G(s)]−1T(s) (20.4.13)

Si(s) = [I+G(s)C(s)]−1G(s) = G(s)[I+C(s)G(s)]−1 = S(s)G(s)
(20.4.14)

Remark 20.1. Note that since matrix products, in general, do not commute, spe-
cial care must be exercised when manipulating the above equations.

Remark 20.2. Note that So(s) + To(s) = I and S(s) + T(s) = I. These are the
multivariable versions of (5.3.5).

20.5 Closed Loop Stability

We next extend the notions of stability described in section §5.4 for the SISO case
to the MIMO case.

We say that a MIMO system is stable if all its poles are strictly inside the stabil-
ity region (the LHP for continuous time systems, and the unit disk for discrete time
shift operator systems). However, as in the SISO case, interconnection of systems,
such as in the feedback loop in Figure 20.3, may yield hidden unstable modes, i.e.
internal instability. This is due to potential unstable pole-zero cancellation.

We mirror Lemma 5.1 on page 126 with the following

Lemma 20.2. Consider the nominal control loop in Figure 20.3. Then the nom-
inal loop is internally stable if and only if the four sensitivity functions defined in
(20.4.5)-(20.4.9) are stable.

Proof

If all input signals, i.e. r(t), di(t), do(t) and dn(s) are bounded, then we see from
(20.4.2)-(20.4.4), that stability of the four sensitivity functions is sufficient to have
bounded outputs y(t), u(t) and e(t). We also see that this condition is necessary,
since Suo(s)Go(s) = [Go(s)]−1To(s)Go(s) is stable if and only if To(s) is stable.

✷✷✷

20.5.1 Stability in MFD form

Stability can also be expressed using matrix fraction descriptions (MFDs).
Consider RMFD and LMFD descriptions for the plant and the controller, i.e.
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Go(s) = GoN(s)[GoD(s)]−1 =
[
GoD(s)

]−1
GoD(s) (20.5.1)

C(s) = CN(s)[CD(s)]−1 =
[
CD(s)

]−1
CN(s) (20.5.2)

Then, the transfer functions appearing in (20.4.2) to (20.4.4) can be rewritten
as

So(s) = CD(s)
[
GoD(s)CD(s) +GoN(s)CN(s)

]−1
GoD(s) (20.5.3)

To(s) =GoN(s)
[
CD(s)GoD(s) +CN(s)GoN(s)

]−1
CN(s) (20.5.4)

Suo(s) = CN(s)
[
GoD(s)CD(s) +GoN(s)CN(s)

]−1
GoD(s) (20.5.5)

Sio(s) = CD(s)
[
GoD(s)CD(s) +GoN(s)CN(s)

]−1
GoN(s) (20.5.6)

Suo(s)Go(s) = CN(s)
[
GoD(s)CD(s) +GoN(s)CN(s)

]−1
GoN(s) (20.5.7)

We recall that matrices GoN(s), GoD(s), CN(s) and CD(s) are matrices with
stable rational entries. Then, Lemma 20.2 on the preceding page can be expressed
in the following equivalent form.

Lemma 20.3. Consider a one d.o.f MIMO feedback control loop as shown in Fig-
ure 20.3 on page 604. Let the nominal plant model and the controller be expressed
in MFD as in (20.5.1), (20.5.2). Then the nominal loop is internally stable if and
only if the closed loop characteristic matrix Acl(s)

Acl(s)
�
=GoD(s)CD(s) +GoN(s)CN(s) (20.5.8)

has all its zeros strictly in the LHP, where the zeros are defined to be the zeros of
det{Acl(s)}.

✷✷✷

Remark 20.3. Note that matrix Acl(s) plays, for MIMO control loops, the same
role as the one played by the polynomial Acl(s) for SISO control loops.

Remark 20.4. Say we define a controller by equations (20.3.33) to (20.3.36).
Then, Lemma 20.1 on page 598 shows that Acl(s) = I, and hence, the control loop
is stable. Actually, this can also be seen from (20.3.38) if we set Φ(s) = 0. Then
(20.3.40) defines a relationship between U(s) and Y (s) (i.e. a feedback controller)
of the form:

U(s) = −CN(s)[CD(s)]−1Y (s) (20.5.9)

However, this controller really amounts to stabilizing feedback from state esti-
mates generated by a stable observer. Hence, stability of the closed loop follows from
the separation property as in section §18.4.
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Example 20.5. A diagonal controller C(s) is proposed to control a MIMO plant
with nominal model Go(s). If C(s) and Go(s) are given by

Go(s) =




2
s+ 1

1
(s+ 1)(s+ 2)

1
(s+ 1)(s+ 2)

2
s+ 2


 ; C(s) =



2
s

0

0
1
s


 (20.5.10)

determine whether the closed loop is stable.

Solution

We use Lemma 20.3 on the preceding page to test stability. Thus, we need LMFD
and RMFD for the plant model and the controller respectively. A simple choice is

GoN(s) =
[
2(s+ 2) 1

1 2(s+ 1)

]
; GoD(s) = (s+ 1)(s+ 2)I (20.5.11)

and

CN(s) =
[
2 0
0 1

]
; CD(s) = sI (20.5.12)

Then

Acl(s) =GoD(s)CD(s) +GoN(s)CN(s)

=
[
2s3 + 10s2 + 18s+ 8 s2 + 3s+ 2

s2 + 3s+ 2 2s3 + 8s2 + 11s+ 4

]
(20.5.13)

We now have to test whether the zeros of this polynomial matrix are all inside
the open LHP. Since Acl(s) is a polynomial matrix, this can be simply tested by
computing the roots of its determinant. We have that

det (Acl(s)) = 4s6 + 36s5 + 137s4 + 272s3 + 289s2 + 148s+ 28 (20.5.14)

All roots of det (Acl(s)) have negative real parts. Thus the loop is stable.

20.5.2 Stability via frequency responses

The reader may well wonder if tools from SISO analysis can be applied to test stabil-
ity for MIMO systems. The answer is, in general, ‘yes’, but significant complications
arise due to the multivariable nature of the problem. We will illustrate by showing
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how Nyquist theory (see section §5.7) might be extended to the MIMO case. If we
assume that only stable pole-zero cancellations occur in a MIMO feedback
loop, then the internal stability of the nominal loop is ensured by demanding that
So(s) is stable.

Consider now the function Fo(s) defined as

Fo(s) = det(I+Go(s)C(s)) =
m∏
i=1

(1 + λi(s)) (20.5.15)

where λi(s), i = 1, 2, . . . ,m, are the eigenvalues of Go(s)C(s). The polar plots of
λi(jω), i = 1, 2, . . . ,m on the complex plane are known as characteristic loci.

Comparing (20.5.15) and (20.4.5) we see that So(s) is stable if and only if all
zeros of Fo(s) lie strictly inside the LHP.

If the Nyquist contour Cs = Ci∪Cr shown in Figure ( 5.5 on page 139) is chosen,
then we have the following theorem, which has been adapted from the Nyquist
Theorem 5.1 on page 139.

Theorem 20.1. If a proper open loop transfer function Go(s)C(s) has P poles in
the open RHP, then the closed loop has Z poles in the open RHP if and only if
the polar plot which describes the combination of all characteristic loci (along the
modified Nyquist path), encircles the point (−1, 0) clockwise N=Z-P times.

Proof

We previously observed that since Fo(s) is proper, then Cr in s maps into one point
in Fo , which means that we are only concerned with the mapping of the imaginary
axis Ci. On this curve

arg〈Fo(jω)〉 =
m∑
i=1

arg〈(1 + λi(jω))〉 (20.5.16)

Thus, any change in the angle of Fo(jω) results from the combination of phase
changes in the terms 1+ λi(jω). Hence, encirclements of the origin in the complex
plane Fo can be computed from the encirclements of (−1; 0) by the combination of
the characteristic loci plots.

The relationship between the number of encirclements and the RHP poles and
zeros of Fo(s) follows the same construction as in Chapter 5.

✷✷✷

Using the above result for design lies outside the scope of this text. The reader
is directed to the references at the end of the chapter.
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20.6 Steady State Response for Step Inputs

Steady state responses also share much in common with the SISO case. Here how-
ever, we have vector inputs and outputs. Thus we will consider step inputs coming
from particular directions; i.e. applied to various considerations of inputs in the
input vectors. This is achieved by defining

R(s) = Kr
1
s
; Di(s) = Kdi

1
s
; Do(s) = Kdo

1
s

(20.6.1)

where Kr ∈ Rm, Kdi ∈ Rm and Kdo ∈ Rm are constant vectors.
It follows that, provided the loop is stable, then all signals in the loop will

reach constant values at steady state. These values can be computed from (20.4.2)-
(20.4.4), using the final value theorem, to yield

lim
t→∞ y(t) = To(0)Kr + So(0)Kdo + Sio(0)Kdi (20.6.2)

lim
t→∞u(t) = Suo(0)Kr − Suo(0)Kdo − Suo(0)Go(0)Kdi (20.6.3)

lim
t→∞ e(t) = So(0)Kr − So(0)Kdo − Sio(0)Kdi (20.6.4)

It is also possible to examine the circumstances that lead to zero steady state
errors. By way of illustration, we have the following result for the case of step
reference signals:

Lemma 20.4. Consider a stable MIMO feedback loop as in Figure 20.3 on page 604.
Assume that the reference R(s) is a vector of the form shown in equation (20.6.1).
The steady state error in the ith channel, ei(∞), is zero if the ith row of So(0)
is zero. Under these conditions, the ith row of To(0) is the elementary vector
ei = [0 . . . 0 1 0 . . . 0]T

Proof

Consider a reference vector as in (20.6.1). Then the steady state error ei(∞) sat-
isfies

ei(∞) = [S(0)]i∗Kr = 0 (20.6.5)

where [So(0)]i∗ is the ith row of So(0). However since ei(∞) = 0 for every constant
vector Kr, then (20.6.5) is satisfied only if [S(0)]i∗ has all its elements equal to zero,
i.e. So looses rank at s = 0. This is exactly the definition of a zero in a MIMO
system, as explained in section §??.

The property of the ith row of To(0) is a direct consequence of the identity
So(s) +To(s) = I, and the property of the ith row of So(0).

✷✷✷
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Analogous results hold for the disturbance inputs. We leave the reader to es-
tablish the corresponding conditions.

20.7 Frequency Domain Analysis

We found in the SISO case, that the frequency domain gave valuable insights into
the response of a closed loop to various inputs. This is also true in the MIMO case.
However, to apply these tools, we need to extend the notion of frequency domain
gain to the multivariable case. This is the subject of the next subsection.

20.7.1 Principal gains and principal directions

Consider a MIMO system with m inputs and m outputs, having an m×m matrix
transfer function G(s), i.e.

Y (s) = G(s)U(s) (20.7.1)

We obtain the corresponding frequency response, by setting s = jω. This leads
to the question : How can one define the gain of a MIMO system in the frequency
domain? To answer this question we follow the same idea used to describe the
gain in SISO systems, where we used the quotient between the absolute value of
the (scalar) plant output |Y (jω)| and the absolute value of the (scalar) plant input
|U(jω)|. For the MIMO case, this definition of gain is inadequate because we have to
compare a vector of outputs with a vector of inputs. The resolution of this difficulty
is to use vector norms instead of absolute values. Any suitable norm could be used.
We will use ||r|| to denote the norm of the vector v. For example, we could use the
Euclidean norm defined as follows

||v|| =
√

|v1|2 + |v2|2 + . . . |vn|2 =
√
vHv (20.7.2)

where vH denotes conjugate transpose.
Furthermore, we recognize that in the MIMO case we have the problem of di-

rectionality, i.e. the magnitude of the output depends, not only on the magnitude
of the input (as in the scalar case), but also on the relative magnitude of the input
components. For the moment, we fix the frequency, ω and note that for fixed ω,
the matrix transfer function is simply a complex matrix G.

A possible way to define the MIMO system gain at frequency ω is then to choose
a norm for the matrix G which considers the maximizing direction associated with
the input for U . Thus we define

||G|| = sup
||U||�=0

||GU ||
||U || (20.7.3)
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We call ||G|| the induced norm on G corresponding to the vector norm ||U ||.
For example, when the vector norm is chosen to be the Euclidean norm, i.e.

||x|| =
√
xHx (20.7.4)

then we have the induced spectral norm for G defined by

||G|| = sup
||U||�=0

||GU ||
||U || = sup

||U||�=0

√
UHGHGU

UHU
(20.7.5)

Actually, the above notion of induced norm is closely connected to the notion
of “singular values”. To show this connection, we recall the definition of singular
values of an m × l complex matrix Γ. The set of singular values of Γ is a set of
cardinality k = min(l,m) defined by

(σ1, σ2, . . . , σk) =



√
eigenvalues of ΓHΓ if m < l√
eigenvalues of ΓΓH if m ≥ l

(20.7.6)

We note that the singular values are real positive values since ΓHΓ and ΓΓH

are Hermitian matrices. We recall that Ω(jω) is a Hermitian matrix if ΩH(jω)
�
=

ΩT(−jω) = Ω(jω). It is customary to order the singular values in the form

σmax = σ1 ≥ σ2 ≥ σ3 . . . ≥ σk = σmin (20.7.7)

When we need to make explicit the connection between a matrix Γ and its
singular values, we will denote them as σi(Γ), for i = 1, 2, . . . , k.

Another result of interest is that, if λmax and λmin are the maximum and
minimum eigenvalues of a Hermitian matrix Λ, respectively, then

λmax = sup
||x||�=0

xHΛx
||x||2 ; λmin = inf

||x||�=0

xHΛx
||x||2 (20.7.8)

We next apply these ideas to ||G|| as defined in (20.7.5). Taking Λ =GHG, we
have that

||G|| = sup
||U||�=0

√
UHGHGU

UHU
=
√
λmax{GHG} = σmax (20.7.9)
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where σ2
max is the maximum eigenvalue of GHG. The quantity σmax is the max-

imum singular value of G. Thus the induced spectral norm of G is the maximum
singular value of G. Some properties of singular values, which are of interest in
MIMO analysis and design, are summarized below. Consider two m×m matrices
Ω and Λ and a m×1 vector x. Denote by λ1(Ω), λ2(Ω), . . . , λm(Ω) the eigenvalues
of Ω. Then, the following properties apply to their singular values.

sv1 σ(Ω) = σmax(Ω) = σ1(Ω) = max
|x|∈R

||Ωx||
||x|| and

σ(Λ) = σmax(Λ) = σ1(Λ) = max
|x|∈R

||Λx||
||x|| .

sv2 σ(Ω) = σmin(Ω) = σm(Ω) = min
|x|∈R

||Ωx||
||x|| and

σ(Λ) = σmin(Λ) = σm(Λ) = min
|x|∈R

||Λx||
||x|| .

sv3 σ(Ω) ≤ |λi(Ω)| ≤ σ(Ω) , for i = 1, 2, . . . ,m.

sv4 If Ω is non singular, then σ(Ω) = [σ(Ω−1)]−1 and σ(Ω) = [σ(Ω−1)]−1

sv5 For any scalar α, σi(αΩ) = |α|σi(Ω), for i = 1, 2, . . . ,m.

sv6 σ(Ω+Λ) ≤ σ(Ω) + σ(Λ).

sv7 σ(ΩΛ) ≤ σ(Ω)σ(Λ).

sv8 |σ(Ω)− σ(Λ)| ≤ σ(Ω+Λ) ≤ σ(Ω) + σ(Λ).

sv9 max
i,k

[Ω]ik ≤ σ(Ω) ≤ m×max
i,k

[Ω]ik

sv10 If Ω = I, the identity matrix, then σ(Ω) = σ(Ω) = 1.

Some of the above properties result from the fact that the maximum singular
value is a norm of the matrix, and others originate from the fact that singular values
are the square root of the eigenvalues of a matrix.

Returning to the frequency domain description of a system G, the singular
values of G become (real) functions of ω and they are known as the principal gains .
An important observation is that singular values and eigenvalues of matrix transfer
functions are not rational functions of s (or ω, in the frequency response case).

An important consequence of the above definitions is that

σ(G(jω)) ≤ ||G(jω)U(jω)||
||U(jω)|| ≤ σ(G(jω)) ∀ω ∈ R (20.7.10)

This implies that the minimum and maximum principal gains provide lower and
upper bounds, respectively, for the magnitude of the gain for every input.



Section 20.7. Frequency Domain Analysis 613

Assume now that, when ω = ωi, we choose U(s) such that Ui
�
= U(jωi) is an

eigenvector of GH(jωi)G(jωi), i.e.

GH(jωi)G(jωi)Ui = σ2
iUi (20.7.11)

We then have that

||Y || = σi||Ui|| (20.7.12)

then Ui is known as the principal direction associated with the singular value σi.
The norm defined in (20.7.5) is a point-wise in frequency norm. In other words,

it is a norm which depends on ω.

20.7.2 Tracking

We next consider the frequency domain conditions necessary to give good tracking
of reference signals. We recall that E(s) = So(s)R(s). We can thus obtain a
combined measure of the magnitude of the errors in all channels, by considering the
Euclidean norm of E(jω). Hence consider

||E(jω)||2 = ||So(jω)R(jω)||2
||R(jω)||2 ||R(jω)||2 ≤ σ(So(jω))||R(jω)||2 (20.7.13)

We then see that small errors are guaranteed if σ(So(jω)) is small in the fre-
quency band where ||R(jω)||2 is significant. Note that, since So(s) + To(s) = I,
then

σ(So(jω)) � 1 ⇐⇒ σ(To(jω)) ≈ σ(To(jω)) ≈ 1 (20.7.14)

We can go further, by appropriate use of the singular value properties presented
in the previous subsection. Consider, for example, property sv4 on page 612, then

σ(So(jω)) = σ
(
[I+Go(jω)Co(jω)]−1

)
= (σ(I+Go(jω)Co(jω)))−1 (20.7.15)

and using properties sv8 and sv10 we have that

(σ(I+Go(jω)Co(jω)))−1 ≤ |σ(Go(jω)Co(jω))− 1|−1 (20.7.16)

Thus, we see that small errors in all channels are guaranteed if σ(Go(jω)Co(jω))
is made as large as possible over the frequency band where ||R(jω)||2 is significant.
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Remark 20.5. A interesting connection can be established with the steady state
analysis carried out in section §20.6. There we stated that zero tracking errors at
d.c. would be ensured if So(0) = 0. This implies that

σ(So(0)) = σ(So(0)) = 0; and σ(Go(0)C(0)) = σ(Go(0)C(0)) = ∞
(20.7.17)

✷✷✷

We next turn our attention to the cost of good tracking in terms of the controller
output energy.

We recall, from (20.4.8) and (20.4.3) that U(s) = [Go(s)]−1To(s)R(s). Then

||U(jω)||2 ≤ σ([Go(jω)]−1To(jω))||R(jω)||2 (20.7.18)

Using properties sv4 and sv7 (see page 612), the above equation can be expressed
as

||U(jω)||2 ≤ σ(To(jω))
σ(Go(jω))

||R(jω)||2 (20.7.19)

Thus, good tracking, i.e. σ(To(jω)) ≈ 1 in a frequency band where σ(Go(jω)) �
1 might yield large control signals. Conversely, if a conservative design approach
is followed, such that σ(To(jω)) and σ(Go(jω)) do not differ significantly over the
reference frequency band, then one can expect no excessive control effort.

20.7.3 Disturbance compensation

We next consider disturbance rejection. For the sake of illustration we will only
consider the input disturbance case. If we examine equation (20.4.4) we conclude
that compensation of output disturbances is similar to the tracking performance
problem, since the reference frequency band and the output disturbance frequency
band are not disjoint. The same applies to the input disturbance frequency band,
where the relevant transfer function is Sio(s) instead of So(s).

For the input disturbance case, we have that

||E||2 ≤ σ(So(jω)Go(jω))||Di||2 (20.7.20)

And, on applying property sv7 on page 612, the above equation can be rewritten
as

||E||2 ≤ σ(So(jω))σ(Go(jω))||Di||2 (20.7.21)
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We can now use the results of our analysis for the tracking case, with a small
twist.

Good input disturbance compensation can be achieved if σ(Go(jω)Co(jω)) � 1
over the frequency band where σ(Go(jω))||Di||2 is significant. Comparison with the
tracking case shows that input disturbance rejection is normally less demanding,
since σ(Go(jω)) is usually low pass and hence, Go itself will provide preliminary
attenuation of the disturbance.

20.7.4 Measurement noise rejection

The effect of measurement noise on MIMO loop performance can also be quantified
using singular values, as shown below. From (20.4.2) we have that for measurement
noise

||Y ||2 ≤ σ(To(jω))||Dm||2 (20.7.22)

Thus, good noise rejection is achieved if σ(To(jω)) � 1 over the frequency band
where the noise is significant. This is equivalent to demanding that σ(So(jω)) ≈ 1.
Since measurement noise is usually significant in a frequency band above those of
the reference and disturbances, this requirement sets an effective limit to the closed
loop bandwidth (as measured by σ(To(jω))).

20.7.5 Directionality in sensitivity analysis

The preceding analysis produced upper and lower bounds which can be used as
indicators of loop performance. However, the analysis presented to date has not
emphasized one the most significant features on MIMO systems, namely that of
directionality, i.e. the proportion in which every channel component appears in a
signal vector, such as references, disturbances and so on. To appreciate how this is
connected to the previous analysis we again consider the tracking problem.

Assume that the references for all loops have energy concentrated at a single
frequency ωr. Then, after the transient response has died out, the error vector (in
phasor form) can be computed from

E(jωr) = So(jωr)R(jωr) (20.7.23)

where R(jωr) is the reference vector (in phasor form). Assume now that R(jωr)
coincides with the principal direction (see section §20.7.1) associated with the min-
imum singular value of So(jωr), then

||E(jωr)||2 = σ(So(jωr))||R(jωr)||2 (20.7.24)

Comparing this with the result in (20.7.13) we see that, if the minimum and
maximum singular values of So(jωr) differ significantly, then the upper bound in
(20.7.13) will be a loose bound for the actual result.
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This brief discussion highlights the importance of directionality in MIMO prob-
lems. This will be a recurring theme in the sequel.

To illustrate the above main issues we consider the following example.

Example 20.6. In a MIMO control loop the complementary sensitivity is given by

To(s) =




9
s2 + 5s+ 9

−s
s2 + 5s+ 9

s

s2 + 5s+ 9
3(s+ 3)

s2 + 5s+ 9


 (20.7.25)

The loop has output disturbances given by

do(t) =
[
K1 sin(ωdt+ α1) K2 sin(ωdt+ α2)

]T (20.7.26)

Determine the frequency ωd, the ratio K1/K2 and the phase difference α1 − α2

which maximize the Euclidean norm of the stationary error, ||E||2.

Solution

In steady state, the error is a vector of sine waves with frequency ωd. We then apply
phasor analysis. The phasor representation of the output disturbance is

Do =
[
K1e

jα1 K2e
jα2
]T (20.7.27)

We see from (20.4.4) that the error due to output disturbances is the negative of
that for a reference signal. Then, from equation (20.7.13), we have that, for every
ratio K1/K2 such that ‖Do‖ = 1, the following holds

||E(jωd)||2 = max
ω∈R

||E(jω)||2 ≤ max
ω∈R

σ(So(jω)) = ||So||∞ (20.7.28)

The upper bound in (20.7.28) is reached precisely when the direction of the dis-
turbance phasor coincides with that of the principal direction associated to the max-
imum singular value of So(jωd) (see section §20.7.1).

We first obtain So(s), by applying the identity To(s) + So(s) = I, which leads
to

So(s) =




s(s+ 5)
s2 + 5s+ 9

s

s2 + 5s+ 9

−s
s2 + 5s+ 9

s(s+ 2)
s2 + 5s+ 9


 (20.7.29)
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Figure 20.4. Singular values of the sensitivity function

We can now compute the value of ω at which σ(So(jω)) is maximal. The singular
values of So(jω) are shown in Figure 20.4.

From here, we can see that σ(So(jω)) is maximum at ω ≈ 4.1[rad/s]. Thus the
maximizing disturbance frequency is ωd = 4.1[rad/s].

We then recall that the singular values of a matrix Ω are the eigenvalues ΩHΩ.
Thus, to compute the principal directions of So(jωd), we have to compute the eigen-
values of So(jωd)SoT (−jωd) (MATLAB command svd can be used).

The principal directions associated with the two singular values, σ(So(jωd)) and
σ(So(jωd)), are respectively given by

u1 =
[
0.884 + j0.322 −0.219 + j0.260

]T (20.7.30)

u2 =
[−0.340 + j0.003 −0.315 + j0.886

]T (20.7.31)

We are interested only in u1, which can be expressed as

u1 =
[
0.944∠0.35 0.340∠2.27

]T (20.7.32)

Thus the maximizing solution, i.e. the worst case, happens when

K1

K2
=

0.944
0.34

= 2.774 and α1 − α2 = 0.35− 2.27[rad] = −1.92[rad]
(20.7.33)

✷✷✷
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20.7.6 Directionality in connection with pole-zero cancellations

Directional issues also show up in connection with pole-zero cancellations and loss
of controllability and/or observability. Consider, for example, the set-up used in
section §17.9 where two cascaded minimal systems (A1,B1,C1) and (A2,B2,C2)
were studied. Here we assume u ∈ Rm ; u2 = y1 ∈ Rp ; y ∈ Rr with B2 full column
rank and C1 full row rank.

The composite system has realization (A,B,C) where

A =
[
A1 0
B2C1 A2

]
;B =

[
B1

0

]
(20.7.34)

C = [0 C2] = 0 (20.7.35)

We know from Chapter 3 that pole-zero cancellations play a role in loss of
observability or controllability. However, in the MIMO case, directions are also
important as shown in the following lemma.

Lemma 20.5. The composite system looses observability if and only if β is a pole
of system 1 and a zero of system 2 such that there exists an x1 ∈ null space of
(βI−A1) and C1x1 ∈ null space of C2 (βI−A2)

−1 B2.

Proof

If: Immediate from the PBH test for (20.7.34), (20.7.35)
Only If: The only values of λ satisfying

(A− λI)x = 0 (20.7.36)

are eigenvalues of A1 or A2. We consider the two cases separately.

(a) λ an eigenvalue of A1 ⇒ corresponding eigenvector is [xT1 xT2 ]T where x1 is
eigenvector of A1 and x2 = (λI−A2)

−1 B2C1x1. Now C1x1 �= 0 by virtue
of the minimality of (A1,B1,C1). Hence C2x2 is zero (as required by loss of
observability for the composite system) only if C1x1 �= 0 lies in the null space
of C2 (λI−A2)

−1 B2. However, this implies λ is a zero of system 2 and that
C1x1 is a zero direction.

(b) λ is an eigenvalue of A2 ⇒ corresponding eigenvector is [0 xT2 ]
T where x2

is eigenvector of A2. Then lack of observability for the composite system
requires C2x2 = 0. However, this violates the minimality of system 2. Hence
condition (a) is the only possibility.

✷✷✷
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The corresponding result for controllability is as follows

Lemma 20.6. The composite system looses controllability if and only if α is a zero
of system 1 and a pole of system 2 such that there exists xT2 ∈ left null space of
(αI−A2) and xT2 B2 ∈ left null space of C1 (αI−A1)

−1 B1.

Proof

The steps to show this parallel those for the observability case presented above.
✷✷✷

The pole-zero cancellation issues addressed by the two lemmas above are illus-
trated in the following example.

Example 20.7. Consider two systems, S1 and S2 with transfer functions

G1(s) =




2s+ 4
(s+ 1)(s+ 3)

−2
(s+ 1)(s+ 3)

−3s− 1
(s+ 1)(s+ 3)

−5s− 7
(s+ 1)(s+ 3)


 (20.7.37)

G2(s) =




4
(s+ 1)(s+ 2)

−1
s+ 1

2
s+ 1

−1
2(s+ 1)(s+ 2)


 (20.7.38)

We first build a state space representation for the system S1 using MATLAB
command ss. We thus obtain the 4-tuple (A1,B1,C1,0).

It is then straightforward (use MATLAB command eig) to compute this system
eigenvalues, which are located at −1 and −3, with eigenvectors w1 and w2 given by

wT
1 = [0.8552 0.5184]; wT

2 = [−0.5184 0.8552] (20.7.39)

Also this system has no zeros.
On the other hand, system S2 has three poles, located at −1, −2 and −2 and one

zero, located at −3. This zero has a left direction µ and a right direction h, which
are given by

µT = [1 2]; hT = [1 − 4] (20.7.40)

We observe that one pole of S1 coincides with one zero of S2. To examine the
consequences of this coincidence we consider two cases of series connection:

S1 output is the input of S2

To investigate a possible loss of observability we have to compute C1w2 and compare
it with h. We fist obtain C1w2 = [−1.414 5.657]T , from where we see that this
vector is linearly dependent with h.

Thus in this connection there will be an unobservable mode, e−3t.
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S2 output is the input of S1

To investigate a possible loss of controllability we have to compute wT
2 B1 and com-

pare it with µ. We have that wT
2 B1 = [−0.707 − 0.707]. Thus, this vector is

linearly independent of µ and hence no loss of controllability occurs in this connec-
tion.

20.8 Robustness Issues

Finally, we extend the robustness results of section §5.9 for SISO to the MIMO
case. As far as the SISO case, MIMO models will usually only be approximate
descriptions of any real system. Thus the performance of the nominal control loop
may significantly differ from the true or achieved performance. To gain some insight
into this problem we consider linear modeling errors, as we did for SISO systems.
However, we now have the additional difficulty of dealing with matrices, for which
the products do not commute. We will thus consider two equivalent forms for
multiplicative modeling errors (MME), namely

G(s) = (I+G∆l(s))Go(s) = Go(s)(I+G∆r(s)) (20.8.1)

where G∆l(s) and G∆r(s) are the left and right MME matrices respectively. We
observe from (20.8.1) that these matrices are related by

G∆l(s) =Go(s)G∆r(s)[Go(s)]−1; G∆r(s) = [Go(s)]−1G∆l(s)Go(s)
(20.8.2)

This equivalence allows us to derive expressions using either one of the descrip-
tions. For simplicity, we will choose the left MME matrix and will examine the two
main sensitivities only, i.e. the sensitivity and the complementary sensitivity.

We can then derive expressions for the achievable sensitivities in (20.4.10)-
(20.4.11) as functions of the modeling error. Using (20.8.1) we obtain

S(s) = [I+G(s)C(s)]−1 = [I+Go(s)C(s) +G∆l(s)Go(s)C(s)]−1

= [I+Go(s)C(s)]−1[I+G∆l(s)To(s)]−1 = So(s)[I+G∆l(s)To(s)]−1

(20.8.3)

T(s) = G(s)C(s)[I +G(s)C(s)]−1 = [I+G∆l(s)]To(s)[I+G∆l(s)To(s)]−1

(20.8.4)

Note the similarity between the above expressions and those for the SISO case,
see equations (5.9.15)-(5.9.19). We can also use these expressions to obtain robust-
ness results.

For example, the following robust stability theorem mirrors Theorem 5.3 on
page 144.
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Theorem 20.2. Consider a plant with nominal and true transfer function Go(s)
and G(s), respectively. Assume that they are related by (20.8.1). Also assume
that a controller C(s) achieves nominal internal stability and that Go(s)C(s) and
G(s)C(s) have the same number, P , of unstable poles. Then a sufficient condition
for stability of the feedback loop obtained by applying the controller to the true plant
is

σ(G∆l(jω)To(jω)) < 1 ∀ω ∈ R (20.8.5)

Proof

Define the function

F (s) = det(I+G(s)C(s)) (20.8.6)

We then have, from Theorem 20.1 on page 608, that closed loop stability for the
true plant requires that arg〈F (jω)〉 changes by −2Pπ[rad] as ω goes from −∞ to
∞.

Furthermore, on using (20.8.1) and (20.5.15), we have that F (s) can also be
expressed as

F (s) = det(I+Go(s)C(s)) det(I +G∆l(s)To(s)) = Fo(s) det(I +G∆l(s)To(s))
(20.8.7)

Thus

arg〈F (jω)〉 = arg〈Fo(jω)〉+ arg〈det(I +G∆l(jω)To(jω))〉 (20.8.8)

Let us denote the maximum (in magnitude) eigenvalue of G∆l(jω)To(jω) by
|λ|max. Then, from property sv3 (see page 612), we have that

σ(G∆l(jω)To(jω)) < 1 =⇒ |λ|max < 1 (20.8.9)

This implies that the change in arg〈det(I +G∆l(jω)To(jω))〉, as ω goes from
−∞ to ∞, is zero. The result follows.

✷✷✷

An example which illustrates the quantification of these errors is shown next.

Example 20.8. A MIMO plant has nominal and true models given by Go(s) and
G(s) respectively, where
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Go(s) =




2
s+ 1

1
(s+ 1)(s+ 2)

1
(s+ 1)(s+ 2)

2
s+ 2


 (20.8.10)

G(s) =




20
(s+ 1)(s+ 10)

1
(s+ 1)(s+ 2)

1
(s+ 1)(s+ 2)

40
(s+ 2)(s+ 20)


 (20.8.11)

Find the left MME matrix G∆l(s) and plot its singular values.

Solution

From equation (20.8.1) we see that G∆l(s) can be computed from

G∆l(s) = G(s)[Go(s)]−1 − I (20.8.12)

This yields

G∆l(s) =




−4s3 − 12s2 − 8s
4s3 + 52s2 + 127s+ 70

2s2 + 4s
4s3 + 52s2 + 127s+ 70

2s2 + 2s
4s3 + 92s2 + 247s+ 140

−4s3 − 12s2 + 8s
4s3 + 92s2 + 247s+ 140


 (20.8.13)

Note that for s = 0 all matrix entries are zero. This is consistent with the nature
of the error, since G(0) = Go(0).

The singular values of G∆l(s) are computed using MATLAB commands, leading
to the plots shown in Figure 20.5.

20.9 Summary

• In previous chapters we have considered the problem of controlling a single
output by manipulating a single input (SISO).

• Many control problems, however, require that multiple outputs be controlled
simultaneously; and to do so, multiple inputs must be manipulated -usually
subtly orchestrated (MIMO):

◦ Aircraft autopilot example: speed, altitude, pitch, roll and yaw angles
must be maintained and; throttle, several rudders and flaps are available
as control variables.
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Figure 20.5. Singular values of MME matrix

◦ Chemical process example: yield, and throughput must be regulated
and; thermal energy, valve actuators and various utilities are available
as control variables.

• The key difficulty in achieving the necessary orchestration of input is due to
multivariable interactions, also known as coupling.

• From an input-output point of view, two fundamental phenomena arise from
coupling (see Figure 20.6).

a) a single input affects several outputs

b) several inputs affect a single output

a) b)

u1 y1

y2

y3

u1

u2

u3

y1

Figure 20.6. Two phenomena associated with multivariable interactions
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• Multivariable interactions in the form shown in Figure 20.6 add substantial
complexity to MIMO control.

• There are several ways to quantify interactions in multivariable systems, in-
cluding their structure and their strength.

◦ Interactions can have a completely general structure (every input poten-
tially affects every output) or display a particular patterns such as trian-
gular or dominant diagonal ; they can also display frequency-dependent
patterns such as being statically decoupled or band-decoupled.

◦ The lower the strength of interaction, the more a system behaves like a set
of independent systems which can be analyzed and controlled separately.

◦ Weak coupling can occur due to the nature of the interacting dynamics,
or due to a separation in frequency range or time scale.

◦ The stronger the interaction, the more it becomes important to view the
multiple-input multiple-output system and its interactions as a whole.

◦ Compared to the SISO techniques discussed so far, viewing the MIMO
systems and its interactions as whole requires generalized synthesis and
design techniques and insight. These are the topics of the following two
chapters.

• Both state space and transfer function models can be generalized to MIMO
models.

• The MIMO transfer function matrix can be obtained from a state space model
by G(s) = C(sI−A)−1B+D.

• In general, if the model has m inputs, u ∈ Rm, and l outputs, y ∈ Rl, then:

◦ the transfer function matrix consists of an l×m matrix of SISO transfer
functions.

◦ for an n-dimensional state vector, x ∈ Rn, the state space model matrices
have dimensions A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

• Some MIMO model properties and analysis results generalize quite straight-
forwardly from SISO theory:

◦ similarity transformations among state space realizations
◦ observability and controllability
◦ poles

• Other MIMO properties, usually due to interactions or the fact that matrices
do not commute, are more subtle or complex than their SISO counterpart,
e.g.

◦ zeros
◦ left and right matrix fractions.
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20.11 Problems for the Reader

Problem 20.1. Consider the following MIMO transfer functions




−2s+ 1
(s+ 1)2

2
(s+ 4)(s+ 2)

s+ 3
(s+ 4)(s+ 2)

2
s+ 4


 ;




2
−s+ 1

s+ 3
(s+ 1)(s+ 2)

s+ 3
(s+ 1)(s+ 2)2

2
s+ 2




(20.11.1)

20.1.1 For each case build the Smith-McMillan form.

20.1.2 Compute the poles and zeros.

20.1.3 Compute the left and right directions associated with each zero.

Problem 20.2. For each of the systems in Problem 20.1:

20.2.1 Build a state space model.

20.2.2 Build a left and a right MFD.

Problem 20.3. Consider a strictly proper linear system having a state space
model given by

A =
[−3 −1
1 −2

]
; B =

[
0 1
1 2

]
; C =

[
0 1
0 1

]
(20.11.2)

20.3.1 Is this system minimum phase?

20.3.2 Build a left and a right MFD.

20.3.3 Compute and plot the singular values of the transfer function.

Problem 20.4. A plant having a stable and minimum phase nominal model
Go(s) is controlled using a one d.o.f. feedback loop. The resulting complementary
sensitivity, To(s), is given by
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To(s) =




4
s4 + 3s+ 4

αs(s+ 5)
(s2 + 3s+ 4)(s2 + 4s+ 9)

0
9

s2 + 4s+ 9


 (20.11.3)

Assume that α = 1.

20.4.1 Compute the closed loop zeros, if any.

20.4.2 By inspection we can see that To(s) is stable, but, is the nominal closed
loop internally stable?

20.4.3 Investigate the nature of the interaction by using step output disturbances
in both channels (at different times).

Problem 20.5. For the same plant as in Problem 20.4

20.5.1 Compute its singular values for α = 0.1, α = 0.5 and α = 5.

20.5.2 For each case, compare the results with the magnitude of the frequency re-
sponse of the diagonal terms.

Problem 20.6. In a feedback control loop , we have that the open loop transfer
function is given by

Go(s)C(s) =




s+ 2
(s+ 4)s

0.5
s(s+ 2)

0.5
s(s+ 2)

2(s+ 3)
s(s+ 4)(s+ 2)


 (20.11.4)

20.6.1 Is the closed loop stable?

20.6.2 Compute and plot the singular values of To(s)

Problem 20.7. Consider a 2×2 MIMO system, with nominal model Go(s) given
by

Go(s) =




120
(s+ 10)(s+ 12)

G12(s)

G21(s)
100

s2 + 13s+ 100


 (20.11.5)

Determine necessary conditions for G12(s) and G21(s) such that
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20.7.1 The system is significantly decoupled at all frequencies.

20.7.2 The system is completely decoupled at D.C. and at frequency ω = 3[rad/s].

20.7.3 The system is weakly coupled in the frequency band [0 , 10] [rad/s]

For each case, illustrate your answer with suitable values for G12(s) and G21(s).

Problem 20.8. Consider a discrete-time system transfer function Gq(z) given by

Gq(z) =
0.01

z3(z − 0.4)2(z − 0.8)2

[
3z(z − 0.4) 20(z − 0.4)2(z − 0.8)

60z2(z − 0.4)(z − 0.8)2 12(z − 0.4)(z − 0.8)

]
(20.11.6)

20.8.1 Analyze the type of coupling in this system in different frequency bands.

20.8.2 Find the Smith-McMillan form and compute the system poles and zeros.

20.8.3 Determine the system singular values.

Problem 20.9. Consider the one d.o.f control of a 2× 2 MIMO stable plant.
The controller transfer function matrix C(s) is given by

C(s) =
[
C11(s) C12(s)
C21(s) C22(s)

]
(20.11.7)

It is required to achieve zero steady state error for constant references and input
disturbances in both channels. Determine which of the four controller entries should
have integral action to meet this design specification.

Problem 20.10. Consider a MIMO plant having a transfer function given by

Go(s) =
1

(s+ 1)(s+ 2)2


 1 s+ 2 s+ 1
0.25(s+ 1)2 −s+ 2 0.5(s+ 1)(s+ 2)
−0.5(s+ 2)2 0 4(s+ 1)


 (20.11.8)

Assume that this plant has to be digitally controlled through zero order sample and
hold devices in all input channels. The sampling period is chosen as ∆ = 0.5[s].

Find the discrete time transfer function Hq(z)
�
= [GoGh0]q(z). (Hint: use

MATLAB command c2dm on the state space model for the plant.)
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Problem 20.11. Consider a MIMO plant having a transfer function given by

Go(s) =
1

(s+ 1)(s+ 2)

[
2 0.25e−s(s+ 1)

0.5(s+ 2) 1

]
(20.11.9)

Can this system be stabilized using a diagonal controller with transfer function
C(s) = kI2, for k ∈ R ? (Hint: use characteristic loci.)

Problem 20.12. Consider a discrete time control loop where the sensitivity is
given by

Soq(z) =
z − 1

(z − 0.4)(z − 0.5)

[
z z − 0.6

z − 0.4 z + 0.2

]
(20.11.10)

Assume that both references are sinusoidal signals. Find the worst direction and
frequency of the reference vector (see solved problem 20.6).



Chapter 21

EXPLOITING SISO
TECHNIQUES IN MIMO

CONTROL

21.1 Preview

In the case of SISO control, we found that one could use a wide variety of synthesis
methods. Some of these directly carry over to the MIMO case. However, there are
several complexities which arise in MIMO situations. For this reason, it is often
desirable to use synthesis procedures that are automated in some sense. This will
be the subject of the next few chapters. However, before we delve into the full
complexity of MIMO design, it is appropriate that we pause to see when, if ever,
SISO techniques can be directly applied to MIMO problems. Thus, in this chapter
we will see how far we can take SISO design into the MIMO case. In particular, we
will study:

• decentralized control as a mechanism for directly exploiting SISO methods in
a MIMO setting

• robustness issues associated with decentralized control

21.2 Completely Decentralized Control

Before we consider a fully interacting multivariable design, it is often useful to check
if a completely decentralized design can achieve the desired performance objectives.
When applicable, the advantage of a completely decentralized controller, compared
to a full MIMO controller, is that it is simpler to understand, easier to maintain
and can be enhanced in a straightforward fashion (in the case of a plant upgrade).

The key simplifying assumption in completely decentralized control is that in-
teractions can be treated as a form of disturbance. For example, if the first output,
y1(t), of a m×m MIMO plant can be described (in Laplace transform form) as

631
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Y1(s) = G11(s)U1(s) +
m∑
i=2

G1i(s)Ui(s) (21.2.1)

then the contribution of each input, other than u1, could be considered as an output
disturbance, G1i(s)Ui(s), for the first SISO loop. This approach is, of course, strictly
incorrect, since the essence of true disturbances is that they are independent inputs.
However, under certain conditions (depending on magnitude and frequency content)
this viewpoint can lead to acceptable results. We note that the idea of treating a
MIMO plant as a set SISO plants can be refined to structure the full multivariable
system into sets of smaller multivariable systems that show little interaction among
each other. However, for simplicity in the sequel we will simply refer to decentralized
control as meaning complete decentralized control.

Readers having previous exposure to practical control will realize that almost all
real world systems are designed based on decentralized architectures. Thus, one is
lead to ask the question: is there ever a situation in which decentralized control will
not yield a satisfactory solution? Clearly one needs an affirmative answer to this
question before one would be motivated to study any form of multivariable control.
In the author’s experience it is true that 99% of control problems can be treated
on a decentralized basis. However, the remaining 1% of problems may account for
much more than 1% of the economic return from a control system study. We will
present several real world examples later in Chapter 22 that require MIMO thinking
to get a satisfactory solution. As a textbook example of where decentralized control
can break down, consider the following MIMO example:

Example 21.1. Consider a two input, two output plants having transfer function:

Go(s) =


G

o
11(s) Go

12(s)

Go
21(s) Go

22(s)


 (21.2.2)

Go
11(s) =

2
s2 + 3s+ 2

Go
12(s) =

k12

s+ 1
(21.2.3)

Go
21(s) =

k21

s2 + 2s+ 1
Go

22(s) =
6

s2 + 5s+ 6
(21.2.4)

Let us say that k12, k21 depend on the operating point (a common situation in
practice). We consider four operating points.

Operating point 1 (k12 = k21 = 0)

Clearly there is no interaction at this operating point.
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Thus, we can safely design two SISO controllers. To be specific, say we aim for
the following complementary sensitivities:

To1(s) = To2(s) =
9

s2 + 4s+ 9
(21.2.5)

The corresponding controller transfer functions are C1(s) and C2(s), where

C1(s) =
4.5(s2 + 3s+ 2)

s(s+ 4)
; C2(s) =

1.5(s2 + 5s+ 6)
s(s+ 4)

(21.2.6)

These independent loops perform as predicted by the choice of complementary
sensitivities.

Operating point 2 (k12 = k21 = 0.1)

We leave the controller as it was for operating point 1. We apply a unit step in
the reference for output 1 at t = 1 and a unit step in the reference for output 2
at t = 10. The closed loop response is shown in Figure 21.1. These results would
probably be considered very acceptable even though the effects of coupling are now
evident in the response.
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Figure 21.1. Effects of weak interaction in control loops with SISO design

Operating point 3 (k12 = −1, k21 = 0.5)

For the same controllers and the same test as for operating point 2, we obtain the
results in Figure 21.2

We now see that a change in the reference in one loop significantly affects the
output in the other loop.
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Figure 21.2. Effects of strong interaction in control loops with SISO design

Operating point 4 (k12 = −2, k21 = −1)
Now a simulation with the same references indicates that the whole system becomes
unstable. We see that the original SISO design has become unacceptable at this
final operating point. To gain further insight into the stability problem we need to
compute the four transfer functions which model the relationship between the two
references, R1(s) and R2(s), and the two outputs, Y1(s) and Y2(s). These transfer
functions can be organized in matrix form to yield

[
Y1(s)
Y2(s)

]
= (I+Go(s)C(s))−1Go(s)C(s)

[
R1(s)
R2(s)

]
(21.2.7)

where

Go(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
; C(s) =

[
C1(s) 0
0 C2(s)

]
(21.2.8)

If we consider the case when k12 = −2 and k21 = −1, and substitute (21.2.3),
(21.2.4) and (21.2.6) in (21.2.7), we have that (I + Go(s)C(s))−1Go(s)C(s) is
given by

1
d(s)

[
9s4 + 40.5s3 + 67.5s2 − 18s− 81 −3s5 − 30s4 − 105s3 − 150s2 − 72s
−4.5s4 − 31.5s3 − 63s2 − 36s 9s4 + 40.5s3 + 67.5s2 − 18s− 81

]
(21.2.9)

where

d(s) = s6 + 10s5 + 51s4 + 134.5s3 + 164.5s2 + 18s− 81 (21.2.10)
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which is clearly unstable (actually, there is a closed loop pole at 0.5322).
We see that although independent design of the controllers guarantees stability for

the non interacting loops, when interaction appears in the plant model, instability
or unacceptable performance may arise.

The reader is encouraged to use the SIMULINK schematic in file mimo1.mdl
to explore other interaction dynamics. We see that a SISO view of this problems is
not entirely satisfactory.

✷✷✷

We see from the above example, that surprising issues can arise when MIMO
interactions are ignored.

21.3 Pairing of Inputs and Outputs

If one is to use a decentralized architecture, then one needs to pair the inputs and
outputs. In the case of an m × m plant transfer function there are m! possible
pairings. However, physical insight can often be used to suggest sensible pairings
or to eliminate pairings that have little hope of being useful.

One method that can be used to suggest pairings is a quantity known as the
Relative Gain Array (RGA). For a MIMO system with matrix transfer function
Go(s), the RGA is defined as a matrix Λ with the ijth element

λij = [Go(0)]ij [Go
−1(0)]ji (21.3.1)

where [Go(0)]ij and [Go
−1(0)]ij denote the ijth element of the plant d.c. gain

matrix and the jith element of the inverse of the d.c. gain matrix respectively.
Note that [Go(0)]ij corresponds to the d.c. gain from the ith input, ui, to the jth

output, yj , while the rest of the inputs, ul, l ∈ {1, 2, . . . , i− 1, i+1, . . . ,m} are
kept constant. Also, [Go

−1]ij is the reciprocal of the d.c. gain from the i−th input,
ui, to the j − th output, yj , while the rest of the outputs, yl, l ∈ {1, 2, . . . , j −
1, j + 1, . . . ,m} are kept constant. Thus, the parameter λij provides an indication
on how sensible it is to pair the i− th input with the j − th output.

In particular, one usually aims to pick pairings such that the diagonal entries
of Λ are large. One also tries to avoid pairings which result in negative diagonal
entries in Λ.

Clearly this measure of interaction only accounts for steady state gain. Nonethe-
less, it is an empirical observation that it works well in many cases of practical
interest.

We illustrate by a simple example:

Example 21.2. Consider again the system studied in Example 21.1 on page 632,
i.e. a MIMO system having transfer function
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Go(s) =




2
s2 + 3s+ 2

k12

s+ 1

k21

s2 + 2s+ 1
6

s2 + 5s+ 6


 (21.3.2)

The RGA is then

Λ =




1
1− k12k21

−k12k21

1− k12k21

−k12k21

1− k12k21

1
1− k12k21


 (21.3.3)

For 1 > k12 > 0, 1 > k21 > 0, the RGA suggests the pairing (u1, y1), (u2, y2).
We recall from section §20.2 that this pairing indeed worked very well for k12 =
k21 = 0.1 and quite acceptably for k12 = −1, k21 = 0.5. In the latter case, the RGA
is

Λ =
1
3

[
2 1
1 2

]
(21.3.4)

However, for k12 = −2, k21 = −1 we found in section §20.2 that the central-
ized controller based on the pairing (u1, y1), (u2, y2) was actually unstable. The
corresponding RGA in this case is

Λ =
[−1 2
2 −1

]
(21.3.5)

which indicates that we probably should have changed to the pairing (u1, y2), (u2, y1).

✷✷✷

Example 21.3 (Quadruple tank apparatus continued). Consider again the quadru-
ple tanks apparatus of Example 20.4 on page 601. We recall that this system had
approximate transfer function

G(s) =




3.7γ1

62s+ 1
3.7(1− γ2)

(23s+ 1)(62s+ 1)
4.7(1− γ1)

(30s+ 1)(90s+ 1)
4.7γ2

90s+ 1


 (21.3.6)

We also recall that choice of γ1 and γ2 could change one of the system zeros
from the left to the right half plane. The RGA for this system is

Λ =
[

λ 1− λ
1− λ λ

]
where λ =

γ1γ2

γ1γ2 − 1
(21.3.7)
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For 1 < γ1 + γ2 < 2, we recall from Example 20.4 on page 601 that the system
is minimum phase. If we take, for example, γ1 = 0.7 and γ2 = 0.6, then the RGA
is

Λ =
[
1.4 −0.4
−0.4 1.4

]
(21.3.8)

This suggests that we can pair (u1, y1) and (u2, y2).
Because the system is minimum phase, the design of a decentralized controller

is relatively easy, in this case. For example, the following decentralized controller
give the results shown in Figure 21.3.

C1(s) = 3
(
1 +

1
10s

)
; C2(s) = 2.7

(
1 +

1
20s

)
(21.3.9)
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Figure 21.3. Decentralized control of a minimum phase four tank system

For 0 < γ1+γ2 < 1, we recall from Example 20.4 on page 601 that the system is
nonminimum phase. If we take, for example, γ1 = 0.43, γ2 = 0.34, then the system
has a NMP zero at s = 0.0229, and the relative gain array becomes

Λ =
[−0.64 1.64
1.64 −0.64

]
(21.3.10)

This suggests that (y1, y2) should be commuted for the purposes of decentralized
control. This is physically reasonable given the flow patterns produced in this case.
This leads to a new RGA of

Λ =
[
1.64 −0.64
−0.64 1.64

]
(21.3.11)
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Note however that control will still be much harder than in the minimum phase
case. For example, the following decentralized controllers give the results1 shown in
Figure 21.4.

C1(s) = 0.5
(
1 +

1
30s

)
; C2(s) = 0.3

(
1 +

1
50s

)
(21.3.12)
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Figure 21.4. Decentralized control of a non-minimum phase four tank system

Comparing the results in Figures 21.3 and 21.4 we see evidence of greater inter-
action and slower responses in the non-minimum phase case of Figure 21.4.

✷✷✷

21.4 Robustness Issues in Decentralized Control

One way to carry out a decentralized control design, is to use a diagonal nominal
model. The off-diagonal terms then represent under-modeling in the terminology
of Chapter 3. Thus, say we have a model Go(s), then the nominal model for
decentralized control could be chosen as

Gd
o(s) = diag{go11, . . . , gomm(s)} (21.4.1)

and the additive model error would be

Gε(s) = Go(s)−Gd
o(s); G∆l(s) =Gε(s)[Gd

o(s)]
−1 (21.4.2)

With this as a background we can employ the robustness checks described in
section §20.8. We recall that a sufficient condition for robust stability is

1Note the different time scale in Figures 21.3 and 21.4
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σ (G∆l(jω)To(jω)) < 1 ∀ω ∈ R (21.4.3)

where σ (G∆l(jω)To(jω)) is the maximum singular value of G∆l(jω)To(jω).
We illustrate by an example.

Example 21.4. Consider again the system of Example 21.2 on page 635. In this
case

To(s) =
9

s2 + 4s+ 9

[
1 0
0 1

]
Gd

o(s) =




2
s2 + 3s+ 2

0

0
6

s2 + 5s+ 6



(21.4.4)

Gε(s) =


 0

k12

s+ 1
k21

s2 + 2s+ 1
0


 G∆l(s) =


 0

k12(s2 + 5s+ 6)
6(s+ 1)

k21(s+ 2)
2(s+ 1)

0




(21.4.5)

G∆l(s)To(s) =


 0

3k12(s2 + 5s+ 6)
2(s+ 1)(s2 + 4s+ 9)

9k21(s+ 2)
2(s+ 1)(s2 + 4s+ 9)

0


 (21.4.6)

The singular values, in this case, are simply the magnitudes of the two off-
diagonal elements. These are plotted in Figure 21.5 for normalized values k12 =
k21 = 1.

We see that a sufficient condition for robust stability of the decentralized con-
trol, with the pairing (u1, y1), (u2, y2), is that |k12| < 1 and |k21| < 1. We see that
this is conservative, but consistent with the performance results presented above.

✷✷✷

An example, which shows the interplay of RGA and robustness concepts is shown
below.

Example 21.5. Consider a MIMO system with

G(s) =




1
s+ 1

0.25
10s+ 1

(s+ 1)(s+ 2)

0.25
10s+ 1

(s+ 1)(s+ 2)
2

s+ 2


; Go(s) =




1
s+ 1

0

0
2

s+ 2




(21.4.7)
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Figure 21.5. Singular values of G∆l(jω)To(jω)

We first observe that the RGA for the nominal model Go(s) is given by

Λ =


 1.0159 −0.0159
−0.0159 1.0159


 (21.4.8)

This value of the RGA might lead to the hypothesis that a correct pairing of
inputs and outputs has been made and that the interaction is weak. Assume that we
proceed to do a decentralized design leading to a diagonal controller C(s) to achieve
a complementary sensitivity To(s), where

To(s) =
9

s2 + 4s+ 9


1 0

0 1


; C(s)=



9(s+ 1)
s(s+ 4)

0

0
9(s+ 2)
2s(s+ 4)


 (21.4.9)

However this controller, when applied to control G(s), leads to closed loop poles
located at −6.00, −2.49± j4.69, 0.23± j1.36 and −0.50, i.e. an unstable closed
loop !

The lack of robustness in this example can be traced to the fact that the required
closed loop bandwidth includes a frequency range where the off-diagonal frequency
response is significant. Thus, in this example, closed loop stability with decentral-
ized control can only be achieved if we make the closed loop slower by significantly
reducing the bandwidth of the diagonal terms in To(s).

✷✷✷
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21.5 Feedforward Action in Decentralized Control

Although it usually will not aid robust stability, the performance of decentralized
controllers is often significantly enhanced by the judicious choice of feedforward
action to reduce coupling. We refer to equation (21.2.1) and, for simplicity, we
consider only the effect of the jth loop on the ith loop. We can then apply the
feedforward ideas developed in Chapter 10 to obtain the architecture shown in
Figure 21.6.

++++
Yi(s)

Uj(s)

U ′
i(s) Ui(s)

Gii(s)

Gjiff (s)

Gij(s)

Figure 21.6. Feedforward action in decentralized control

The feedforward gain Gji
ff (s) should be chosen in such a way that the coupling

from the j − th loop to the i− th loop is compensated in a particular, problem
dependent, frequency band [0 ωff ], i.e. if

Gji
ff (jω)Gii(jω) +Gij(jω) ≈ 0 ∀ω ∈ [0 ωff ] (21.5.1)

Equation (21.5.1) can also be written as

Gji
ff (jω) ≈ −[Gii(jω)]−1Gij(jω) ∀ω ∈ [0 ωff ] (21.5.2)

from where the need to build an inverse, and its associated problems, arise again.
We illustrate by an example.

Example 21.6. Consider again the system in Example 21.4 on page 639 with
k12 = −1 and k21 = 0.5. We recall the results presented in Figure 21.2 on page 634
for this case. We see that there is little coupling from the first to the second loop,
but relatively strong coupling from the second to the first loop. This suggests feedfor-
ward from the second input to the first loop. We also choose Gji

ff (s) to completely
compensate the coupling at d.c., i.e. Gji

ff (s) is chosen to be a constant, Gji
ff (s) = α

satisfying

αG11(0) = −G12(0) =⇒ α = 1 (21.5.3)

Then the modified MIMO system becomes modeled by
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Y (s) = Go(s)
[
U1(s)
U2(s)

]
= Go(s)

[
1 1
0 1

] [
U ′

1(s)
U2(s)

]
=G′

o(s)
[
U ′

1(s)
U2(s)

]
(21.5.4)

where

G′
o(s) =




2
s2 + 3s+ 2

−s
s2 + 3s+ 2

0.5
s2 + 2s+ 1

6.5s2 + 14.5s+ 9
(s2 + 2s+ 1)(s2 + 5s+ 6)


 (21.5.5)

The RGA is now Λ = diag(1, 1) and when we redesign the decentralized con-
troller, we obtain the results presented in Figure 21.7

These results are superior to those in Figure 21.2 on page 634, where a decen-
tralized controller performance was shown for the same case.
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Figure 21.7. Performance of a MIMO decentralized control loop with interaction
feedforward

✷✷✷

Example 21.7 (Hold-up effect in reversing mill). As an industrial application
of feedforward control, we remind the reader of the example studied in section 10.8.1.
There we found that, feedforward was crucial in overcoming the hold-up effect and
hence achieving satisfactory closed loop control.

✷✷✷

The above examples indicate that a little coupling introduced in the controller
can be quite helpful. This however begs the question of how we can systematically
design coupled controllers which rigorously take account of multivariable interac-
tion. This motivates us to study the latter topic. This will be the topic of the next
chapter. Before ending this chapter, we see if there exist simple ways of converting
an inherently MIMO problem to a set of SISO problems.
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21.6 Converting MIMO Problems to SISO Problems

Many MIMO problems can be modified so that decentralized control becomes a
more viable (or attractive) option. For example, one can sometimes use a pre-
compensator to turn the resultant system into a more nearly diagonal transfer
function.

To illustrate, say the nominal plant transfer function is Go(s), then if we intro-
duce a pre-compensator P(s), then the control loop appears as in Figure 21.8.

Go(s)P(s)

C(s)

Cp(s)
+

−

Figure 21.8. Feedback control with plant precompensation

The design of Cp(s) in Figure 21.8, can be based on the equivalent plant.

H(s) = Go(s)P(s) (21.6.1)

Several comments are in order regarding this strategy:

(i) A first try at P(s) might be to approximate Go(s)−1 in some way. For
example, one might use the d.c. gain matrix Go(0)−1 as a pre-compensator
(assuming this exists). (This was the strategy used in Example 21.6.)

(ii) If dynamic pre-compensators are used then one needs to check that no unstable
pole-zero cancellations are introduced between the compensator and original
plant - see section §20.7.6.

(iii) Various measures of resultant interaction can be introduced. For example, the
following terminology is frequently employed in this context.

Dynamically decoupled

Here, every output depends on one and only one input. The transfer function matrix
H(s) is diagonal for all s. In this case, the problem reduces to separate SISO control
loops.

Band decoupled and statically decoupled systems

When the transfer function matrix H(jω) is diagonal only in a finite frequency
band, we say that the system is decoupled in that band. In particular, we will say
that a system is statically decoupled, when H(0) is diagonal.
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Triangularly coupled systems

A system is triangularly coupled when the inputs and outputs can be ordered in such
a way that the transfer function matrix H(s) is either upper or lower triangular, for
all s. The coupling is then hierarchical. Consider the lower triangular case. Then
the first output depends only on the first input, the second output depends on the
first and second inputs. In general, the kth output depends on the first, second,
. . . , kth inputs. Such systems are relatively easy to control by SISO controllers
combined with feedforward action to compensate for the coupling.

Diagonally dominant systems

A MIMO system is said to be diagonally dominant if its m ×m transfer function
H(jω) is such that

|Hkk(jω)| >
m∑
i=1
i�=k

|Hik(jω)| ∀ω ∈ R (21.6.2)

Such systems are relatively decoupled, since condition (21.6.2) is similar to the
situation in communications when the information in a given channel is stronger
than the combined effect of the crosstalk interference from the other channels.

21.7 Industrial Case Study (Strip Flatness Control)

As an illustration of the use of simple pre-compensators to convert a MIMO problem
into one in which SISO techniques can be employed, we consider the problem of
strip flatness control in rolling mills. We have examined control problems in rolling
mills earlier. See, in particular, Example 8.3 on page 206, Example 8.8 on page 220
and section §8.8. However, our earlier work focused on longitudinal (i.e. along the
strip) control problems. That, is we have assumed that uniform reduction of the
strip occurred across the width of the strip. However, this is not always the case
in practice. In this case, one needs to consider transversal (i.e. across the strip)
control issues. This will be our concern here.

If rolling results in a non-uniform reduction of the strip thickness across the
strip width, then a residual stress will be created and buckling of the final product
may occur. A practical difficulty is that flatness defects can be pulled out by the
applied strip tensions, so that they are not visible to the mill operator. However,
the buckling will become apparent as the coil is unwound or after it is slit or cut to
length in subsequent processing operations.

There are several sources of flatness problems including:

• roll thermal cambers

• incoming feed disturbances (profile, hardness, thickness)



Section 21.7. Industrial Case Study (Strip Flatness Control) 645

• transverse temperature gradients

• roll stack deflections

• incorrect ground roll cambers

• roll wear

• inappropriate mill setup (reduction, tension, force, roll bending)

• lubrication effects

On the other hand, there are strong economic motives to control strip flatness
including:

• improved yield of prime quality strip

• increased throughput due to faster permissible acceleration, reduced threading
delay and higher rolling speed on shape critical products

• more efficient recovery and operation on downstream units such as annealing
and continuous process lines

• reduced reprocessing of material on tension leveling lines or temper rolling
mills

In this context, there are several control options to achieve improved flatness.
These include roll tilt, roll bending, cooling sprays etc. These typically can be
separated by pre-processing the measured shape. Here we will focus on the cooling
spray option. Note that flatness defects can be measured across the strip using a
special instrument called a Shape Meter. A typical control configuration is shown
in the Figure 21.9.

In this configuration, numerous cooling sprays are located across the roll, and
the flow through each spray is controlled by a valve. The cool water sprayed on the
roll reduces the thermal expansion. The interesting thing is that each spray affects
a large section of the roll, not just the section directly beneath it. This leads to an
interactive MIMO system, rather than a series of decoupled SISO systems.

A simplified model for this system (ignoring nonlinear heat transfer effects etc.)
is shown in the block diagram in Figure 21.10, where U denotes a vector of spray
valve positions and Y denotes the roll thickness vector. (The lines indicate vectors
rather than single signals).

A simplified model for this system (ignoring nonlinear heat transfer effects etc.)
is shown in the block diagram in Figure 21.10, where U denotes a vector of spray
valve positions and Y denotes the roll thickness vector. (The lines indicate vectors
rather than single signals).

The sprays affect the roll as described by the matrix M below.
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Figure 21.9. Typical flatness control set-up for rolling mill

+

−
C(s)

U
M

1

τs+ 1

Y

Figure 21.10. Simplified flatness control feedback loop

M =




1 α α2 · · ·
α 1

α2 . . .
...

... 1 α
· · · α 1


 (21.7.1)

The parameter α represents the level of interactivity in the system, and is de-
termined by the number of sprays present, and how close together they are.

An interesting thing about this simplified model is that the interaction is cap-
tured totally by the d.c. gain matrix M. This suggests that we could design an
approximate pre-compensator by simply inverting this matrix. This leads to:
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M−1 =




1
1− α2

−α
1− α2

0 · · · 0

−α
1− α2

1 + α2

1− α2

...

0
. . . 0

...
1 + α2

1− α2

−α
1− α2

0 · · · 0
−α

1− α2

1
1− α2




(21.7.2)

Using this matrix to decouple the system amounts to turning off surrounding
sprays when a spray is turned on.

So we can (approximately) decouple the system simply by multiplying the con-
trol vector by this inverse. This set up is shown in the block diagram below.

Cp(s)

PI controller
−

+
M−1

P(s)

U
M

1

τs+ 1

Y

Figure 21.11. Flatness control with pre-compensation

The nominal decoupled system then simply becomes H(s) = diag 1
(τs+1) . With

this new model, the controller can be designed using SISO methods. For example a
set of simple PI controllers linking each shape meter with the corresponding spray
would seem to suffice. (We assume that the shape meters measure the shape of the
rolls perfectly).

The reader is invited to interact with a model for this control system provided
on the web-page

Actually, almost identical control problems to the above may be found in many
alternative industrial situations where there are longitudinal and traverse effects.
To quote one other example, similar issues arise in paper making.

An interesting robustness issue arises in all of these systems related to traverse
frequency response.

It might be felt that one can gain better and better accuracy by adding more
and more sensors across the strip. However, this is not usually true in practice.
The reason is that, if one thinks of the distance across the strip as a pseudo time,
then there is an associated frequency dimension. Hence, adding more actuators
corresponds to attempting to increase the pseudo time resolution i.e. increase the
cross-machine bandwidth. However, we have seen in section §8.5, model errors tend
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to place an upper limit on achievable bandwidth. Thus, we might expect that
model errors in the kind of two-dimensional control problem discussed above may
similarly limit the degree of pseudo-time resolution. This can also be analyzed using
conventional MIMO robustness techniques. In particular, as we increase the number
of across-machine actuators and sensors then the extent of interaction increases;
i.e. the matrix M in (21.7.1) becomes ill-conditioned. We can illustrate the impact
of this ill-conditioning, by assuring that α has a small error. Thus we can write the
true M in terms of the nominal Mo as

M = [Mo +∆] (21.7.3)

Hence, using the nominal inverse M−1
o as a compensator leads to residual cou-

pling as can be seen from:

M−1
o M = [I+M−1

o ∆] (21.7.4)

We note that, the right MME in this case is given by

G∆r(s) =M−1
o ∆ (21.7.5)

Since Mo is near singular, M−1
o ∆ can be extremely large. Thus robust stability

can be easily lost (see section §20.8 for further discussion).
There are several ways that are typically used to avoid this problem. One

can either limit the number of actuator-sensor pairs or one can limit the traverse
bandwidth by restricting the control to a limited number of harmonics of the traverse
dimension. The reader is again invited to investigate these robustness issues on the
web-site simulation.

✷✷✷

21.8 Summary

• A fundamental decision in MIMO synthesis pertains to the choice of decen-
tralized versus full MIMO control.

• Completely decentralized control:

◦ In completely decentralized control the MIMO system is approximated
as a set of independent SISO systems.

◦ To do so, multivariable interactions are thought of as disturbances; this is
an approximation since the interactions involve feedback, whereas distur-
bance analysis actually presumes disturbances to be independent inputs.

◦ When applicable, the advantage of completely decentralized control is
that one can apply the simpler SISO theory.
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◦ Applicability of this approximation depends on the neglected interaction
dynamics, which can be viewed as modeling errors; robustness analysis
can be applied to determine their impact.

◦ Chances of success are increased by judiciously pairing inputs and out-
puts (for example by using the Relative Gain Array, RGA) and using
feedforward.

◦ Feedforward is often a very effective tool in MIMO problems.

◦ Some MIMO problems can be better treated as SISO problems if a pre-
compensator is first used.

21.9 Further Reading

General

Skogestad, S. and Postlethwaite, I. (1996). Multivariable Feedback Control: Analysis
and Design. Wiley, New York.

Decentralized control

Hovd, M. and S.Skogestad (1994). Sequential design of decentralized controllers.
Automatica, 30(10):1601–1607.

Sourlas, D. and Manousiouthakis, V. (1995). Best achievable decentralized perfor-
mance. IEEE Transactions on Automatic Control, 40(11):1858–1871.

Zames, G. and Bensoussan, D. (1983). Multivariable feedback, sensitivity, and
decentralized control. IEEE Transactions on Automatic Control, 28(11):1030–1035.

Relative gain array (RGA)

Bristol, E. (1966). On a new measure of interaction for multivariable process
control. IEEE Transactions on Automatic Control, 11:133–134.

Stephanopoulos, G. (1984). Chemical Process Control: an Introduction to Theory
and Practice. Prentice–Hall, Englewood Cliffs, N.J.
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21.10 Problems for the Reader

Problem 21.1. Consider again the system studied in Example 21.1 on page 632,
with k12 = −2 and k21 = −1.

21.1.1 Use the feedforward strategy (see section §21.5) to make the equivalent plant
transfer function G′

o(s) lower triangular in the frequency band [0 ωff ] [rad/s],
first for ωff = 1 and then for ωff = 10.

21.1.2 Repeat to achieve upper triangular coupling.

Problem 21.2. Consider the upper triangular coupling achieved in Problem 21.1.
Test, using SIMULINK, the performance of the decentralized PI controller used

in Example 21.1 on page 632, first with ωff = 1 and then with ωff = 10

Problem 21.3. Assume a general 2× 2 MIMO system.
Prove that, if you apply the feedforward ideas of section §21.5, to obtain a

diagonal equivalent plant (by firstly achieving upper triangular coupling and then
feedforward again to diagonalize the new system, or vice versa), this amounts to
pre-compensate the plant.

Verify this with the system used in 21.1

Problem 21.4. Assume that you have a plant having nominal model given by

Go(s) =




2e−0.5t
s2 + 3s+ 2

0

0.5
(s+ 2)(βs+ 1)

6
s2 + 5s+ 6


 (21.10.1)

21.4.1 Design, independently, SISO PI controllers for the two diagonal terms.

21.4.2 Evaluate the performance of your design first for β = 0.2 and then for
β = −0.2. Discuss.

Problem 21.5. Consider an upper triangularly coupled m×m MIMO system.
Prove that an internally stable loop can be achieved, based on SISO designs for

the m diagonal terms, if and only if all off-diagonal transfer functions are stable.
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Problem 21.6. Consider a MIMO system having a transfer function

Go(s) =




8
s2 + 6s+ 8

0.5
s+ 8

β

s+ 4
6(s+ 1)

s2 + 5s+ 6


 (21.10.2)

21.6.1 Use β = −2 and build a pre-compensator P(s) for this system, to achieve
a diagonal pre-compensated plant Go(s)P(s). Design PID controllers for the
diagonal transfer functions and evaluate the performance observing the plant
outputs and inputs.

21.6.2 Repeat with β = 2. Discuss. (Hint: use the MATLAB command zero on
Go(s)).

Problem 21.7. A MIMO system has a nominal model given by

Go(s) =




−s+ 8
s2 + 3s+ 2

0.5(−s+ 8)
(s+ 1)(s+ 5)

1
s2 + 2s+ 1

6
s2 + 5s+ 6


 (21.10.3)

21.7.1 Analyze the difficulties in using pre-compensation to diagonalize the plant.

21.7.2 Factor the transfer function as

Go(s) = Go1(s)Go2(s) =



−s+ 8
s+ 8

0

0 1







s+ 8
s2 + 3s+ 2

(s+ 8)
(s+ 1)(s+ 5)

1
s2 + 2s+ 1

6
s2 + 5s+ 6




(21.10.4)

and build an approximate (stable and proper) pre-compensator P(s) for Go2(s).

21.7.3 Design PI controllers for the diagonal terms of the pre-compensated plant
and evaluate your design.
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PREVIEW

We next examine techniques specifically aimed at MIMO control problems where
interaction cannot be ignored if one wants to achieve maximal performance. The
first chapter in this part covers linear optimal control methods. These techniques
are very frequently used in advanced control applications. Indeed, we will describe
several real world applications of these ideas. The next chapter covers Model Pre-
dictive Control. This is an extension of optimal control methods to incorporate
actuator and state constraints. These ideas have had a major impact on industrial
control especially in the petrochemical industries.

The final chapter covers fundamental design limitations in MIMO control. As
in the SISO case, MIMO control system design involves an intricate web of trade-
offs. Indeed, many of the core issues that we have seen in the case of SISO systems
have direct MIMO counterparts, e.g., open loop poles, open loop zeros, sensitivity
functions, disturbances, robustness, etc. However, unlike SISO systems, these issues
now have a distinctly directional flavor, i.e., it turns out that it matters which
combination of inputs and outputs are involved in a particular property. These
directional issues require us to be a little more careful in analysis, synthesis and
design of MIMO control loops. This thus sets the scene for the next five chapters.
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Chapter 22

DESIGN VIA OPTIMAL
CONTROL TECHNIQUES

22.1 Preview

The previous chapter gave an introduction to MIMO control system synthesis by
showing how SISO methods could sometimes be used in MIMO problems. However,
some MIMO problems require a fundamentally MIMO approach. This is the topic
of the current chapter. We will emphasize methods based on optimal control theory.
There are three reasons for this choice:

1 It is relatively easy to understand.

2 It has been used in a myriad of applications (Indeed, the authors have used
these methods on approximately 20 industrial applications).

3 It is a valuable precursor to other advanced methods - e.g. model predictive
control which is explained in the next chapter.

The analysis presented in this chapter builds on the results in Chapter 18 where
state space design methods were briefly described in the SISO context. We recall
from that chapter, that the two key elements were

• state estimation by an observer

• state estimate feedback

We will mirror these elements here for the MIMO case.

22.2 State Estimate Feedback

Consider the following MIMO state space model having m inputs and p outputs.

ẋ(t) = Aox(t) +Bou(t) (22.2.1)
y(t) = Cox(t) (22.2.2)

657
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where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp.
By analogy with state estimate feedback in the SISO case (see Chapter 7) we

seek a matrix K ∈ Rm×n such that Ao −BoK has its eigenvalues in the LHP and
an observer gain J such that Ao − JCo has its eigenvalues in the LHP. Further we
will typically require that the closed loop poles reside in some specified region in
the left half plane. Tools such as MATLAB provide solutions to these problems.
We illustrate by a simple example:

Example 22.1. Consider a MIMO plant having a nominal model given by

Go(s) =
1

s(s+ 1)(s+ 2)

[
2(s+ 1) −0.5s(s+ 1)

s 2s

]
(22.2.3)

Say that the plant has step type input disturbances in both channels.
Using state estimate feedback ideas, design a multivariable controller which sta-

bilizes the plant and, at the same time, ensures zero steady state error for constant
references and disturbances.

Solution

We first build state space models (Ap,Bp,Cp,0) and (Ad,Bd,Cd,0) for the plant
and for the input disturbances, respectively. We follow the same basic idea as in the
SISO case (see section §18.7), i.e. we estimate, not only the plant state xp(t), but
also, the disturbance vector, di(t). We then form the control law

u(t) = −Kpx̂(t)− d̂i(t) + r(t) (22.2.4)

We recall that the disturbances are observable from the plant output, although
they are unreachable from the plant input.

A pair of possible state space models is:

ẋp(t) = Apxp(t) +Bpu(t) y(t) = Cpxp(t) (22.2.5)
ẋd(t) = Adxp(t) +Bdu(t) di(t) = Cdxp(t) (22.2.6)

where

Ap =



−3 −2 0 0
1 0 0 0
0 0 −2 2
0 0 0 0


 ; Bp =



1 2
0 0
0 −0.5
1 0


 ; Cp =

[
0 0 1 0
0 1 0 0

]

(22.2.7)

and

Ad = 0; Bd = 0; Cd = I2 (22.2.8)
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where I2 is the identity matrix in R2×2.
The augmented state space model, (A,B,C,0) is then given by

A =
[
Ap BpCd

0 Ad

]
=
[
Ap Bp

0 0

]
B =
[
Bp

Bd

]
=
[
Bp

0

]
C =
[
Cp 0

]
(22.2.9)

leading to a model with six states.
We then compute the observer gain J, choosing the six observer poles located at

−5,−6,−7,−8,−9,−10. This is done using the MATLAB command place for the
pair (AT ,CT ).

Next we compute the feedback gain K. We note from (22.2.4) that it is equivalent
(with r(t) = 0) to

u(t) = − [Kp Cd

] [x̂p(t)
x̂d(t)

]
=⇒ K =

[
Kp I2

]
(22.2.10)

i.e. we only need to compute Kp. This is done using the MATLAB command place
for the pair (Ap,Bp). The poles in this case are chosen at −1.5±j1.32, −3 and −5.
Recall that the other two poles correspond to the uncontrollable disturbance states.
They are located at the origin.

The design is evaluated by applying step references and input disturbances in
both channels, as follows:

r1(t) = µ(t− 1); r2(t) = −µ(t− 10); d
(1)
i (t) = µ(t− 20); d

(2)
i (t) = µ(t− 30)

(22.2.11)

where d
(1)
i (t) and d

(2)
i (t) are the first and second components of the input disturbance

vector respectively.
The results are shown in Figure 22.1
The design was based on an arbitrary choice of observer and controller poles

(polynomials E(s) and F (s), respectively). Thus, the apparent triangular nature of
the coupling in the design was not a design objective. However, the choice of the
control law ensures that the disturbances are completely compensated in steady state.

The file mimo2.mdl contains the SIMULINK schematic with the MIMO control
loop for this example.

✷✷✷

We will not develop the idea of pole assignment further. Instead we turn to an
alternative procedure which deals with the MIMO case via optimization methods. A
particularly nice approach for the design ofK and J is to use quadratic optimization,
since this leads to simple closed form solutions. The details are provided in the
following sections.
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Figure 22.1. MIMO design based in state estimate feedback

22.3 Dynamic Programming and Optimal Control

Consider a general nonlinear system with input u(t) ∈ Rm described in state space
form by

dx(t)
dt

= f(x(t), u(t), t) (22.3.1)

where x(t) ∈ R
n, together with the following optimization problem,

Problem (General optimal control problem). Find an optimal input
uo(t), for t ∈ [to, tf ], such that

uo(t) = argmin
u(t)

{∫ tf

to

V(x, u, t)dt+ g(x(tf ))
}

(22.3.2)

where V(x, u, t) and g(x(tf )) are nonnegative functions.

One possible way to solve this problem is to use Dynamic Programming which
is based on the following result.

Theorem 22.1 (Optimality Principle (Bellman)). If u(t) = uo(t), t ∈ [to, tf ],
is the optimal solution for the above problem, then uo(t) is also the optimal solution
over the (sub)interval [to +∆t, tf ], where to < to +∆t < tf

Proof

(By contradiction)
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Denote by xo(t), the state evolution which results from applying uo(t) over the
whole interval, i.e. for t ∈ [to, tf ]. We can then describe the optimal cost over the
interval as

∫ to+∆t

to

V(xo, uo, t)dt+
∫ tf

to+∆t

V(xo, uo, t)dt+ g(xo(tf )) (22.3.3)

Assume now there exists an input ũ(t) such that

ũ(t) = argmin
u(t)

{∫ tf

to+∆t

V(x, u, t)dt+ g(x(tf ))
}

(22.3.4)

with corresponding state trajectory x̃(t) such that x̃(to+∆t) = xo(to+∆t). Assume
that

∫ tf

to+∆t

V(x̃, ũ, t)dt+ g(x̃(tf )) <
∫ tf

to+∆t

V(xo, uo, t)dt+ g(xo(tf )) (22.3.5)

Consider now the policy of applying u(t) = uo(t) in the interval [to, to+∆t] and
then u(t) = ũ(t) over the interval [to+∆t, tf ]. The resulting cost over the complete
interval would be

∫ to+∆t

to

V(xo, uo, t)dt+
∫ tf

to+∆t

V(x̃, ũ, t)dt+ g(x̃(tf )) (22.3.6)

By comparing (22.3.3) and (22.3.6), and on using (22.3.4), we conclude that the
policy of applying u(t) = ũ(t) over the whole interval [to, tf ] would yield a smaller
cost than applying u(t) = uo(t) over the same interval. However this contradicts
the assumption regarding the optimality of uo(t) over that interval.

✷✷✷

We will next use Theorem 22.1 to derive necessary conditions for the optimal
u. The idea is to consider a general time interval [t, tf ], where t ∈ [to, tf ], and then
use the Optimality Principle with an infinitesimal time interval [t, t+∆t].

Denote by Jo(x(t), t) the optimal (minimal) cost in the interval [t, tf ], with
initial state x(t), i.e.

Jo(x(t), t) = min
u(τ)

τ∈[t,tf ]

{∫ tf

t

V(x, u, τ)dτ + g(x(tf ))
}

(22.3.7)

Then, on applying Theorem 22.1, we have that
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Jo(x(t), t) = min
u(τ)

τ∈[t,t+∆t]

{∫ t+∆t

t

V(x, u, τ)dτ + Jo(x(t +∆t), t+∆t)

}
(22.3.8)

We shall now consider small perturbations around the point (x(t), t), considering
∆t to be a very small quantity. To achieve this we expand Jo(x(t+∆t), t+∆t) in
a Taylor series. We thus obtain

Jo(x(t), t) = min
u(t)

{
V(x(t), u(t), t)∆t +

Jo(x(t), t) +
∂Jo(x(t), t)

∂t
∆t+
[
∂Jo(x(t), t)

∂x

]T (
x(t+∆t)− x(t)

)
+O(x, t)

}
(22.3.9)

where O(x, t) includes the high order terms in the Taylor expansion.
If we now let ∆t → dt, then (22.3.9) yields

−∂Jo(x(t), t)
∂t

= min
u(t)

{W(x(t), u(t), t)
}

(22.3.10)

where

W(x(t), u(t), t) = V(x(t), u(t), t) +
[
∂Jo(x(t), t)

∂x

]T
f
(
x(t), u(t), t

)
(22.3.11)

Note that we have used the fact that

lim
∆t→0

x(t +∆t)− x(t)
∆t

=
dx(t)
dt

(22.3.12)

and equation (22.3.1).
The optimal u(t) satisfying the right hand side of equation (22.3.10) can be

expressed symbolically as

uo(t) = U
(
∂Jo(x(t), t)

∂x
, x(t), t

)
(22.3.13)

which, when substituted into (22.3.10) leads to the following equations for the op-
timal cost
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−∂Jo(x(t), t)
∂t

= V(x(t),U , t) +
[
∂Jo(x(t), t)

∂x

]T
f
(
x(t),U , t) (22.3.14)

The solution for this equation must satisfy the boundary condition

Jo(x(tf ), tf ) = g(x(tf )) (22.3.15)

At this stage we cannot proceed further without being more specific about the
nature of the original problem. We also note that we have implicitly assumed
that the function Jo(x(t), t) is well behaved, which means that it is continuous
in its arguments and that it can be expanded in a Taylor series. It has been
proved elsewhere (see references at the end of the chapter) that these conditions are
sufficient to make (22.3.13) the optimal solution.

22.4 The Linear Quadratic Regulator (LQR)

We next apply the above general theory to the following problem:

Problem (The LQR problem). Consider a linear time invariant system having
a state space model, as defined below:

dx(t)
dt

= Ax(t) +Bu(t) x(to) = xo (22.4.1)

y(t) = Cx(t) +Du(t) (22.4.2)

where x ∈ Rn is the state vector, u ∈ Rm is the input, y ∈ Rp is the output, xo ∈ Rn

is the state vector at time t = to and A,B,C and D are matrices of appropriate
dimensions.

Assume that we aim to drive the initial state xo to the smallest possible value
as soon as possible in the interval [to, tf ] , but without spending too much control
effort (as measured by the magnitude of u) to achieve that goal. Then, the optimal
regulator problem is defined as the problem of finding an optimal control u(t) over
the interval [to, tf ] such that the following cost function is minimized.

Ju(x(to), to) =
∫ tf

to

[
x(t)TΨx(t) + u(t)TΦu(t)

]
dt+ x(tf )TΨfx(t) (22.4.3)

where Ψ ∈ Rn×n, Ψf ∈ Rn×n are symmetric nonnegative definite matrices and
Φ ∈ Rm×m is a symmetric positive definite matrix.
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✷✷✷

To solve this problem, the theory summarized in section §22.3 can be used. We
first make the following connections between the general optimal problem and the
LQR problem

f(x(t), u(t), t) = Ax(t) +Bu(t) (22.4.4)

V(x, u, t) = x(t)TΨx(t) + u(t)TΦu(t) (22.4.5)

g(x(tf )) = x(tf )TΨfx(tf ) (22.4.6)

Then

W(x(t), u(t), t)
�
= V(x(t), u(t), t) +

[
∂Jo(x(t), t)

∂x

]T
f
(
x(t), u(t), t)

= x(t)TΨx(t) + u(t)TΦu(t) +
[
∂Jo(x(t), t)

∂x

]T (
Ax(t) +Bu(t)

)
(22.4.7)

Thus, to obtain the optimal u, as given by (22.3.13), we have to minimize
W(x(t), u(t), t) (22.4.7). This requires us to compute the gradient ofW(x(t), u(t), t)
with respect to u, and then set this gradient equal to zero. Thus

∂W
∂u

= 2Φu(t) +BT ∂J
o(x(t), t)
∂x

(22.4.8)

and setting ∂W
∂u = 0 shows that the optimal input, uo(t), is given by

uo(t) = −1
2
Φ−1BT ∂J

o(x(t), t)
∂x

(22.4.9)

We also observe that the Hessian of W with respect to u is equal to Φ which, by
initial assumption, is positive definite. This confirms that (22.4.9) gives a minimum
for W .

We next note that Jo(xo(tf ), tf ) = [xo(tf )]TΨfx
o(tf ). We observe that this is

a quadratic function of the state at time tf . We show by induction that this is true
at every time t. We proceed by assuming that the optimal cost has the form

Jo(x(t), t) = xT (t)P(t)x(t) with P(t) = [P(t)]T (22.4.10)

We then have that
∂Jo(x(t), t)

∂x
= 2P(t)x(t) (22.4.11)

∂Jo(x(t), t)
∂t

= xT (t)
dP(t)
dt

x(t) (22.4.12)
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If we now use (22.4.12) in (22.4.9),

the optimal control can be expressed as

uo(t) = −Ku(t)x(t) (22.4.13)

where Ku(t) is a time varying gain, given by

Ku(t) = Φ−1BTP(t) (22.4.14)

We also have from (22.4.7) that

W(x(t), uo(t), t) = xT (t)
(
Ψ−P(t)BΦ−1BTP(t) + 2P(t)A

)
x(t) (22.4.15)

To computeKu(t) we first need to obtainP(t), which can be done using (22.4.12)
and (22.4.15) in (22.3.14), leading to

−xT (t)dP(t)
dt

x(t) = xT (t)
(
Ψ−P(t)BΦ−1BTP(t) + 2P(t)A

)
x(t) (22.4.16)

We also note that 2xT (t)P(t)Ax(t) = xT (t)
(
P(t)A+ATP(t)

)
x(t). For (22.4.16)

to hold for all x(t) we require that

−dP(t)
dt

= Ψ−P(t)BΦ−1BTP(t) +P(t)A+ATP(t) (22.4.17)

Equation (22.4.17) is known as theContinuousTimeDynamicRiccati Equation
(CTDRE). This equation has to be solved backwards in time, to satisfy the bound-
ary condition (22.4.6), (22.4.10), i.e.

P(tf ) = Ψf (22.4.18)

The above theory holds equally well for time varying systems i.e. whenA,B,Φ,Ψ
are all functions of time. However in the time-invariant case, one can say much more
about the properties of the solution. This is the subject of the next section.

22.5 Properties of the Linear Quadratic Optimal Regulator

Here we assume that A,B,Φ,Ψ are all time-invariant. We will be particularly
interested in what happens at t → ∞. We will summarize the key results here.
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However, the reader is also referred to Appendix ?? where a more in depth treatment
of the results is given. We will outline two versions of the results. In (22.5.1) we
give a quick review of the basic properties as used in simple problems. In (22.5.2)
we will outline more advanced results as might be needed in more sophisticated
situations.

22.5.1 Quick review of properties

In many simple problems, two key assumptions hold; namely:

(i) The system (A,B) is stabilizable from u(t). (The reader may feel that this
assumption is reasonable - after all if the system isn’t stabilizable, then clearly
optimal control will not help recover the situation.)

(ii) The system states are all adequately seen by the cost function (22.4.3). Tech-
nically, this is stated as requiring that (Ψ

1
2 ,A) be detectable.

Under these conditions, the solution to the CTRE, P(t), converges to a steady
state limit Ps

∞ as tf → ∞. This limit has two key properties:

• Ps∞ is the only non-negative solution of the matrix algebraic Riccati equation
(see (22.5.1) below) obtained by setting dP(t)

dt in (22.4.17).

• When this steady state value is used to generate a feedback control law as in
((22.4.14), then the resulting closed loop system is stable.

(Clearly the last property is of major importance.)

22.5.2 More detailed review of properties

In some applications, it is useful to know a bit more about the properties of the
solution to the Optimal Control Problem than was given in section §22.5.1. Further
results are outlined below:

Lemma 22.1. If P(t) converges as tf → ∞, then the limiting value P∞ satisfies
the following Continuous Time Algebraic Riccati Equation (CTARE):

0 = Ψ−P∞BΦ−1BTP∞ +P∞A+ATP∞ (22.5.1)

Furthermore, provided (A,B) is stabilizable and (A,Ψ
1
2 ) has no unobservable

modes on the imaginary axis, then there exists a unique positive semidefinite solution
Ps

∞, to the CTARE with the property that the system matrix of the closed loop
system, i.e., A − Φ−1BTPs∞, has all its eigenvalues in the OLHP. We call this
solution, the stabilizing solution of the CTARE. Other properties of the stabilizing
solution are
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a) If (A,Ψ
1
2 ) is detectable, the stabilizing solution is the only non-negative solution

of the CTARE.

b) If (A,Ψ
1
2 ) has unobservable modes in the OLHP, then the stabilizing solution

is not positive definite.

c) If (A,Ψ
1
2 ) has an unobservable pole outside the OLHP, then in addition to the

stabilizing solution, there exists at least one other non-negative solution to the
CTARE. However, in this case, the stabilizing solution satisfies Ps

∞−P∞ ≥ 0,
where P∞ is any other solution of the CTARE.

Proof

See Appendix ??.
✷✷✷

Convergence of the solution of the CTDRE to the stabilizing solution of the
CTARE is addressed in

Lemma 22.2. Provided (A,B) is stabilizable, (A,Ψ
1
2 ) has no unobservable poles

on the imaginary axis and Ψ > Ps∞, then

lim
tf→∞P(t) = Ps

∞ (22.5.2)

(Provided (A,Ψ
1
2 ) is detectable, then Ψ ≥ 0 suffices)

Proof

See Appendix ??
✷✷✷

We illustrate the above properties by a simple example.

Example 22.2. Consider the scalar system

ẋ(t) = ax(t) + u(t) (22.5.3)

and the cost function

J = ψfx(tf )2 +
∫ tf

0

(
ψx(t)2 + u(t)2

)
dt (22.5.4)

22.2.1 Discuss this optimal control problem in the light of Lemma 22.1 and Lemma
22.2.

22.2.2 Discuss the convergence of the solutions of the CTDRE to Ps
∞.
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Solution

22.2.1 The associated CTDRE is

Ṗ (t) = −2aP (t) + P (t)2 − ψ; P (tf ) = ψf (22.5.5)

and the CTARE is

(P s
∞)2 − 2aP s

∞ − ψ = 0 (22.5.6)

Case 1 ψ �= 0
Here (A,Ψ

1
2 ) is completely observable (and thus detectable). From Lem-

ma 22.1, part (a), there is only one non-negative solution of the CTARE.
This solution coincides with the stabilizing solution. Making the calcula-
tions, we find that the only non-negative solution of the CTARE is

P s
∞ =

2a+
√
4a2 + 4ψ
2

(22.5.7)

leading to the following feedback gain:

Ks
∞ = a+

√
a2 + ψ (22.5.8)

The corresponding closed loop pole is at

pcl = −
√
a2 + ψ (22.5.9)

This is clearly in the LHP verifying that the solution is indeed the stabi-
lizing solution.

Case 2 ψ = 0
Here we will consider three positive values for a: one positive, one nega-
tive and one zero.

(i) a > 0. In this case, (A,Ψ
1
2 ) has an observable pole outside the sta-

bility region. Then from part (c) of Lemma 22.1, in addition to the
stabilizing solution, there exists at least one other non negative solu-
tion to the CTARE. Making the calculations, we find that there are
two non negative solutions of the CTARE, namely: the stabilizing
solution Ps

∞ = 2a and one other solution P′
∞.

We see that Ps∞ −P′∞ > 0 and that Ps∞ gives a feedback loop gain
of Ks

∞ = 2a leading to closed loop poles at pcl = −a. This is clearly
in the LHP verifying that Ps

∞ is indeed the stabilizing solution.
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(ii) a < 0. Here (A,Ψ
1
2 ) is again detectable. Thus, from Lemma 22.1

on page 666, part (a), there is only one nonnegative solution of the
CTARE. This solution coincides with the stabilizing solution.
Making the calculations, we find Ps

∞ = 0, and the corresponding
feedback gain is Ks

∞ = 0, leading to closed loop poles at pcl = a,
which is stable, since a < 0, by hypothesis.

(iii) a = 0. Here (A,Ψ
1
2 ) has an unobservable pole on the stability bound-

ary. This is then not covered by Lemma 22.1 on page 666. However,
it can be verified that the CTARE has only one solution, namely P∞,
which is not stabilizing.

22.2.2 To study the convergence of the solutions, we again consider two cases.

Case 1 ψ �= 0
Here (A,Ψ

1
2 ) is completely observable. Then P(t) converges to Ps

∞ given
in (22.5.7) for any P(tf ) ≥ 0

Case 2 ψ = 0

(i) a > 0. Here (A,Ψ
1
2 ) has no unobservable poles on the jω axis, but

it is not detectable. Thus, P(t) converges to Ps∞ provided we choose
P(tf ) > Ps

∞.

(ii) a < 0. Here (A,Ψ
1
2 ) is again detectable and P(t) converges to Ps

∞
for any P(tf ) ≥ 0.

(iii) a = 0. Here (A,Ψ
1
2 ) has an unobservable pole on the jω axis. Thus,

Lemma 22.2 on page 667 does not apply. Actually, P(t) converges to
0 for any P(tf ) ≥ 0. However, in this case, zero is not a stabilizing
solution.

✷✷✷

Linear quadratic regulator theory is a powerful tool in control system design.
We illustrate its versatility in the next section by using it to solve the, so called,
Model Matching Problem (MMP).

22.6 Model Matching Based on Linear Quadratic Optimal Regu-
lators

22.6.1 Problem formulation

Many problems in control synthesis can be reduced to a problem of the following
type:

Given two stable transfer functions M(s) and N(s), find a stable transfer func-
tion Γ(s) so that N(s)Γ(s) is close to M(s) in some sense
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We call this a model matching problem. When M(s) and N(s) are matrix
transfer functions, we need to define a suitable norm to measure closeness. By way
of illustration, we consider a matrix A = [aij ] ∈ Cp×m for which we define the
Fröbenius norm as follows

||A||F =
√
traceAHA =

√√√√ m∑
i=1

p∑
j=1

|aij |2 (22.6.1)

Using this norm, a suitable synthesis criterion might be

Γo = argmin
Γ∈S

JΓ (22.6.2)

where

JΓ =
1
2π

∫ ∞

−∞

∥∥M(jω)−N(jω)Γ(jω)
∥∥2
F
dω (22.6.3)

and S is the class of stable transfer functions.
This problem can be converted into vector form by vectorizing M and Γ. For

example, say Γ is constrained to be lower triangular and M, N and Γ are 3 × 2,
3× 2 and 2× 2 matrices respectively, then we can write

JΘ =
1
2π

∫ ∞

−∞

∥∥V(jω)−W(jω)Θ(jω)
∥∥2

2
dω (22.6.4)

where
∥∥ ∥∥

2
denotes the usual Euclidean vector norm and where, in this special

case

V(s) =




M11(s)
M12(s)
M21(s)
M22(s)
M31(s)
M32(s)


; W(s) =




N11(s) N12(s) 0
0 0 N12(s)

N21(s) N22(s) 0
0 0 N22(s)

N31(s) N32(s) 0
0 0 N32(s)


; Θ(s) =


Γ11(s)
Γ21(s)
Γ22(s)




(22.6.5)
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22.6.2 Conversion to time domain

We next select a state space model for V(s) and W(s) of the form

V(s) = C1[sI−A1]−1B1 (22.6.6)

W(s) = C2[sI−A2]−1B2 (22.6.7)

where, in the special case of equation (22.6.5), A1, B1, C1, A2, B2 and C2 are
matrices of dimensions n1×n1, n1×1, 6×n1, n2×n2, n2×3 and 6×n2, respectively.

Before proceeding to solve the model matching problem, we make a slight gen-
eralization. In particular, it is sometimes desirable to restrict the size of Θ. We do
this by generalizing (22.17.9) by introducing an extra term which weights Θ. This
leads to

JΘ =
1
2π

∫ ∞

−∞

{∥∥V(jω)−W(jω)Θ(jω)
∥∥2
Γ
+
∥∥Θ(jω)

∥∥2
R

}
dω (22.6.8)

where Γ and R are non negative symmetrical matrices.
We can then apply Parseval’s theorem (see section §4.10.2) to convert JΘ into

the time domain. Since the transfer functions in (22.6.6) and (22.6.7) are stable
and strictly proper, this yields

JΘ =
∫ ∞

0

{∥∥y1(t)− y2(t)
∥∥2
Γ
+
∥∥u(t)∥∥2

R

}
dt (22.6.9)

where

[
ẋ1(t)
ẋ2(t)

]
=
[
A1 0
0 A2

] [
x1(t)
x2(t)

]
+
[
0
B2

]
u(t);

[
x1(0)
x2(0)

]
=
[
B1

0

]
(22.6.10)[

y1(t)
y2(t)

]
=
[
C1 0
0 C2

] [
x1(t)
x2(t)

]
(22.6.11)

Using (22.6.10) and (22.6.11) in (22.6.9) gives

JΘ =
∫ ∞

0

{
x(t)TΨx(t) + u(t)TRu(t)

}
dt (22.6.12)

where x(t) = [x1(t)T x2(t)T ] and

Ψ =
[
C1

T

−C2
T

]
Γ
[
C1 −C2

]
(22.6.13)
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We recognize (22.6.10)-(22.6.12) as a standard LQR problem as in section §22.4
where

A =
[
A1 0
0 A2

]
; B =

[
0
B2

]
(22.6.14)

Remark 22.1. Note that to achieve the transformation of the model matching prob-
lem into a LQR problem, the key step is to link L−1 [Θ(s)] to u(t).

22.6.3 Solution

We are interested in expressing u(t) as a function of x(t), i.e.

u(t) = −Kx(t) = −[K1 K2]
[
x1(t)
x2(t)

]
(22.6.15)

such that JΘ in (22.6.12) is minimized. The optimal value of K is as in (22.4.14).
We will also assume that the values of A, B, Φ, etc. are such that K corresponds
to a stabilizing solution.

The final input u(t) satisfies:

ẋ(t) = Ax(t) +Bu(t) x(0) =
[
B1

T 0
]T

(22.6.16)

u(t) = −Kx(t) (22.6.17)

In transfer function form this is

U(s) = Θ(s) = −K (sI−A+BK)−1

[
B1

0

]
(22.6.18)

which upon using the special structure of A, B and K yields:

Θ(s) = [−I+K2 (sI−A2 +B2K2)
−1 B2] K1 (sI−A1)

−1 B1 (22.6.19)

22.7 Discrete Time Optimal Regulators

The theory for optimal quadratic regulators for continuous time systems can be
extended in a straightforward way to provide similar tools for discrete time systems.
We briefly summarize the main results below without providing proofs since they
parallel those for the continuous time case presented above.

Consider a discrete time system having the following state space description:



Section 22.7. Discrete Time Optimal Regulators 673

x[k + 1] = Aqx[k] +Bqu[k] (22.7.1)
y[k] = Cqx[k] (22.7.2)

where x ∈ R
n, u ∈ R

m and y ∈ R
p.

For simplicity of notation we will drop the subscript q from the matrices Aq,Bq

and Cq in the remainder of this section.
Consider now the cost function

Ju(x[ko], ko) =
kf∑
ko

(
x[k]TΨx[k] + u[k]TΦu[k]

)
+ x[kf ]TΨfx[kf ] (22.7.3)

Then, the optimal quadratic regulator is given by

uo[k] = −Ku[k]x[k] (22.7.4)

where Ku[k] is a time varying gain, given by

Ku[k] =
(
Φ+BTP[k]B

)−1
BTP[k]A (22.7.5)

where P[k] satisfies the following Discrete Time Dynamic Riccati Equation (DT-
DRE).

P[k] = AT

(
P[k + 1]−P[k + 1]B

(
Φ+BTP[k + 1]B

)−1
BTP[k + 1]

)
A+Ψ

(22.7.6)

Note that this equation must also be solved backwards subject to the boundary
condition

P[kf ] = Ψf (22.7.7)

The steady state (kf → ∞) version of the control law (22.7.4) is given by
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uo[k] = −K∞x[k] where K∞ =
(
Φ+BTP∞B

)−1
BTP∞A (22.7.8)

whereK∞ andP∞ satisfy the associatedDiscreteTimeAlgebraicRiccatiEquation
(DTARE):

AT

(
P∞ −P∞B

(
Φ+BTP∞B

)−1
BTP∞

)
A+Ψ−P∞ = 0 (22.7.9)

with the property thatA−BK∞ has all its eigenvalues inside the stability boundary
provided (A,B) is stabilizable and (A,Ψ

1
2 ) has no unobservable modes on the unit

circle.

22.8 Connections to Pole Assignment

Note that, under reasonable conditions, the steady state LQR ensures closed loop
stability. However, the connection to the precise closed loop dynamics is rather
indirect, since it depends on the choice of Ψ and Φ. Thus, in practice, one usually
needs to perform some trial and error procedure to obtain satisfactory closed loop
dynamics.

In some circumstances, it is possible to specify a region in which the closed loop
poles should reside and to enforce this in the solution. A simple example of this is
when we require that the closed loop poles have real part to the left of s = −α, for
α ∈ R+. This can be achieved by first shifting the axis by the transformation

v = s+ α (22.8.1)

Then �{s} = −α =⇒ �{v} = 0.
To illustrate the application of this transformation, the Laplace form of (22.2.1)

is

sX(s) = AoX(s) +BoU(s) (22.8.2)

whilst in the v-form it is

vX(v) = (Ao + αI)X(v) +BoU(v) = Ao
′X(v) +BoU(v) (22.8.3)

Hence, if the closed loop poles are in the left plane of v , they will be to the
left of α in s . Note, however, that this procedure does not enforce any minimal
damping on the poles.
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A slightly more interesting demand, is to require that the closed loop poles lie
inside a circle of radius ρ and with center at (−α, 0), with α > ρ ≥ 0, i.e. the circle
is entirely within the LHP.

This can be achieved using a two step procedure:

(i) We first transform the Laplace variable s, to a new variable ζ, defined as
follows:

ζ =
s+ α

ρ
(22.8.4)

This takes the original circle in s to a unit circle in ζ . The corresponding
transformed state space model has the form

ζX(ζ) =
1
ρ
(αI+Ao)X(ζ) +

1
ρ
BoU(ζ) (22.8.5)

(ii) One then treats (22.8.5) as the state space description of a discrete time
system. So, solving the corresponding discrete optimal control problem leads
to a feedback gain K such that 1

ρ (αI +Ao −BoK) has all its eigenvalues
inside the unit disk. This, in turn, implies that when the same control law is
applied in continuous time, then the closed loop poles reside in the original
circle in s .

Example 22.3. Consider a 2 × 2 multivariable system, having state space model
given by

Ao =


1 1 1
2 −1 0
3 −2 2


 ; Bo =


0 1
1 0
2 −1


 ; Co =

[
1 0 0
0 1 0

]
; Do = 0 (22.8.6)

Find a state feedback gain matrix K such that the closed loop poles are all located
in the disk with center at (−α; 0) and radius ρ, where α = 6 and ρ = 2.

Solution
We use the approach proposed above, i.e. we transform the complex variable s

according to (22.8.4) and then solve a discrete time optimal regulator problem.
We first need the state space representation in the transformed space. This is

evaluated by applying equation (22.8.5), which leads to

Aζ =
1
ρ
(αI+Ao) and Bζ =

1
ρ
Bo (22.8.7)
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The MATLAB command dlqr, with weighting matrices Ψ = I3 and Φ = I2, is
then used to obtain the optimal gain Kζ, which is

Kζ =
[
7.00 −4.58 7.73
3.18 7.02 −4.10

]
(22.8.8)

When this optimal gain is used in the original continuous time system, the closed
loop poles, computed from det(sI −Ao + BoKζ) = 0, are located at −5.13, −5.45
and −5.59. All these poles lie in the prescribed region, as expected.

✷✷✷

Note that the above ideas can be extended to other cases where the desired
region can be transformed into the stability region for either the continuous or
discrete time case by means of a suitable rational transformation. The reader is
encouraged to explore other possibilities.

22.9 Observer Design

Next we turn to the problem of state estimation. Here, we seek a matrix J ∈
Rn×p such that A− JC has its eigenvalues inside the stability region. Again, it is
convenient to use quadratic optimization.

As a first step, we note that an observer can be designed for the pair (C,A) by
simply considering an equivalent (called dual) control problem for the pair (A,B).
To illustrate how this is done consider the dual system with

A′ = AT B′ = CT (22.9.1)

Then, using any method state feedback design, we can find a matrix K′ ∈ Rp×n

such that A′ −B′K′ has its eigenvalues inside the stability region. Hence, if we
choose J = (K′)T, then we have ensured that A− JC has its eigenvalues inside the
stability region. Thus, we have completed the observer design.

The procedure leads to a stable state estimation of the form:

˙̂x(t) = Aox̂(t) +Bou(t) + J(y(t) −Cx̂(t)) (22.9.2)

Of course, using the tricks outlined above for state variable feedback, one can
also use transformation techniques to ensure that the poles of the observer end up
in any region which can be related to either the continuous or the discrete time case
by a rational transformation.

We will show below how the above procedure can be formalized using Optimal
Filtering theory. We will call the resulting optimal filter a Kalman filter following
Kalman’s seminal contribution to this problem.
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22.10 Linear Optimal Filters

We will present two alternative derivations of the optimal filter - one based on
stochastic modeling of the noise (section §22.10.1) and one based on determinis-
tic assumptions (section §22.10.2). Readers can choose either or both derivations,
depending upon the particular point of view they wish to adopt.

22.10.1 Derivation based on a stochastic noise model

In this section we show how optimal filter design can be set up as a quadratic opti-
mization problem. This shows that the filter is optimal under certain assumptions
regarding the signal generating mechanism. In practice, this property is probably
less important than the fact that the resultant filter has the right kind of tuning
knobs so that it can be flexibly applied to a large range of problems of practical
interest. The reader is thus encouraged to understand the core idea of the Kalman
filter since it is arguably one of the most valuable tools in the control system de-
signer’s tool box.

Consider a linear stochastic system of the form

dx(t) = Ax(t)dt + dw(t) (22.10.1)
dy(t) = Cx(t)dt+ dv(t) (22.10.2)

where dv(t) and dw(t) are known as orthogonal increment processes. As a formal
treatment of stochastic differential equations is beyond the scope of this book, it
suffices here to think of the formal notation ẇ(t), v̇(t) as white noise processes with
impulsive correlation, i.e.

E{ẇ(t)ẇ(ζ)T } = Qδ(t− ζ) (22.10.3)

E{v̇(t)v̇(ζ)T } = Rδ(t− ζ) (22.10.4)

where E{◦} denotes mathematical expectation and δ(◦) is the Dirac delta function.
We can then informally write the model (22.10.1)-(22.10.2) as

dx(t)
dt

= Ax(t) +
dw(t)
dt

(22.10.5)

y′(t) =
dy(t)
dt

= Cx(t) +
dv(t)
dt

(22.10.6)

We also assume that ẇ(t) and v̇(t) are mutually uncorrelated. For the readers
familiar with the notation of spectral density for random processes, we are simply
requiring that the spectral density for ẇ(t) and v̇(t) be Q and R respectively.

Our objective will be to find a linear filter driven by y′(t) which produces a
state estimate x̂(t). We will optimize the filter by minimizing the quadratic function
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Jt = E{x̃(t)x̃(t)T } (22.10.7)

where

x̃(t) = x̂(t)− x(t) (22.10.8)

is the estimation error.
We will proceed to the solution of this problem in four steps.

Step 1

Consider a time varying version of the model (22.10.5), given by

dxz(t)
dt

= Az(t)x(t) + ẇz(t) (22.10.9)

y′z(t) =
dyz(t)
dt

= Cz(t)xz(t) + v̇z(t) (22.10.10)

where ẇz(t) and v̇z(t) have zero mean and are uncorrelated, and

E{ẇz(t)ẇz(ζ)T } = Qz(t)δ(t − ζ) (22.10.11)

E{v̇z(t)v̇z(ζ)T } = Rz(t)δ(t− ζ) (22.10.12)

For this model, we wish to compute P(t) = E{xz(t)xz(t)T }. We assume that
E{xz(0)xz(0)T } = Po, with ẇz(t) uncorrelated with the initial state xz(0) = xoz.

Solution

The solution to (22.10.9) is

xz(t) = φz(t, 0)xoz +
∫ t

0

φz(t, τ)ω̇z(τ)dτ (22.10.13)

where φz(t2, t1) ∈ Rn×n is the state transition matrix for the system (22.10.9).
Then, squaring (22.10.13) and taking mathematical expectations, we have

P(t) = E{xz(t)xz(t)T } = φz(t, 0)Poφz(t, 0)
T +
∫ t

0

φz(t, τ)Qz(τ)φz(t, τ)
T dτ

(22.10.14)

where we have used (22.10.11).
Note that by applying the Liebnitz rule (3.7.4) to (22.10.14) we obtain
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dP(t)
dt

= AzP(t) +P(t)Az
T +Qz(t) (22.10.15)

where we have also used the fact that
d

dt
φ(t, τ) = Az(t)φ(t, τ).

Step 2

We now return to the original problem, i.e. to obtain an estimate, x̂(t), for the
state, x(t), in (22.10.5). We assume the following linear form for the filter

dx̂(t)
dt

= Ax̂(t) + J(t)[y′(t)−Cx(t)] (22.10.16)

where J(t) is a time varying gain yet to be determined. Note that (22.10.16) has
the same structure as a standard linear observer save it has a time varying observer
gain.

Step 3

Assume that we are also given an initial state estimate x̂o of statistical property

E{(x(0)− x̂o)(x(0)− x̂o)T } = Po, (22.10.17)

and assume, for the moment, we are given some gain J(τ) for 0 ≤ τ ≤ t. Derive an
expression for

P(t) = E{(x̂(t)− x(t))(x̂(t)− x(t))T }
= E{x̃(t)x̃(t)T } (22.10.18)

Solution

Subtracting (22.10.16) from (22.10.5) we obtain

dx̃(t)
dt

= (A− J(t)C)x̃(t) + J(t)v̇(t)− ẇ(t) (22.10.19)

We see that (22.10.19) is a time varying system and can therefore immediately
apply the solution to Step 1, after making the following connections:

xz(t) → x̃(t); Az(t) → (A− J(t)C); ẇz(t) → J(t)v̇(t)− ẇ(t)
(22.10.20)

to conclude
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dP(t)
dt

= (A− J(t)C)P(t) +P(t)(A − J(t)C)T + J(t)RJ(t)T +Q (22.10.21)

subject toP(0) = Po. Note that we have used the fact thatQz(t) = J(t)RJ(t)T+Q.

Step 4

We next choose J(t), at each time instant, so that Ṗ is as small as possible.

Solution. We complete the square on the right hand side of (22.10.21) by defining
J(t) = J∗(t) + J̃(t) where J∗(t) = P(t)CTR−1. Substituting into (22.10.21) gives

dP(t)
dt

=(A− J(t)C − J̃(t)C)P(t) +P(t)(A − J(t)C− J̃(t)C)T

+ (J∗(t) + J̃(t))R(J∗(t) + J̃(t))T +Q

=(A− J(t)C)P(t) +P(t)(A− J(t)C)T

+ J∗(t)RJ∗(t) +Q+ J̃(t)R(J̃(t))T

(22.10.22)

We clearly see that Ṗ(t) is minimized at every time if we choose J̃(t) = 0. Thus
J∗(t) is the optimal filter gain since it minimizes Ṗ(t), and hence P(t) for all t.

✷✷✷

In summary, the optimal filter satisfies

dx̂(t)
dt

= Ax̂(t) + J∗(t)[y′(t)−Cx̂(t)] (22.10.23)

where the optimal gain J∗(t) satisfies

J∗(t) = P(t)CTR−1 (22.10.24)

and P(t) is the solution to

dP(t)
dt

=(A− J∗(t)C)P(t) +P(t)(A − J∗(t)C)T

+ J∗(t)R(J∗(t))T +Q
(22.10.25)
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subject to P(0) = Po.
Equation (22.10.25) can also be simplified to

dP(t)
dt

= Q−P(t)CTR−1CP(t) +P(t)AT +AP(t) (22.10.26)

The reader will recognize that the solution to the optimal linear filtering problem
presented above has a very close connection to the LQR problem presented in section
§22.4.
Remark 22.2. It is important to note that in the above derivation it makes no
difference if the system is time varying (i.e. it A,C,Q,R etc. are all functions of
time. This is often important in applications.

Remark 22.3. When we come to properties, these are usually restricted to the
time-invariant case (or closely related cases - e.g. periodic systems). Thus, when
discussing the steady state filter it is usual to restrict attention to the case where
A,C,Q,R etc. are not explicit functions of time.

The properties of the optimal filter therefore follow directly from the optimal
LQR solutions, by making the correspondences given in Table 22.10.1 below.

Regulator Filter

τ t− τ

tf 0

A −AT

B −CT

Ψ Q

Φ R

Ψf Po

Table 22.1. Duality between quadratic regulators and filters

In particular, one is frequently interested in the steady state optimal filter ob-
tained whenA, C, Q,R are time invariant and the filtering horizon tends to infinity.
By duality with the optimal control problem, the steady state filter takes the form:
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dx̂(t)
dt

= Ax̂+ J∞
s (y′ −Cx̂) (22.10.27)

where

J∞
s = Ps

∞CTR−1 (22.10.28)

and Ps∞ is the stabilizing solution of the following CTARE:

Q−P∞CTR−1CP∞ +P∞AT +AP∞ = 0 (22.10.29)

We will not labor the time-variant properties here since they are easily obtained
from the corresponding properties of the optimal regulator. To illustrate, we state
without proof the following facts which are the duals of those given in section §22.5.1
for the optimal regulator:

Say that

(i) the system (C,A) is detectable from y(t). (The reader may feel that this
assumption is reasonable - after all if the system isn’t detectable, then there are
unstable states whose response cannot be seen in the output. It is heuristically
reasonable that it would then be impossible to say anything sensible about
these states by processing the output signal), and

(ii) the system states are all perturbed by noise so that it is not possible to
estimate them once and for all, and then let the open loop model predict
all future values. (Technically, this is stated as requiring that (A,Q

1
2 ) is

stabilizable,

then the optimal solution of the filtering Riccati equation (22.10.26) tends to a
steady state limit Ps

∞ as t → ∞. This limit has two key properties:

• Ps
∞ is the only non-negative solution of the matrix algebraic Riccati equation

(see (22.10.29)) obtained by setting dP(t)
dt in (22.10.26).

• When this steady state value is used to generate a steady state observer as in
(22.10.27), (22.10.28), then the observer has the property that (A− J∞

s C) is
a stability matrix.

This last property is important in applications. In particular, we recall that the
error x̃(t) between x̂(t) and x(t) satisfies (22.10.19). The steady state version of
this equation is stable when (A− J∞

s C) is a stability matrix.
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22.10.2 Steady State Filter as a Deterministic Model Matching
Problem

We next give an alternative purely deterministic view of the optimal filter as
a model matching problem. Thus consider a state space model as in (22.10.1),
(22.10.2) without noise, i.e.

dx(t)
dt

= Ax(t); x(0) = xo (22.10.30)

yo(t) = Cx(t) (22.10.31)

Say we are interested in estimating a scalar combination of the state which we
denote

zo(t) = γTx(t) (22.10.32)

or in transfer function form:

Zo(s) = γT (sI−A)−1xo (22.10.33)

Our filter is required to be a linear time invariant system driven by yo. This we
express in transfer function form by requiring that:

Ẑo(s) = F(s)Yo(s) (22.10.34)

where F(s) is the 1×m row vector corresponding to the filter transfer function and

Yo(s) = C(sI−A)−1xo (22.10.35)

Our remaining task is to find the optimal value for the transfer function F(s).
Towards this goal, we want to consider all possible initial states xo. We know
that they all such states can be formed as a linear combination of the basis vec-
tors e1, . . . , en where ei = [0, . . . , 0, 1, 0 . . . , 0]T . Thus we vectorize (22.10.33),
(22.10.34), (22.10.35) by changing xo into each of the above vectors in turn, i.e. we
introduce the row vectors:

Z = [z1, . . . , zn] (22.10.36)

Ẑ = [ẑ1, . . . , ẑn] (22.10.37)

and the m× n matrix:

Y = [y1, . . . , yn] (22.10.38)
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where

Zi(s) = γT (sI−A)−1ei (22.10.39)
Yi(s) = C(sI−A)−1ei (22.10.40)
Ẑi(s) = F(s)Yi(s) (22.10.41)

We would like the row vector Ẑ(s) to be near Z(s) in some sense. However, we
wish to place some weighting on the size of the filter which is used since we know
that large values of F will be undesirable since they will magnify noise on the
measurements Y. (We mean this idea to be taken in a heuristic sense here since we
are not explicitly including noise in our considerations.)

A criterion which trades off the closeness of Z to Ẑ with the size of F is the
following quadratic criterion in the frequency domain:

J =
∫ ∞

−∞

(∥∥Z(jω)T − Ẑ(jω)T
∥∥2
Q
+
∥∥F(jω)∥∥2

R

)
dω (22.10.42)

where we have somewhat arbitrarily introduced weightings Q and R to allow us to
shift the balance between bringing Ẑ to Z versus having a large filter gain. Using
(22.10.33), (22.10.34) (22.10.35), the criterion becomes

J =
∫ ∞

−∞

(∥∥ZT − (FY)T
∥∥2
Q
+
∥∥FT
∥∥2
R

)
dω (22.10.43)

It is interesting to transpose quantities in the above expression. This preserves
the norm but shifts F to an intuitively interesting position. Doing this yields:

J =
∫ ∞

−∞

(∥∥ZT −YTFT
∥∥2
Q
+
∥∥FT
∥∥2
R

)
dω (22.10.44)

We can now think of FT as a control vector. In this form we recognize (22.10.44)
as simply being a standard model matching problem exactly as was discussed in
section §22.6 with the correspondences

YT = (sI−AT )−1CT ≡ W = C2(sI−A2)−1B2 (22.10.45)

ZT = (sI−AT )−1γ ≡ V = C1(sI−A1)−1B1 (22.10.46)
(22.10.47)

where C2 = C1 = I, A1 = A2 = AT , B2 = CT , B1 = γ
From section §22.6, the optimal solution is

F(s)T = −[I−K2(sI−AT +CTK2)−1CT ][K1(sI−AT )−1γ] (22.10.48)
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or

F(s) = γT [sI−A]−1K1
T [−I+C(sI−A+K2

TC)−1K2
T ] (22.10.49)

Now due to the special structure of the problem, the Riccati equation and optimal
gains have a special form. Specifically we have that the Riccati equation is

0 = Ψ̃−PB̃Φ̃
−1
B̃TP+PÃ+ ÃTP (22.10.50)

which upon using the special structure of Ã, B̃, Ψ̃ and Φ̃ gives

0 =
[
Q −Q
−Q Q

]
−
[
P3CTR−1CP3 P3CR−1CP2

P2CTR−1CP3
T P2CTR−1CP2

]
(22.10.51)

+
[
P1AT P3AT

P3
TAT P2AT

]
+
[
AP1 AP3

AP3
T AP2

]
where we have used

Ã =
[
A1

T 0
0 A2

T

]
; B̃ =

[
0
CT

]
; P =

[
P1 P3

P3
T P2

]
; Φ̃ = R (22.10.52)

We note that, in our problem, A1 = A2 = AT and B2 = CT , and P̄ = P2 satisfies
the following separate equation

0 = Q− P̄CTR−1CP̄+ P̄AT +AP̄ (22.10.53)

Also, we have that P3 satisfies

0 = −Q− P̄CTR−1CP3
T +P3

TAT +AP3
T (22.10.54)

Adding (22.10.53) and (22.10.54) gives

−P̄CTR−1C(P3
T + P̄) + (P3

T + P̄)AT +A(P3
T + P̄) = 0 (22.10.55)

which leads to P3
T = −P̄ = P3

Finally

[K1 K2] = Φ−1[0 B2
T ]
[
P1 P3

P3 P2

]
(22.10.56)

= Φ−1[B2
TP3 B2

TP2]

= [−R−1CP̄ R−1CP̄]

Setting JT = −K1 = K2, then
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J = P̄CTR−1 (22.10.57)

Finally, substituting (22.10.57) into (22.10.49), we have

F (s) = γT [sI−A]−1J[I−C(sI−A+ JC)−1J] (22.10.58)

= γT [sI−A]−1[I− JC(sI−A+ JC)−1]J

= γT (sI−A)−1[sI−A+ JC− JC](sI−A+ JC)−1J

= γT [sI−A+ JC]−1J

We notice that γT appears as a factor outside of the filter. Thus, we have
actually found a result which can be translated to one which is independent of the
choice of γ. In particular, we note from (22.10.32), (22.10.34), that the optimal
filter for estimating x is simply (sI −A + JC)−1J. This transfer function can be
realized in state space form as:

˙̂x(t) = (A− JC)x̂(t) + Jy(t) (22.10.59)

which we recognize as being identical to the steady state filter given in (22.10.27).

Remark 22.4. The above derivation gives a purely deterministic view of the opti-
mal filtering and allows us to trade-off the size of the error versus the size of the
filter.

Other connections with deterministic optimal control theory are explored in sec-
tion §?? of the Appendix.

✷✷✷

22.10.3 Discrete time optimal quadratic filter

As in section §22.7 for the control problem, we can also readily develop discrete
forms for the optimal filter. As in section §22.7, we will simply quote the result,
since the theory parallels the continuous case.

Consider a discrete time system having the following state space description:

x[k + 1] = Ax[k] +Bu[k] + w[k] (22.10.60)
y[k] = C[k] + v[k] (22.10.61)
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where w[k] ∈ Rn and v[k] ∈ Rp are uncorrelated stationary stochastic processes,
with covariances given by

E{w[k]wT [ζ]} = QδK [k − ζ] (22.10.62)

E{v[k]vT [ζ]} = RδK [k − ζ] (22.10.63)

where Q ∈ Rn×n is a symmetric non negative definite matrix and R ∈ Rp×p is a
symmetric positive definite matrix.

Consider now the following observer to estimate the system state

x̂[k + 1] = Ax̂[k] +Bu[k] + Jo[k]
(
y[k]−Cx̂[k]

)
(22.10.64)

Furthermore, we assume that the initial state x[0] satisfies

E{(x[0]− x̂[0])(x[0]− x̂[0])T } = Po (22.10.65)

Then, the optimal choice (in a quadratic sense) for Jo[k] is given by

Jo[k] = AP[k]CT
(
R+CP[k]CT

)−1 (22.10.66)

where P[k] satisfies the following discrete time dynamic Riccati equation (DTDRE).

P[k + 1] = A
(
P[k]−P[k]CT

(
R+CP[k]CT

)−1
CP[k]

)
AT +Q (22.10.67)

which can be solved forward in time, subject to

P[0] = Po (22.10.68)

Remark 22.5. Note again that for the general filter A,C,Q,R etc. can all be
time varying. However, when we come to discuss the steady state filter it is usually
required that the problem be time invariant (or at least transferable to this form as
is the case for periodic systems).

The steady state (k → ∞) filter gain satisfies the DTARE given by
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A
[
P∞ −P∞CT

(
R+CP∞CT

)−1
CP∞
]
AT +Q = P∞ (22.10.69)

The above results show that the duality between optimal regulators and optimal
filters is also present in discrete time systems.

22.10.4 Stochastic noise models

In the above development we have simply represented the noise as a white process
noise sequence ({ω(k)}) and a white measurement noise sequence ({υ(k)}). Actually
this is much more general than may seem at first sight. For example, it can include
colored noise having arbitrary rational noise spectrum. The essential idea is to
model this noise as the output of a linear system (i.e. a filter) driven by white
noise. Thus, say that a system is described by

x(k + 1) = Ax(k) +Bu(k) + ωc(k) (22.10.70)
y(k) = Cx(k) + υ(k) (22.10.71)

where {ωc(k)} represents colored noise i.e. noise that is white noise passed through
a filter. Then we can add the additional noise model (22.10.70), (22.10.71) to the
description. For example, let the noise filter be

x′(k + 1) = A′x(k) + ω(k) (22.10.72)
ωc(k) = C′x′(k) (22.10.73)

where {ω(k)} is a white noise sequence.
Combining (22.10.70) to (22.10.73), gives a composite system driven by white

noise of the form:

x̄(k + 1) = Āx̄(k) + B̄u(k) + ω̄(k) (22.10.74)
y(k) = C̄x̄(k) + υ(k) (22.10.75)

where

x̄(k) = [x(k)T , x′(k)T ]T (22.10.76)

ω̄(k) = [0, ω(k)T ] (22.10.77)

Ā =
[
A C′

0 A′

]
; B̄ =

[
B
0

]
; C̄ =

[
C 0
]

(22.10.78)
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22.10.5 Optimal prediction

In the case of gaussian noise, the Kalman filter actually produces the mean of the
conditional distribution for x(k) given the past data, {y()), u()); ) = 0, . . . , k −
2, k − 1}. This can be written as

x̂(k) = E{x(k)/y()), u()); ) = 0, . . . , k − 1}
�
= x̂(k|k − 1) (22.10.79)

Due to the unpredictability of white noise, the optimal prediction of future states
is simply obtained by iterating the model with the future white noise set to zero.
Thus consider the composite model (22.10.74), (22.10.75), then for a known input
{u(k)} the predicted future states satisfy:

x̃(j + 1) = Āx̃(j) + B̄u(j); j = k, k + 1, k + 2, . . . (22.10.80)

with initial condition x̃(k) = x̂(k|k − 1). Note that x̃(j) can also be written as

x̃(j) = E{x(j)|y()), u()); ) = 0, . . . , k − 1}; j ≥ k

�
= x̂(j|k − 1); j ≥ k (22.10.81)

22.10.6 State estimation with continuous models and sampled
observations

A problem that is sometimes met in practice is where one has an underlying contin-
uous time system but where the data is collected at discrete sample points. Indeed,
the sample points can be non-uniformly spaced in some applications. This still falls
under the general discrete time varying filtering problem.

What we need to do is to propagate the continuous system between samples and
then update at the sample points using an appropriate discrete model. To illustrate,
say that the system is described (formally) by (22.10.5), (22.10.6) i.e.

ẋ = Ax+ ω̇ (22.10.82)
y′ = Cx+ υ̇ (22.10.83)

where ω̇ , υ̇ have spectral density Q and R respectively.
Before we can sensibly sample y′ we need first to pass it through an appropriate

anti-aliasing filter. One such filter is the so called integrate and dump filter. In this
case, the kth sample is given by

ȳ[k] =
1

tk − tk−1

∫ tk

tk−1

y′(t)dt (22.10.84)
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where tk denotes the time of the kth sample.
The discrete observation ȳ[k] can be related to a discrete state space model of

the form:

x̄[k + 1] = Aq[k]x̄[k] + ω̄[k] (22.10.85)
ȳ[k] = Cq[k]x̄[k] + ῡ[k] (22.10.86)

By integrating the model (22.10.82), (22.10.83), it can be seen that

Aq[k] = eA(tk+1−tk) # I +A(tk+1 − tk) (22.10.87)

Cq[k] =
1

(tk+1 − tk)

∫ tk+1

tk

CeAτdτ # C (22.10.88)

E{ω̄[k]ω̄[k]T } = Q̄ # Q(tk+1 − tk) (22.10.89)

E{ῡ[k]ῡ[k]T } = R̄ # R

(tk+1 − tk)
(22.10.90)

The discrete model can then be used to obtain the state estimates at the sample
points. The continuous state can then be interpolated between samples using the
open loop model i.e. using

˙̂x(t) = Ax̂(t); for tε[tk, tk+1] (22.10.91)

with initial condition

x̂(tk) = ˆ̄x[k] (22.10.92)

22.11 State Estimate Feedback

Finally, we can combine, the state estimation provided by (22.9.2) with the state
variable feedback determined early to yield the following state estimate feedback
control law

u(t) = −Kx̂(t) + r(t) (22.11.1)

Note that theorem 18.1 also applies here, namely, the closed loop poles resulting
from the use of (22.11.1) are the union of the eigenvalues that result from the use
of the state feedback together with the eigenvalues associated with the observer.
Note, in particular, that the proof of theorem 18.1 does not depend on the scalar
nature of the problem.
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22.12 Transfer Function Interpretation

As in section §18.5, the state estimation feedback law described above can be given
a polynomial interpretation.

In particular, Lemma 18.5 on page 531 still holds for the steady state observer,
i.e. X̂(s) can be expressed as

X̂(s) = (sI−Ao + JCo)−1(BoU(s) + JY (s)) = T1(s)U(s) +T2(s)Y (s)
(22.12.1)

where T1(s) and T2(s) are two stable transfer function matrices given by

T1(s)
�= (sI−Ao + JCo)−1Bo (22.12.2)

T2(s)
�
= (sI−Ao + JCo)−1J (22.12.3)

Thus, the feedback control law based on the state estimate is given by

U(s) = −KX̂(s)−R(s)

= −KT1(s)U(s)−KT2(s)Y (s) +R(s)
(22.12.4)

This can be written in an equivalent form as

CD(s)U(s) = −CN(s)Y (s) +R(s) (22.12.5)

where CD(s) and CN(s) are stable matrices given by

CD(s) = I+K[sI−Ao + JCo]−1Bo =
NCD(s)
E(s)

(22.12.6)

CN(s) = K[sI−Ao + JCo]−1J =
NCN(s)
E(s)

(22.12.7)

and where NCD(s) and NCN(s) are polynomial matrices, and E(s) is the observer
polynomial given by

E(s) = det(sI−Ao + JCo) (22.12.8)

From (22.12.5) we see that C(s) = [CD(s)]−1CN(s) is a LMFD for the con-
troller. Furthermore, this controller satisfies the following lemma.
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Lemma 22.3. Consider the controller C(s) = [CD(s)]−1CN(s), with CD(s) and
CN(s) defined in (22.12.6) and (22.12.6), respectively. Then a state space real-
ization for this controller is given by the 4 − tuple (Ao − JCo − BoK,J,K,0),
i.e.

C(s) = K[sI−Ao + JCo +BoK]−1J (22.12.9)

Proof

We first apply the matrix inversion lemma to obtain

[CD(s)]−1 = I−K[sI−Ao + JCo +BoK]−1Bo (22.12.10)

We next form the product [CD(s)]−1CN(s) and use (22.12.10) and (22.12.7),
from where, after some straightforward matrix manipulations, the result follows.

✷✷✷

The state space implementation of the controller allows the direct use of the
results of the observer and state feedback synthesis stages. This is useful, not only
in simulation, but also when implementing the controller in practice.

It is also possible to obtain a RMFD for the controller. In particular, from
Lemma 20.1 on page 598 it follows that

[CD(s)]−1CN(s) = CN(s)[CD(s)]−1 (22.12.11)

where

CD(s) = I−Co(sI−Ao +BoK)−1J =
NCD(s)
F (s)

(22.12.12)

CN(s) = K(sI−Ao +BoK)−1J =
NCN(s)
F (s)

(22.12.13)

and where NCD(s) and NCN(s) are polynomial matrices, and F (s) is the state
feedback polynomial given by

F (s) = det(sI−Ao +BoK) (22.12.14)

Similarly, using (20.3.24) and (20.3.25) and Lemma 20.1 on page 598, the plant
transfer function can be written as:

Go(s) = Co[sI−Ao]−1Bo

= [GoD(s)]−1GoN(s) = GoN(s)[GoD(s)]−1
(22.12.15)
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where

GoN(s) = Co(sI−Ao + JCo)−1Bo (22.12.16)

GoD(s) = I−Co(sI−Ao + JCo)−1J (22.12.17)

GoN(s) = Co(sI−Ao +BoK)−1Bo (22.12.18)

GoD(s) = I−K(sI−Ao +BoK)−1Bo (22.12.19)

We then have the following result:

Lemma 22.4. The sensitivity and complementary sensitivity resulting from the
control law 22.12.5 are respectively

So(s) = CD(s)GoD(s) = I−GoN(s)CN(s) (22.12.20)

To(s) = GoN(s)CN(s) = I−CD(s)GoD(s) (22.12.21)

Proof

From Lemma 20.1 on page 598 we have that

GoD(s)CD(s) +GoN(s)CN(s) = CD(s)GoD(s) +CN(s)GoN(s) = I (22.12.22)

Using (22.12.22) in (20.5.3) and (20.5.4) the result follows.
✷✷✷

From Lemma 22.4, we see again that the closed loop poles are located at the
zeros of E(s) and F (s) as in the SISO case.

22.13 Achieving Integral Action in LQR Synthesis

An important aspect not addressed so far is that optimal control and optimal state
estimate feedback do not automatically introduce integral action. The latter prop-
erty is an architectural issue that has to be forced on the solution.

We refer the reader to section §18.7 where various ways of introducing integral
action (or general IMP) in state estimate feedback were discussed. For example,
from part (b) of section §18.7, we have seen that one way of forcing integral action
is to put a set of integrators at the output of the plant.

This can be described in state space form as:

ẋ(t) = Ax(t) +Bu(t) (22.13.1)
y(t) = Cx(t)
ż(t) = −y(t)
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As before, we can use an observer (or Kalman filter) to estimate x given u and
y. Hence, in the sequel we will assume (without further comment) that x and z are
directly measured. The composite system can be written in state space form as

ẋ
′
(t) = A

′
x(t) +B

′
u(t) (22.13.2)

where

x
′
=
[
x(t)
z(t)

]
; A

′
=
[
A 0
−C 0

]
; B′ =

[
B
0

]
(22.13.3)

We then determine state feedback (from x
′
(t)) to stabilize the composite system.

Of course, a key issue is that the composite system be controllable. A sufficient
condition for this is provided in the following.

Lemma 22.5. The cascaded system (22.13.2)-(22.13.3) is completely controllable
provided the original system is controllable and provided there is no zero of the
original system at the origin.1

Proof

The result follows immediately from Lemma 20.6 on page 619.
✷✷✷

The final architecture of the control system would then appear as in Figure 22.2.

y∗(t)

u(t) z(t)

x̂(t)
Observer

Plant

parallel
integrators

Feedback
gain

+

−
y(t) e(t)

ż(t) = e(t)

Figure 22.2. Integral action in MIMO control

1Recall that if a plant has one (or more) zero at the origin, its output cannot be steered to a
constant value with a bounded control signal.
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It is readily seen that the above idea can be extended to any disturbance or
reference model by incorporating the appropriate disturbance generating polyno-
mials (internal model principle) in place of the parallel integrators in Figure 22.2
on the facing page. The corresponding version of Lemma 22.5 simply requires that
the poles of the disturbance/reference models not be zeros of the original system
exactly as discussed in section §20.7.6.

We illustrate the above idea with the following example.

Example 22.4. Consider a system with state space description given by (A,B,C,0),
where

A =
[−1 2
−5 −3

]
; B =

[−1 0
−1 2

]
; C =

[−1 0
1 1

]
(22.13.4)

Synthesize a linear quadratic optimal regulator which forces integral action and
where the cost function is built with Ψ and Φ, where Ψ = I and Φ = 0.01 ∗
diag(0.1, 1)

Solution

We first choose the poles for the plant state observer to be located at −5 and −10.
This leads to

J =
[−4 6
5 2

]
(22.13.5)

Then the regulator will feed the plant input with a linear combination of the plant
state estimates and the integrator states. We choose to build an optimal regulator
yielding closed loop poles located in a disk with center at s = −3 and unit radius
(see section §22.8). We thus obtain an optimal feedback gain given by

K =
[−4.7065 −2.0200 −8.0631 0.0619
−4.8306 0.3421 −8.0217 −4.0244

]
(22.13.6)

This design is simulated in a loop with the same structure as in Figure 22.2 on
the preceding page (see SIMULINK file cint.mdl) . The tracking performance is
illustrated in Figure 22.3, where step references have been applied.

22.14 Industrial Applications

Multivariable design based on LQR theory and the Kalman filter accounts for thou-
sands of real world applications. Indeed, it was recently pointed out that there are
approximately 400 patents per year based around the Kalman filter alone. The
authors of this book have also applied these methods in numerous of real world
applications. Our belief is that the Kalman filter is one of the most powerful tools
available to the control system designer.
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Figure 22.3. Tracking performance of a LQR design with integration

The key issue in using these techniques in practice lies in the problem formulation
because, once the problem has been properly posed, the solution is usually rather
straightforward. Since much of the success in applications of this theory depends
on the formulation, we will conclude this chapter with a brief description of five
real world applications that the authors have been personally involved with. Our
purpose in presenting these applications is not to give full details since this would
take us well beyond the scope of this text. Instead, we hope to give sufficient
information so that the reader can see the methodology used in applying these
methods to different types of problems.

The particular applications that we will review are:-

• Geostationary satellite tracking

• Zinc Coating Mass estimation in continuous galvanizing lines

• Roll Eccentricity estimation in thickness control for rolling mills

• Gain estimation in flatness control for rolling mills

• Vibration control in flexible structures

22.14.1 Geostationary satellite tracking

It is known that, so called, geostationary satellites actually appear to wobble in the
sky. The period of this wobble is one sidereal day. If one wishes to point a receiving
antenna at a satellite to maximize the received signal, then it is necessary to track
this perceived motion. The required pointing accuracy is typically to within a few
hundredths of a degree. The physical set-up is as shown in Figure 22.4.

One could use an open loop solution to this problem as follows: Given a model
(e.g. a list of pointing angles versus time), the antenna could be pointed in the
correct orientation as indicated by position encoders. This technique is used in
practice but suffers from the following practical issues:
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Figure 22.4. Satellite and antenna angle definitions

• It requires high absolute accuracy in the position encoders, antenna and re-
flector structure.

• It also requires regular maintenance to put in new model parameters.

• It cannot compensate for wind, thermal and other time varying effects on the
antenna and reflector.

This motivates the use of a closed loop solution. In such a solution, the idea
is to periodically move the antenna so as to find the direction of maximum signal
strength. However, the data so received is noisy for several reasons including:

• Noise in the received signal, p

• Variations in the signal intensity transmitted from the satellite

• Imprecise knowledge of the beam pattern for the antenna

• The effect of wind gusts on the structure, and the reflector

It is a reasonable hypothesis that we may be able to smooth this data using a
Kalman filter. Towards this end, we need to first build a model for the orbit. Now,
as seen from the earth, the satellite executes a periodic motion in the two axis of the
antenna (azimuth and elevation). Several harmonics are present but the dominant
harmonic is the fundamental. This leads to a model of the form:

y(t) = Ψs(t) = x1 + x2 sinωt+ x3 cosωt (22.14.1)

where Ψs(t) is say the azimuth angle as a function of time. The frequency ω in this
application is known. There are several ways of describing this model in state space
form. For example, we could use
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d

dt


x1

x2

x3


 = 0 (22.14.2)

y(t) = C(t)x(t) (22.14.3)

where C(t) = [1, sinωt, cosωt] (22.14.4)

This system is time-varying (actually periodic). We can then immediately apply
the Kalman filter to estimate x1, x2, x3 given noisy measurements of y(t).

A difficulty with the above formulation is that equation (22.14.2) has zeros on
the stability boundary. Hence, inspection of Lemma 22.2 on page 667 indicates
that the steady state filter could experience difficulties. This is resolved by adding
a small amount of fictitious noise to the right hand side of the model (22.14.2) to
account for orbit imperfections. Also, note that this is an example of the kind of
problem mentioned in section §22.10.6 since the data on satellite location can arrive
at discrete times which may be non-uniformly spaced.

To finalize the filter design, the following information must be supplied:

• a guess of the current satellite orientation

• a guess of the covariance of the initial state error (P (0))

• a guess of the measurement noise intensity (R)

• a rough value for the added process noise intensity (Q)

A commercial system built around the above principles has been designed and
built at the University of Newcastle, Australia. This system is marketed under
the trade name ORBTRACK� and has been used in many real world applications
ranging from Australia to Indonesia and Antarctica.

✷✷✷

22.14.2 Zinc coating mass estimation in continuous galvanizing
lines

A diagram of a continuous galvanizing line is shown in Figure 22.5. An interesting
feature of this application is that the sheet being galvanized is a meter or so wide
and many hundreds of meters long.

The strip passes through a zinc pot (see the figure). Subsequently, excess zinc is
removed by air knives. The strip then moves through a cooling section and finally
the coating mass is measured by a traversing x-ray gauge - see Figure 22.6.
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Figure 22.5. Schematic diagram of continuous galvanizing line

Figure 22.6. Traversing x-ray gauge

If one combines the lateral motion of the x-ray gauge with the longitudinal
motion of the strip, then one obtains the zig-zag measurement pattern shown in
Figure 22.7.

Because of the sparse measurement pattern, it is highly desirable to smooth and
interpolate the coating mass measurements. The Kalman filter is a possible tool to
achieve this data smoothing function. However, before we can apply this tool, we
need a model for the relevant components in the coating mass distribution. The
relevant components include:

• shape disturbances (arising from shape errors in the rolling process)

These can be described by band-pass filtered noise components using a model
of the form
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Figure 22.7. Zig-zag measurement pattern

ẋ1 =− ω1x1 −
[

ω2ω1

ω2 − ω1

]
n (22.14.5)

ẋ2 = −ω2x2 −
[

ω2
2

ω1 − ω2

]
n (22.14.6)

ysd = (1, 1)
(
x1

x2

)
(22.14.7)

• cross bow (a quadratic term arising from non-uniform coating effects)

This is a quadratic function of distance across the strip and is modeled by

ẋ3 = 0 (22.14.8)
ycb = {d(t)[d(t)−W ]}x3 (22.14.9)

where d(t) denotes the distance from the left edge of the strip and W denotes
the total strip width

• skew (due to non-alignment of the knife jet)

This is a term that increases linearly with distance from the edge. It can thus
be modeled by

ẋ4 = 0 (22.14.10)
ysc = {d(t)}x4 (22.14.11)
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• eccentricity (due to out-of-round in the rolls)

Say that the strip velocity is υs and that the roll radius is r. Then this
component can be modeled as

ẋ5 = 0 (22.14.12)
ẋ6 = 0 (22.14.13)

ye = {sin
(υs
r

)
t, cos
(υs
r

)
t}
(
x5

x6

)
(22.14.14)

• strip flap (due to lateral movement of the strip in the vertical section of the
galvanizing line)

Let f(t) denote the model for the flap, then this component is modeled by

ẋ7 = 0 (22.14.15)

yf = {f(t)}x7 (22.14.16)

• mean coating mass (the mean value of the zinc layer)

This can be simply modeled by

ẋ8 = 0 (22.14.17)
ym = x8 (22.14.18)

Putting all of the equations together, gives us an 8th order model of the form:

ẋ = Ax+Bn (22.14.19)

z = y = C(t)x+ υ (22.14.20)
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A =




−ω1 0 0 0 0 0 0 0
0 −ω2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



; B =




−
(

ω2ω1
ω2−ω1

)
−
(

ω2
2

ω1−ω2

)
0
0
0
0
0
0




(22.14.21)

C = [1, 1, d(t)[d(t)−W ], d(t), sin
(υs
d
t
)
, cos
(υs
d
t
)
, f(t), 1] (22.14.22)

Given the above model, one can apply the Kalman filter to estimate the coating
thickness model. The resultant model can then be used to interpolate the thickness
measurement. Note that here the Kalman filter is actually periodic due to the
periodic nature of the X-ray traversing system.

A practical form of this algorithm is part of a commercial system for Coating
Mass Control developed in collaboration with the authors of this book by a company
(Industrial Automation Services Pty. Ltd.). The system has proven to be very
beneficial in reducing times to accurately estimate coating mass.

22.14.3 Roll eccentricity compensation in rolling mills

The reader will recall that rolling mill thickness control problems have been de-
scribed in Chapter 8. A schematic of the set-up is shown in the Figure 22.8.

Figure 22.8. Rolling mill thickness control

In Figure 22.8, we have used the following symbols:
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F (t) : Force
h(t) : Exit thickness Measurement
u(t) : Unloaded Roll Gap (the control variable)

In Chapter 8, it was argued that the following virtual sensor (called a BISRA
gauge) could be used to estimate the exit thickness thus eliminating the transport
delay from mill to measurement.

ĥ(t) =
F (t)
M

+ u(t) (22.14.23)

However, one difficulty which we have not previously mentioned with this virtual
sensor is that the presence of eccentricity in the rolls (see Figure 22.9) significantly
effects the results.

Figure 22.9. Roll eccentricity

To illustrate why this is so, let e denote the roll eccentricity. Then the true roll
force is given by

F (t) = M(h(t)− u(t) + e(t)) (22.14.24)

In this case, the previous estimate of the thickness obtained from the force
actually gives:

ĥ(t) = h(t) + e(t) (22.14.25)

Thus, e(t) represents an error, or disturbance term, in the virtual sensor output
due to the effects of eccentricity.

The error e(t) in the virtual sensor output turns out to be very important in
this particular application. There is thus strong motivation to try to remove the
effect of eccentricity from the estimate ĥ(t).

A key property that allows us to make progress on the problem is that e(t) is
actually (almost) periodic since it arises from eccentricity in the four rolls of the
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mill (two work rolls and two back up rolls). Also the roll angular velocities are
easily measured in this application using position encoders. From this data, one
can determine a multi-harmonic model for the eccentricity of the form:

e(t) =
N∑
k=1

αk sinωkt+ βk cosωkt (22.14.26)

where αi and βi are unknown but ω1 . . . ωN are known.
Moreover, each sinusoidal input can be modeled by a state space model of the

form:

ẋk1(t) = ωkx
k
2(t) (22.14.27)

ẋk2(t) = −ωkxk1(t) (22.14.28)

Finally, consider any given measurement, say the force F (t). We can think of
F (t) as comparing the above eccentricity components buried in noise, i.e.

y(t) = F (t) =
N∑
k=1

xk1(t) + xk2(t) + n(t) (22.14.29)

We can then, in principle, apply the Kalman filter to estimate {xk1(t), xk2(t); k =
1, . . . , N} and hence to correct the measured force measurements for eccentricity.

The final control system is as shown in the Figure 22.10.
An interesting feature of this problem is that there is some practical benefit in

using the general time-varying form of the Kalman filter rather than the steady
state filter. The reason is that, in steady state, the filter acts as a narrow band-pass
filter bank centered on the harmonic frequencies. This is heuristically the correct
steady state solution. However, an interesting fact that the reader can readily
verify, is that the transient response time of a narrow band-pass filter is inversely
proportional to the filter bandwidth. This means that in steady state one has the
following fundamental design trade-off:

• One would like to have a narrow band-pass to give good frequency selectivity
and hence good noise rejection.

On the other hand:

• One would like to have a wide band-pass filter to minimize the initial transient
period.

This is an inescapable dichotomy for any time-invariant filter.
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Figure 22.10. Final roll eccentricity compensated control system

Perhaps the astute reader might say: Well, why not start with a wide-band
filter to minimize the transient but then narrow the filter band down as the signal
is acquired. If you thought of this, then you are exactly correct. Indeed, this is
precisely what the time-varying Kalman filter does. In particular, if one starts the
solution of the Riccati equation by setting the initial condition P (to) to some large
value, then the resultant filter will initially have a wide-bandwidth. As the Riccati
equation solution proceeds, then P (t) will decrease along with the associated filter
bandwidth. Indeed, the time-varying Kalman filter gives an optimal time-varying
trade-off between minimizing the transient time whilst ultimately locking onto the
harmonic components.

Thus the trick to get the best trade-off between filter selectivity and transient
response time is to use a time-varying filter.

Another question that the reader may well ask is: How narrow does the final
filter bandwidth ultimately become? The answer to this question raises another
fundamental trade-off in optimal filter design.

The reader can verify that the model described in (22.14.27), (22.14.28) has un-
controllable modes (from process noise) on the stability boundary. Careful reading
of the properties of the associated filtering Riccati equation given in Appendix ??
indicates that P (t) converges to a steady state value in this case but this happens
to be a zero matrix. Moreover, the corresponding filter is then not stable. You may
well ask: What has gone wrong? Well nothing really. We told the filter in this ideal
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formulation that there was no process noise. In this case, the filter could (asymp-
totically) estimate the states with zero error. Also, once the states were found
then they could be predicted into the future using the resonant model (22.14.27),
(22.14.28). This model has poles on the stability boundary, and is thus not stable!
(Indeed the filter bandwidth has been reduced to zero).

The difficulty is that we have over idealized the problem. In practice, the fre-
quencies in the eccentricity signal will not be exactly known (due to slip etc). Also,
the harmonic components will not be time-invariant due to roll-heating effects, etc.
To model these effects, we can simply add a little process noise to the right hand
side of the model (22.14.27), (22.14.28). In this case, the model becomes stabilizable
from the noise. The steady state solution of the Riccati equation then turns out to
be positive definite and the final filter will be stable and of finite bandwidth.

This leads us to another design trade-off. In particular, if one says that the
model (22.14.27), (22.14.28) is poorly known (by setting the process noise intensity
Q to a large value) then the final filter bandwidth will be large. On the other hand
if one says that the model (22.14.27), (22.14.28) has a high degree of validity (by
setting the process noise intensity to a small value) then the final filter bandwidth
will be small.

In practice, once one has been through a design as above, then it is often possible
to capture the key ideas in a simpler fashion. Indeed, this is the case here. In the
final implementation, on-line solution of a Riccati equation is typically not used.
Instead a time-varying filter bank is employed which captures the essence of the
lessons learnt from the formal optimal design. This kind of final wrap-up of the
problem is typical in applications.

The final system, as described above, has been patented under the name AUSREC�

and is available as a commercial product from Industrial Automation Services Pty.
Ltd.

✷✷✷

22.14.4 Gain estimation for flatness control in rolling mills

The problem of strip flatness control in rolling mills has been previously described
in section §21.7. It was shown in this previous chapter that the flatness problem
can be viewed as a multi-input multi-output control problem. Also this problem
can be (approximately) converted to a set of decoupled SISO problems by use of a
static precompensation.

However, as in many real world problems, once one problem has been solved
then other issues arise at a deeper level.

What has not been mentioned up to this point is that the cooling water referred
to earlier is actually recycled water. This means that, on start-up, when the rolls
are cold, the cooling water is typically hotter than the rolls (i.e. it is more correctly
heating water). Rolling usually occurs in periods interspersed by periods of non-
rolling. The roll temperature tends to rise during rolling and to drop during non-
rolling periods. A somewhat simplified view of this phenomenon is shown in the
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Figure 22.11.

Figure 22.11. Roll surface temperature evolution

Let us denote the temperture slope during rolling by x1 and the slope during
non-rolling by x2. Then an appropriate discrete time model for the roll temperature
x3 could be

x1(k + 1) = x1(k) (22.14.30)
x2(k + 1) = x2(k) (22.14.31)
x3(k + 1) = x3(k) + [q(k)x1(k) + (1− q(k))x2(k)]∆ (22.14.32)

where ∆ is the sampling period and q(k) = 1 during rolling periods and q(k) = 0
during non-rolling periods.

Now the gain, g(k), of the cooling water sprays is the object of interest. This gain
can effectively be measured by dividing a (smoothed version) of output flatness by a
(smoothed version) of the input action. Also, the gain is a function of the difference
between x3(k) and the cooling water temperature TC , i.e.

g(k) = x3(k)− TC + n(k) (22.14.33)

where n(k) denotes measurement noise.
We can thus feed the noisy measurements of {g(k)} into a Kalman filter to

estimate the underlying gain. Note that it is important to use the estimated gain
to predict the gain cross-over point as the measured gain becomes lost in the noise
as x3(k) approaches TC .

An embellished form of the above algorithm is currently undertaking industrial
trials.
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Figure 22.12. Vibration control using a piezoelectric actuator.

22.14.5 Vibration control in flexible structures

As was pointed out in the introduction to this book, new actuators often open
up exciting new opportunities for enhanced control. For example, there is sub-
stantial interest in new types of electromagnetic actuators and devices that take
advantage of the high energy density of smart material transducer elements. Smart
material-based transducer elements include piezoelectrics, electrostrictions, magni-
torestrictions, shape memory alloys, etc.

Many application areas exist for these technologies especially in the control of
lightly decoupled systems.

To illustrate the principles involved in this kind of application, we will consider
the problem of controller design for the piezoelectric laminate beam of Figure 22.12.
In this system the measurements are taken by a displacement sensor that is attached
to the tip of the beam, and a piezoelectric patch is used as the actuator. The
purpose of the controller is to minimize beam vibrations. It is easy to see that this
is a regulator problem, and hence, a LQG controller can be designed to reduce the
unwanted vibrations.

To find the dynamics of structures such as the beam in Figure 22.12, one has
to solve a particular partial differential equation that is known as the Bernoulli-
Euller beam equation. Using modal analysis techniques, it is possible to show that
a transfer function of the beam would consist of an infinite number of very lightly-
damped second order resonant terms. That is, the transfer function from the voltage
that is applied to the actuator to the displacement of the tip of the beam can be
described by:

G(s) =
∞∑
i=1

αi
s2 + 2ζiωis+ ω2

i

. (22.14.34)

In general, one is only interested in designing a controller for a particular band-
width. As a result, it is common practice to truncate (22.14.34) by keeping the first
N modes that lie within the bandwidth of interest.

In this example, we consider a particular system described in the references
given at the end of the chapter. We only consider the first six modes of this system.
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i αi ωi (rad/sec)
1 9.72× 10−4 18.95
2 0.0122 118.76
3 0.0012 332.54
4 −0.0583 651.660
5 −0.0013 1077.2
6 0.1199 1609.2

The transfer function is then

G(s) =
6∑

i=1

αi
s2 + 2ζiωis+ ω2

i

. (22.14.35)

Here, ζi’s are assumed to be 0.002 and αi’s are given in Table 22.14.5.
We first design a Linear Quadratic Regulator. Here, the Ψ matrix is chosen to

be

Ψ = 0.1483diag(ω2
1, 1, . . . , ω

2
6, 1).

The reason for this choice of state weighting matrix is that with this choice of Ψ,
the quadratic form x(t)TΨx(t) represents the total energy of the beam at each time
corresponding to its first six resonant modes. The control weighting matrix is also,
somewhat arbitrarily, chosen as Φ = 10−8. Next, Kalman filter state estimator is
designed with Q = 0.08I and R = 0.005.

To show the closed loop performance of the controller, we have plotted the open
loop and closed loop impulse responses of the system in Figure 22.13. It can be
observed that the LQG controller can considerably reduce structural vibrations. In
Figure 22.14, we have plotted the open loop and closed loop frequency responses of
the beam. It can be observed that the LQG controller has significantly damped the
first three resonant modes of the structure.

22.15 Summary

• Full multivariable control incorporates the interaction dynamics rigorously
and explicitly.

• The fundamental SISO synthesis result that, under mild conditions, the nom-
inal closed loop poles can be assigned arbitrarily carries over to the MIMO
case.

• Equivalence of state feedback and frequency domain pole placement by solving
the (multivariable) Diophantine Equation carries over as well.
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Figure 22.13. Open loop and closed loop impulse responses of the beam.
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• Due to the complexities of multivariable systems, criterion based synthesis
(briefly alluded to in the SISO case) gains additional motivation.

• A popular family of criteria are functionals involving quadratic forms of con-
trol error and control effort.

• For a general nonlinear formulation, the optimal solution is characterized by
a two-point boundary value problem.

• In the linear case (the so-called linear quadratic regulator, LQR), the gen-
eral problem reduces to the solution of the continuous time dynamic Riccati
equation which can be feasibly solved, leading to time-variable state feedback.

• After initial conditions decay, the optimal time-varying solution converges to
a constant state feedback, the so-called steady state LQR solution.

• It is frequently sufficient to neglect the initial transient of the strict LQR and
only implement the steady state LQR.

• The steady state LQR is equivalent to either

◦ a model matching approach, where a desired complementary sensitivity
is specified and a controller is computed that matches it as closely as
possible according to some selected measure.

◦ pole placement, where a closed loop polynomial is specified and a con-
troller is computed to achieve it.

• Thus, LQR, model-matching and pole-placement are mathematically equiva-
lent, although they do offer different tuning parameters.

Equivalent synthesis
techniques

Tuning parameters

LQR Relative penalties on control error versus
control effort.

Model matching Closed loop complementary sensitivity ref-
erence model and weighted penalty on the
difference to the control loop

Pole placement Closed loop polynomial

• These techniques can be extended to discrete time systems.

• There is a very close connection to the dual problem of filtering, i.e., the
problem of inferring a state from a related (but not exactly invertible) set of
measurements.
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• Optimal filter design based on quadratic criteria leads again to a Riccati equa-
tion.

• The filters can be synthesized and interpreted equivalently in a

◦ linear quadratic

◦ model matching

◦ pole-placement

framework.

• The arguable most famous optimal filter formulation, the Kalman filter, can
be given a stochastic interpretation depending on taste.

• The LQR does not automatically include integral action; thus, rejection of
constant or other polynomial disturbances must be enforced via the internal
model principle.
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22.17 Problems for the Reader

Problem 22.1. A MIMO plant has a nominal transfer function Go(s) and it is
being controlled in closed loop. Synthesize a MIMO controller such that the domi-
nant poles of the closed loop are the roots of s2 + 13s+ 100. Assume that

Go(s) =
1

(s+ 4)(s+ 5)

[
2 −1
0.5 3

]
(22.17.1)

Problem 22.2. For the same plant as in Problem 22.1 synthesize an optimal con-
troller such that all the closed loop poles are inside a circle centered at (−8, 0) and
with radius equal to 2.

Problem 22.3. Consider a plant having a model given by

Go(s) =
1

s3 − 2s2 − 6s+ 7

[
3s− 2 s2 − 2s+ 3

s2 − 3s+ 3 2s− 6

]
(22.17.2)

Determine a controller, in transfer function form, which provides zero steady
state errors for constant references and disturbances and, at the same time, leads
to closed loop natural modes which decay, at least, as fast as e−2t.

Problem 22.4. Repeat the previous problem, but assume now that a digital con-
troller has to be designed. The sampling period is chosen to be ∆ = 0.1[s].

Problem 22.5. Device a modification for the discrete time LQR synthesis, such
that the resulting closed loop poles are inside a circle of given radius ρ (ρ < 1).

Problem 22.6. Consider a plant having a model given by

Go(s) =
1

s+ 2

[
e−0.5s 0.5
−0.2 e−0.25s

]
(22.17.3)

22.6.1 Using the LQR approach based on state estimate feedback, design a digital
regulator, with ∆ = 0.25 [s] such that all the closed loop poles are located
inside the circle with radius 0.5. (Use Φ = I and Ψ = I

22.6.2 Compute the resulting closed loop poles.
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22.6.3 Repeat the design using pole assignment in such a way that the closed loop
poles are the same as in the LQR design approach.

Problem 22.7. Consider a plant described, in state space form, by the 4 − tuple
(Ao,Bo,Co,0). Assume that this plant is completely controllable and completely
observable. Further assume that the closed loop poles for the control of this plant
are allocated via LQR design. The cost function is given in (22.4.3) (see page 663),
where

tf = ∞; Ψf = 0; Ψ = CT
oCo; Φ = ρ2I (22.17.4)

with ρ a positive scalar constant.

22.7.1 Prove that the closed loop poles are the LHP roots of

det
(
I+

1
ρ2
Go(s)Go(−s)T

)
(22.17.5)

where Go(s) is the system transfer function matrix, i.e. Go(s) = Co[sI −
Ao]−1Bo. (Hint: recall that the closed loop poles for the LQR are the stable
eigenvalues of the Hamiltonian matrix given in (??).)

22.7.2 Use the above result to analyze the location of the closed loop poles for small
(cheap control) and large (expensive control) values of ρ. Look, in particular,
to the case of unstable and non minimum phase plants.

Problem 22.8. Apply the result proved in problem 22.7 to the control of a plant
having a model given by

Go(s) =
1

(s+ 3)(s+ 5)

[
3(−s+ 5) 2

1.5 1

]
(22.17.6)

Problem 22.9. A discrete time noise measurement, y[k], of an unknown constant
α satisfies the model

y[k] = α+ v[k] (22.17.7)

where v[k] is an uncorrelated stationary process with variance σ2.
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22.9.1 Find an optimal filter to estimate α.

22.9.2 Build a SIMULINK scheme to evaluate your filter in steady state.

Problem 22.10. Consider the case of a discrete time noise measurement,y[k] of
a sine wave of known frequency but unknown amplitude and unknown phase, i.e.

y[k] = A sin(ωok + α) + v[k] (22.17.8)

where v[k] is an uncorrelated stationary process with variance σ2.

22.10.1 Build a state model to generate the sine wave.

22.10.2 Find an optimal filter to estimate A and α.

22.10.2 Build a SIMULINK scheme to evaluate your filter in steady state.

Problem 22.11. Consider the following problem of model matching

J =
1
2π

∫ ∞

−∞

∣∣M(jω)−N(jω)Q(jω)
∣∣2 dω (22.17.9)

where

M(s) =
9

s2 + 4s+ 9
; N(s) =

−s+ 8
(s+ 8)(s+ 2)

(22.17.10)

22.11.1 Translate the problem into an LQR problem using R = 10−3.

22.11.2 Solve the LQR problem and find the optimal value for Q(s).





Chapter 23

MODEL PREDICTIVE
CONTROL

23.1 Preview

As mentioned in Chapter 11, all real world control problems are subject to con-
straints of various types. The most common constraints are actuator constraints
(amplitude and slew rate limits). In addition, many problems also have constraints
on state variables (e.g. maximal pressures that cannot be exceeded, minimum tank
levels etc).

In many design problems, these constraints can be ignored, at least in the initial
design phase. However, in other problems, these constraints are an inescapable part
of the problem formulation since the system operates near a constraint boundary.
Indeed, in many process control problems the optimal steady state operating point
is frequently at a constraint boundary. In these cases, it is desirable to be able to
carry out the design so as to include the constraints from the beginning.

Chapter 11 described methods for dealing with constraints based on anti-windup
strategies. These are probably perfectly adequate for simple problems - especially
SISO problems. Also, these methods can be extended to certain MIMO problems
as we shall see later in Chapter 26. However, in more complex MIMO problems -
especially those having both input and state constraints, it is frequently desirable
to have a more formal mechanism for dealing with constraints in MIMO control
system design.

We describe one such mechanism here based on Model Predictive Control. This
has actually been a major success story in the application of modern control. More
than 2,000 applications of this method have been reported in the literature - pre-
dominantly in the petrochemical area. Also, the method is being increasingly used
in electromechanical control problems as control systems push constraint bound-
aries. Its main advantages are:

• it provides a “one-stop-shop” for MIMO control in the presence of constraints,

• it is one of the few methods that allow one to treat state constraints, and

719
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• several commercial packages are available which give industrially robust ver-
sions of the algorithms aimed at chemical process control.

There are many alternative ways of describing MPC including polynomial and
state space methods. Here we will give a brief introduction to the method using
a state space description. This is intended to acquaint the reader with the basic
ideas of MPC (e.g. the notion of receding horizon optimization). It also serves as
an illustration of some of the optimal control ideas introduced in Chapter 22 so as
to provide motivation for MPC.

One of us (Graebe) has considerable practical experience with MPC in his in-
dustry where it is credited with enabling very substantial annual financial savings
through improved control performance. Another of us (Goodwin) has applied the
method to several industrial control problems (including ‘added water’ control in a
sugar mill, rudder roll stabilization of ships, and control of a food extruder) where
constraint handling was a key consideration.

Before delving into model predictive control in detail, we pause to revisit the
anti-windup strategies introduced in Chapter 11.

23.2 Anti-Windup Revisited

We assume, for the moment, that the complete state of a system is directly mea-
sured. Then, if one has a time-invariant model for a system and if the objectives
and constraints are time-invariant, it follows that the control policy should be ex-
pressable as a fixed mapping from the state to the control. That is, the optimal
control policy will be expressable as

uox(t) = h(x(t)) (23.2.1)

for some static mapping h(◦). What remains is to give a characterization of the
mapping h(◦). For general constrained problems, it will be difficult to give a simple
parameterization to h(◦). However, we can think of the anti-windup strategies of
Chapter 11 as giving a particular simple (ad-hoc) parameterization of h(◦). Specif-
ically, if the control problem is formulated, in the absence of constraints, as a linear
quadratic regulator, then we know from Chapter 22 that the unconstrained infinite
horizon policy is of the form of Equation (23.2.1) where h(◦) takes the simple linear
form:

ho(x(t)) = −K∞x(t) (23.2.2)

for some constant gain matrix K∞ (see section §22.5). If we then consider a SISO
problem in which the control only is constrained, then the anti-windup form of
(23.2.2) is simply given by (see section §18.9):
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h(x(t)) = sat{ho(x(t))} (23.2.3)

Now we have found in Chapter 11 that the above scheme actually works remark-
ably well, at least for simpler problems.

We illustrate by a further simple example

Example 23.1. Consider a continuous-time double integrator plant which is sam-
pled with period ∆ = 1 second. The corresponding discrete time model is of the
form:

x(k + 1) = Ax(k) +Bu(k) (23.2.4)
y(k) = Cx(k) (23.2.5)

where

A =
[
1 1
0 1

]
; B =

[
0.5
1

]
; C =

[
1 0
]

(23.2.6)

We choose to use infinite horizon LQR theory to develop the control law. Within
this framework, we use the following weighting matrices

Ψ = CTC, Φ = 0.1 (23.2.7)

The unconstrained optimal control policy as in (23.2.2) is then found via the
methods described in Chapter 22.

We next investigate the performance of this control law under different scenarios.
We first consider the case when the control is unconstrained.
Then, for an initial condition of x(0) = (−10, 0)T , the output response and input

signal are as shown in Figures 23.1 and 23.2 on the next page. Figure 23.3 on the
following page shows the optimal response on a phase plane plot.

We next assume that the input must satisfy the mild constraint |u(k)| ≤ 5.
Applying the anti-windup policy (23.2.3) leads to the response shown in Figure 23.4
on page 723 with the corresponding input signal as in Figure 23.5 on page 723. The
response is again shown on a phase plane plot in Figure 23.6 on page 723.

Inspection of Figures 23.4, 23.5, and 23.6 on page 723 indicates that the sim-
ple anti-windup strategy of Equation (23.2.3) has produced a perfectly acceptable
response in this case.

✷✷✷

The above example would seem to indicate that one need never worry about
fancy methods. Indeed, it can be shown that the control law of Equation (23.2.3) is
actually optimal under certain circumstances – see problem 23.10 at the end of the
chapter. However, if we make the constraints more stringent, the situation changes
as we see in the next example.
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Figure 23.1. Output response with-
out constraints
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Figure 23.2. Input response without
constraints
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Figure 23.3. Phase plane plot without constraints

Example 23.2. Consider the same set up as in Example 23.1, save that the input
is now required to satisfy the more severe constraint |u(k)| ≤ 1. Notice that this
constraint is 10% of the initial unconstrained input shown in Figure 23.2. Thus,
this is a relatively severe constraint. The control law of Equation (23.2.3) now leads
to the response shown in Figure 23.7 on page 724 with corresponding input as in
Figure 23.8 on page 724. The corresponding phase plane plot is shown in Figure 23.9
on page 724.

Inspection of Figure 23.7 on page 724 indicates that the simple policy of Equation
(23.2.3) is not performing well and, indeed, has resulted in large overshoot in this
case.

✷✷✷
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Figure 23.4. Output response with
input constraint |u(k)| ≤ 5
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Figure 23.5. Input response with
constraint |u(k)| ≤ 5
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Figure 23.6. Phase plane plot with constraint |u(k)| ≤ 5

The reader may wonder what has gone wrong in the above example. A clue is
given in Figure 23.9 on the following page. We see that the initial input steps have
caused the velocity to build up to a large value. If the control were unconstrained,
this large velocity would help us get to the origin quickly. However, because of
the limited control authority, the system “braking capacity” is restricted and hence
large overshoot occurs. In conclusion, it seems that the control policy of Equation
(23.2.3) has been too “shortsighted” and has not been able to account for the fact
that future control inputs would be constrained as well as the current control input.
The solution would seem to be to try to “look-ahead” (i.e. predict the future
response) and to take account of current and future constraints in deriving the
control policy. This leads us to the idea of model predictive control.
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Figure 23.7. Output response with
constraint |u(k)| ≤ 1

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u
(k
)

samples (k)

Figure 23.8. Input response with
constraint |u(k)| ≤ 1
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Figure 23.9. Phase plane plot with constraint |u(k)| ≤ 1

23.3 What is Model Predictive Control?

Model Predictive Control is a control algorithm based on solving an on-line “opti-
mal” control problem. A receding horizon approach is used which can be summa-
rized in the following steps:

(i) At time k and for the current state x(k), solve, on-line, an open-loop optimal
control problem over some future interval taking account of the current and
future constraints.

(ii) Apply the first step in the optimal control sequence.

(iii) Repeat the procedure at time (k + 1) using the current state x(k + 1).
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The solution is converted into a closed loop strategy by using the measured
value of x(k) as the current state. When x(k) is not directly measured then one
can obtain a closed loop policy by replacing x(k) by an estimate provided by some
form of observer. The latter topic is taken up in section §23.6. For the moment,
we assume x(k) is measured. Then, in a general nonlinear setting the method is as
follows:

Given a model

x()+ 1) = f(x()), u())), x(k) = x (23.3.1)

the MPC at event (x, k) is computed by solving a constrained optimal control
problem:

PN (x) : V o
N (x) = min

U∈UN
VN (x, U) (23.3.2)

where

U = {u(k), u(k + 1), . . . , u(k +N − 1)} (23.3.3)

VN (x, U) =
k+N−1∑
�=k

L(x()), u())) + F (x(k +N)) (23.3.4)

and UN is the set of U that satisfy the constraints over the entire interval [k, k +
N − 1]; i.e.

u()) ∈ U ) = k, k + 1, . . . , k +N − 1 (23.3.5)
x()) ∈ X ) = k, k + 1, . . . , k +N (23.3.6)

together with the terminal constraint

x(k +N) ∈ W (23.3.7)

Usually, U ⊂ Rm is convex and compact, X ⊂ Rn is convex and closed, and W
is a set that can be appropriately selected to achieve stability.

In the above formulation, the model and cost function are time invariant. Hence,
one obtains a time-invariant feedback control law. In particular, we can set k = 0
in the open loop control problem without loss of generality. Then at event (x, k)
we solve:

PN (x) : V o
N (x) = min

U∈UN
VN (x, U) (23.3.8)
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where

U = {u(0), u(1), . . . , u(N − 1)} (23.3.9)

VN (x, U) =
N−1∑
�=0

L(x()), u())) + F (x(N)) (23.3.10)

subject to the appropriate constraints. Standard optimization methods are used to
solve the above problem.

Let the minimizing control sequence be

Uo
x = {uox(0), uox(1), . . . , uox(N − 1)} (23.3.11)

Then, the actual control applied at time k is the first element of this sequence,
i.e.

u = uox(0) (23.3.12)

Time is then stepped forward one instance, and the above procedure is repeated
for another N -step ahead optimization horizon. The first input of the new N -step
ahead input sequence is then applied. The above procedure is repeated endlessly.
The idea is illustrated in Figure 23.10 on the next page. Note that only the shaded
inputs are actually applied to the plant.

The above MPC strategy implicitly defines a time invariant control policy h(◦)
as in (23.2.1) i.e. a static mapping h : X → U of the form:

h(x) = uox(0) (23.3.13)

The method originally arose in industry as a response to the need to deal with
constraints. The associated literature can be divided into four generations as follows:

• First generation (1970’s) - used impulse or step response linear models, quadratic
cost function, and ad-hoc treatment of constraints.

• Second generation (1980’s) - linear state space models, quadratic cost function,
input and output constraints expressed as linear inequalities, and quadratic
programming used to solve the constrained optimal control problem.

• Third generation (1990’s) - several levels of constraints (soft, hard, ranked),
mechanisms to recover from infeasible solutions.

• Fourth generation (late 1990’s) - nonlinear problems, guaranteed stability, and
robust modifications.
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Figure 23.10. Receding horizon control principle
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23.4 Stability

A remarkable property of MPC is that one can establish stability of the resultant
feedback system (at least with full state information). This is made possible by
the fact that the value function of the optimal control problem acts as a Lyapunov
function for the closed loop system. We remind the reader of the brief introduction
to Lyapunov stability given in Chapter 19.

For clarity of exposition, we make the simplifying assumptions:

A1 : An additional constraint is placed on the final state of the receding horizon
optimization problem, namely

x(N) = 0 (23.4.1)

where x(N) is the terminal state resulting from the control sequence Uo
x as in

(23.3.11).

A2 : L(x, u) is positive definite in both arguments.

Theorem 23.1. Consider the system (23.3.1) controlled by the receding horizon
MPC algorithm (23.3.8) to (23.3.11) and subject to the terminal constraint (23.4.1).
This control law renders the resultant closed loop system globally asymptotically
stable.

Proof

Under regularity assumptions, the value function V o
N (·) is positive definite and

proper (V (x) → ∞ as ||x|| → ∞). It can therefore be used as a Lyapunov function
for the problem. We recall that at event (x, k), MPC solves:

PN (x) : V o
N (x) = min

U∈UN
VN (x, U) (23.4.2)

VN (x, U) =
N−1∑
�=0

L(x()), u())) + F (x(N)) (23.4.3)

subject to constraints.
We denote the optimal open loop control sequence solving PN (x) as

Uo
x = {uox(0), uox(1), . . . , uox(N − 1)} (23.4.4)

We recall that inherent in the MPC strategy is the fact that the actual control
applied at time k is the first value of this sequence; i.e.
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u = h(x) = uox(0) (23.4.5)

Let x(1) = f(x, h(x)) and let x(N) be the terminal state resulting from the
application of Uo

x . Note that we are assuming x(N) = 0.
A feasible solution (but not the optimal one) for the second step in the receding

horizon computation, PN(x1), is then:

Ũx = {uox(1), uox(2), . . . , uox(N − 1), 0} (23.4.6)

Then the increment of the Lyapunov function on using the true MPC optimal
input and when moving from x to x(1) = f(x, h(x)) satisfies:

∆hV
o
N (x)

�
= V o

N (x(1))− V o
N (x) (23.4.7)

= VN (x(1), Uo
x1
)− VN (x, Uo

x)

However, since Uo
x1

is optimal, we know that

VN (x(1), Uo
x1
) ≤ VN (x(1), Ũx) (23.4.8)

where Ũx is the sub-optimal sequence defined in (23.4.6). Hence, we have

∆hV
o
N (x) ≤ VN (x(1), Ũx)− VN (x, Uo

x) (23.4.9)

Using the fact the Ũx shares (N −1) terms in common with Uo
x , we can see that

the right hand side of (23.4.9) satisfies:

VN (x(1), Ũx)− VN (x, Uo
x) = −L(x, h(x)) (23.4.10)

where we have used the fact that Uo
x leads to x(N) = 0 by assumption and hence

Ũx leads to x(N + 1) = 0.
Finally, using (23.4.9) and (23.4.10) we have

∆hV
o
N (x) ≤ −L(x, h(x)) (23.4.11)

When L(x, u) is positive definite in both arguments, then stability follows im-
mediately from Theorem 19.1 on page 578.

✷✷✷
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Remark 23.1. For clarity, we have used rather restrictive assumptions in the above
proof so as to keep the proof simple. Actually both assumption (A1) and (A2) can be
significantly relaxed. For example, assumption (A1) can be replaced by the assump-
tion that x(N) enters a terminal set in which “nice properties” hold. Similarly,
assumption (A2) can be relaxed to requiring that the system be detectable in the
cost function. We leave the interested reader to pursue these embellishments in the
references given at the end of the chapter.

✷✷✷

Remark 23.2. Beyond the issue of stability, a user of MPC would clearly also be
interested in what, if any, performance advantages are associated with the use of
this algorithm. In an effort to (partially) answer this question, we pause to revisit
Example 23.2 on page 722.

✷✷✷

Example 23.3. Consider again the problem described in Example 23.2 with input
constraint |u(k)| ≤ 1. We recall that the shortsighted policy used in Example 23.2
led to large overshoot.

Here, we consider the cost function given in (23.3.10) with N = 2 and such
that F (x(N)) is the optimal unconstrained infinite horizon cost and L(x()), u()))
is the incremental cost associated with the underlying LQR problem as described in
Example 23.1.

The essential difference between Example 23.2 and the current example is that,
whereas in Example 23.2 we only considered the input constraint on the present
control in the optimization, here we consider the constraint on the present and next
step. Thus the derivation of the control policy is not quite as “short sighted” as was
previously the case.
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Figure 23.11. Output response us-
ing MPC
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Figure 23.12. Input response using
MPC
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Figure 23.13. Phase plane plot using MPC

Figure 23.11 shows the resultant response and Figure 23.12 shows the corre-
sponding input. The response is shown in phase plane form in Figure 23.13. Com-
paring Figures 23.11 and 23.13 with Figures 23.7 and 23.9 on page 724 confirms
the advantages of taking account of future constraints in deriving the control policy.

✷✷✷

23.5 Linear Models with Quadratic Cost Function

So far, we have described the MPC algorithm in a rather general nonlinear setting.
However, it might reasonably be expected that further insights can be obtained if
one specializes the algorithm to cover the linear case with quadratic cost function.
This will be the topic of the current section. Again we will use a state space set-up.
Let us therefore assume that the system is described by the following linear time
invariant model:

x()+ 1) = Ax()) +Bu()) (23.5.1)
y()) = Cx()) (23.5.2)

where x()) ∈ Rn, u()) ∈ Rm, and y()) ∈ Rm .
We assume that (A,B,C) is stabilizable and detectable and that 1 is not an

eigenvalue of A. So as to illustrate the principles involved, we go beyond the set-up
described in section §23.2 to include reference tracking and disturbance rejection.
Thus consider the problem of tracking a constant set-point ys and rejecting a time-
varying output disturbance {d())}, that is, we wish to regulate, to zero, the error
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e()) = y()) + (d())− ys) (23.5.3)

It will be convenient in the sequel to make no special distinction between the out-
put disturbance and the set-point, so we define an “equivalent” output disturbance
de as the external signal

de()) = d())− ys (23.5.4)

Without loss of generality, we take the current time as 0.
Given knowledge of the external signal de and the current state measurement

x(0) (these signals will be later replaced by on-line estimates), our aim is to find
the M -move control sequence {u(0), u(1), . . . , u(M − 1)} that minimizes the finite
horizon performance index:

Jo =[x(N)− xs]TΨf [x(N) − xs] (23.5.5)

+
N−1∑
�=0

eT ())Ψe())

+
M−1∑
�=0

[u())− us]TΦ[u())− us]

where Ψ ≥ 0, Φ > 0, Ψf ≥ 0. Note that this cost function is a slight generalization
of the one given in Equation (22.7.3) of Chapter 22.

In (23.5.5), N is the prediction horizon; M ≤ N is the control horizon.
We assume that de()) contains time-varying components that tend to zero as

) → ∞ as well as steady state components. We thus let d̄e = lim�→∞ de()).
In equation (23.5.5), we then let us and xs denote the steady state values of u

and x i.e.

us = −[C(I−A)−1B]−1d̄e (23.5.6)

xs = (I−A)−1Bus (23.5.7)

The minimization of (23.5.5) is performed on the assumption that the control
reaches its steady state value after M steps, that is u()) = us, ∀) ≥ M .

In the presence of constraints on the input and output, the above dynamic
optimization problem simply amounts to finding the solution of a non-dynamic
constrained quadratic program. Indeed, from (23.5.1) and using Bus = (I −A)xs,
we can write
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X −Xs = ΓU +Λx(0)−Xs (23.5.8)

where

X =



x(1)
x(2)
...

x(N)


 ; Xs =



xs
xs
...
xs


 ; U =




u(0)
u(1)
...

u(M − 1)


 ; Λ =



A
A2

...
AN


 ; (23.5.9)

Γ =




B 0 . . . 0 0
AB B . . . 0 0
...

...
. . .

...
...

AM−1B AM−2B . . . AB B
AMB AM−1B . . . A2B AB

...
...

. . .
...

...
AN−1B AN−2B . . . . . . AN−MB



; Xs =




xs
xs
...
xs
Axs
...

AN−Mxs




Then, using (23.5.8), (23.5.9) and

Ψ = diag[CTΨC, . . . ,CTΨC,Ψf ] (23.5.10)

Φ = diag[Φ, . . . ,Φ] (23.5.11)

Uos =
[
uTos uTos . . . uTos

]T (23.5.12)

D̃ = [de(0)T − d̄Te , de(1)
T − d̄Te , . . . , de(N − 1)T − d̄e, 0]T (23.5.13)

Z = diag[CTΨ,CTΨ, . . . ,CTΨ] (23.5.14)

we can express (23.5.5) as

Jo =eT (0)Ψe(0) + (X −Xs)TΨ(X −Xs) + (U − Us)TΦ(U − Us)

+ 2(X −Xs)TZD̃ + D̃T diag[Ψ, . . . ,Ψ]D̃

=Jo + UTWU + 2UTV (23.5.15)

In (23.5.15), Jo is independent of U and

W = ΓTΨΓ+Φ , V = ΓTΨ [Λx(0)−Xs]−ΦUs + ΓTZD̃ . (23.5.16)

From (23.5.15) it is clear that, if the design is unconstrained, Jo is minimized by
taking
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U = −W−1V (23.5.17)

Next we introduce constraints into the problem formulation.
Magnitude and rate constraints on both the plant input and output can be easily

expressed as linear constraints on U of the form

LU ≤ K (23.5.18)

In this case, the optimal solution

UOPT = [(uOPT (0))T , (uOPT (1))T , . . . , (uOPT (M − 1))T ]T (23.5.19)

can be numerically computed via the following static optimization problem:

UOPT = arg min
U

LU≤K
UTWU + 2UTV (23.5.20)

This optimization is a convex problem due to the quadratic cost and linear
constraints. Also, standard numerical procedures (called Quadratic Programming
algorithms or QP for short) are available to solve this sub-problem. Many software
packages (e.g. Matlab) provide standard tools to solve QP problems. Thus we will
not dwell on this aspect here.

Note that we only apply the first control uOPT (0). Then the whole procedure
is repeated at the next time instant with the optimization horizon kept constant.

23.6 State Estimation and Disturbance Prediction

In the above description of the MPC algorithm we have assumed, for simplicity
of initial exposition, that the state of the system (including all disturbances) was
available. However, it is relatively easy to extend the idea to the case when the
states are not directly measured. The essential idea involved in producing a version
of MPC that requires only output data is to replace the unmeasured state by an on-
line estimate provided by a suitable observer. For example, one could use a Kalman
filter (see Chapter 22) to estimate the current state x(k) based on observations
of the output and input {y()), u()); ) = . . . , k − 2, k − 1}. Disturbances can also
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be included in this strategy by including the appropriate noise shaping filters in a
composite model as described in section §22.10.4.

The MPC algorithm also requires that future states and disturbances be pre-
dicted so that the optimization over the future horizon can be carried out. To do
this we simply propagate the deterministic model obtained from the composite sys-
tem and noise model as described in section §22.10.5 - see, in particular, Equation
(22.10.80).

23.6.1 One degree of freedom controller

A one-degree of freedom output feedback controller is obtained by including the
set point in the quantities to be estimated. The resultant output feedback MPC
strategy is schematically depicted in Figure 23.14, where Go(z) = C(zI−A)−1B is
the plant transfer function and the observer has the structure discussed in sections
§22.10.4 and §22.10.5. In Figure 23.14, QPo denotes the quadratic programme used
to solve the constrained optimal control problem.

-
QPo

Observer

uopt

Go

y())

d()) ys

e())

x̂())

d̂())

Figure 23.14. One-degree-of-freedom MPC architecture

23.6.2 Integral action

An important observation is that the architecture described in Figure 23.14 gives a
form of integral action. In particular y is taken to the set-point ys irrespective of
the true plant description (provided a steady state is reached and provided in this
steady state u is not constrained).

To show this we argue as follows:
Say that {d())} contains only constant values. Then the observer needed to

estimate these unknown constants will be of the form:

d̂e()+ 1) = d̂e()) + Jd(e())−Cx̂())− d̂e())) (23.6.1)
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where {x̂())} denotes the estimate of the other plant states.
We see that, if a steady state is reached, then it must be true that d̂e()+ 1) =

d̂e()) and hence with Jd �= 0 we have

e()) = Cx̂()) + d̂e()) (23.6.2)

Now the control law has the property that the model output, i.e. Cx̂())+ d̂e()),
is taken to zero in steady state. Thus from (23.6.2) it must also be true that the
actual quantity {e())} as measured at the plant output must also be taken to zero
in steady state. However, inspection of Figure 23.14 then indicates that, in this
steady state condition, the tracking error is zero.

23.7 Rudder Roll Stabilization of Ships

Here we present a realistic application of model predictive control to rudder roll
stabilization of ships. We will adapt the algorithm described in sections §23.5 and
§23.6. The motivation for this particular case study is as follows:

It is desirable to reduce the rolling motion of ships produced by wave action
so as to prevent cargo damage and improve crew efficiency and passenger comfort.
Conventional methods for ship roll stabilization include water tanks, stabilization
fins and bilge keels. Another alternative is to use the rudder for roll stabilization as
well as course keeping. However, using the rudder for simultaneous course keeping
and roll reduction is non- trivial since only one actuator is available to deal with two
objectives. Therefore frequency separation of the two models is required and design
trade-offs will limit the achievable performance. However, rudder roll stabilization
is attractive because no extra equipment needs to be added to the ship.

An important issue is that the rudder mechanism is usually limited in amplitude
and slew rate. Hence this is a suitable problem for model predictive control.

In order to describe the motion of a ship, six independent coordinates are nec-
essary. The first three coordinates and their time derivatives correspond to the
position and translational motion while the other three coordinates and their time
derivatives correspond to orientation and rotational motion. For marine vehicles,
the six different motion components are named: surge, sway, heave, roll, pitch,
and yaw. The most generally used notation for these quantities are: x, y, z, φ, θ,
and ψ respectively. Figure 23.15 shows the six coordinate definitions and the most
generally adopted reference frame.

Figure 23.15 also shows the rudder angle, which is usually noted as δ.
The roll motion due to the rudder presents a faster dynamic response than the

one of the rudder produced yaw motion due to the different moments of inertia of
the hull associated with each direction. This property is exploited in rudder roll
stabilization.

The common method of modeling the ship motion is based on the use of Newton’s
equation in surge, sway and roll. Using this approach, a non-linear model is obtained
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Figure 23.15. Magnitudes and conventions for ship motion description

from which a linearized state space model can be derived which depends upon five
states: [υ, r, p, φ, ψ]T .

The model is a function of the ship speed. However, this is not of much concern
as the model is quasi-constant over a reasonable speed range. This allows the use
of gain scheduling to update the model according to different speeds of operation.

Undesired variations of the roll and yaw angles are mainly generated by waves.
These wave disturbances are usually considered at the output, and the complete
model of the ship dynamics including the output equation is of the form:

ẋ = Ax+Bδ (23.7.1)
y = Cx+ dwave (23.7.2)

where only the roll and yaw are typically directly measured i.e. y := [φ, ψ]T . In
Equation (23.7.2), dwave is the wave induced disturbance on the output variables.

The wave disturbances can be characterized in terms of their frequency spec-
trum. This frequency spectrum can be simulated by using filtered white noise. The
filter used to approximate the spectrum is usually a second order one of the form

H(s) =
Kws

s2 + 2ξωos+ ω2
o

(23.7.3)

where Kw is a constant describing the wave intensity, ξ is a damping coefficient,
and ωo is the dominant wave frequency. This model produces decaying sine-wave
like disturbances. The resultant colored noise representing the effect of wave dis-
turbances is added to the two components of y with appropriate scaling. (Actually
the wave motion mainly effects the roll motion.)
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The design objectives for rudder roll stabilization are:

• Increase the damping and reduce the roll amplitude

• Control the heading of the ship

The rudder is constrained in amplitude and slew rate.
For merchant ships the rudder rate is within the range 3 to 4 deg/sec while for

military vessels, it is in the range of 3 to 8 deg/sec. The maximum rudder excursion
is typically in the range of 20 to 35 deg.

We will adopt the model predictive control algorithm as described in section
§23.5.

The following model was used for the ship - see the references given at the end
of the chapter.

A =



−0.1795 −0.8404 0.2115 0.9665 0
−0.0159 −0.4492 0.0053 0.0151 0
0.0354 −1.5594 −0.1714 −0.7883 0

0 0 1 0 0
0 1 0 0 0


 (23.7.4)

B =



0.2784
−0.0334
−0.0894

0
0


 (23.7.5)

This system was sampled with a zero order hold and sampling period of 0.5.
Details of the model predictive control optimization criterion of Equation (23.4.6)

were

Ψ =
[
90 0
0 3

]
; Φ = 0.1 (23.7.6)

Optimization horizon, N = 20; Control horizon M = 18.
Since only roll, φ, and yaw, ψ, were assumed to be directly measured, then a

Kalman filter was employed to estimate the 5 system states and 2 noise states in
the composite model. The output disturbance was predicted using the methodology
described in section §23.6.

The set points for the two system outputs was taken to be zero and there were
no constant off-sets in the disturbance model. Thus, the problem reduces to a
regulation problem.

In the following plots we show: the roll angle (with and without rudder roll
stabilization); the yaw angle (with and without rudder roll stabilization); and the
rudder angle with roll stabilization.
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Figure 23.16. Ship motion with no constraints on rudder motion

Figure 23.16 shows the results for the case where no constraints are applied to
the rudder amplitude or slew rate. In this case a 66% reduction in the standard
deviation of the roll angle was achieved relative to no stabilization. The price paid
for this is a modest increase in the standard deviation in the yaw angle. Notice,
also, that the rudder angle reaches 60 degrees and has very fast slew rate.

Figure 23.17 shows the results for a maximum rudder angle of 30 degrees and
maximum slew rate of 15 deg/sec. In this case a 59% reduction in the standard
deviation of the roll angle was achieved relative to no stabilization. Notice that
the rudder angle satisfies the given constraints due to the application of the MPC
algorithm.

Figure 23.18 shows the results for a maximum rudder angle of 20 degrees and
maximum slew rate of 8 deg/sec. In this case a 42% reduction in the standard
deviation of the roll angle was achieved relative to no stabilization. Notice that the
more severe constraints on the rudder are again satisfied due to the application of
the MPC algorithms.

✷✷✷
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Figure 23.17. Ship motion when rudder constrained to maximum angle of 30
degrees and maximum slew rate of 15 degrees/sec

23.8 Summary

• MPC provides a systematic procedure for dealing with constraints (both input
and state) in MIMO control problems.

• It has been widely used in industry.

• Remarkable properties of the method can be established, e.g. global asymp-
totic stability provided certain conditions are satisfied (e.g. appropriate weight-
ing on the final state).

• The key elements of MPC for linear systems are

◦ state space (or equivalent) model,

◦ on-line state estimation (including disturbances),

◦ prediction of future states (including disturbances),

◦ on-line optimization of future trajectory subject to constraints using
Quadratic Programming, and

◦ implementation of first step of control sequence.
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Figure 23.18. Ship motion when rudder constrained to maximum angle of 20
degrees and maximum slew rate of 8 degrees/sec
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23.10 Problems for the Reader

Problem 23.1. Consider a discrete-time single input linear regulator problem where
the control is designed via a linear quadratic cost function. Say that the input is
required to satisfy a constraint of the form |u(k)| ≤ ∆. Use a receding horizon MPC
set-up for this problem. Hence show that if, in the solution to the optimization
problem, only the first control is saturated then

u(k) = −sat(Kx(k)) (23.10.1)

is the optimal constrained control where u(k) = −Kx(k) is the optimal uncon-
strained control (Hint: use Dynamic Programming and examine the last step of the
argument).

Problem 23.2. Why does the result given in Problem 23.1 not hold, in general,
if future controls in the optimization problem also reach saturation levels?

Problem 23.3. Extend the result in Problem 23.1 to the 2-input case.

Problem 23.4. Consider the following scalar state space model:

x(k + 1) = ax(k) + bu(k); x(0)given (23.10.2)

Let us consider the following fixed horizon cost function

J =
N∑
k=o

x(k)2 (23.10.3)

Use Dynamic Programming to show that the optimal control law is given by

u(k) = −a

b
x(k) (23.10.4)

Note that this brings the state to zero in one step i.e. x(1) = 0.

Problem 23.5. (Harder) Consider the same set-up as in Problem 23.4, save that
we now require that the input satisfy the constraint |u(k)| ≤ ∆. Show that the
optimal receding horizon control is given by
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u(k) = −sat(a
b
x(k)) (23.10.5)

(Hint: use Dynamic Programming.)

Problem 23.6. Compare the results in Problems 23.4 and 23.5 with the result in
23.1. Comment on the connections and differences.

Problem 23.7. Consider a quadratic cost function

J = (Γ−ΩU)T (Γ−ΩU) (23.10.6)

where Γ and U are vectors and Ω is an N ×M matrix.

23.7.1 Show that minimum of J is achieved (when U is unconstrained) by

U = Uo = (ΩTΩ)−1ΩTΓ (23.10.7)

23.7.2 Say that U is required to satisfy the following set of linear equality con-
straints:

LU = C (23.10.8)

where C is a vector of dimension S(S ≤ M) and L is an S ×M matrix.

Show that the cost function J is minimized subject to this constraint by

U = U ′
o = Uo − (ΩTΩ)−1LT (L(ΩTΩ)−1LT )−1(LUo −C) (23.10.9)

where Uo is the unconstrained solution found in part (i).

Problem 23.8. Using the results in Problem 23.7 show that the optimal solution
to the receding horizon linear quadratic regulator with linear inequality constraints
always has the following affine form:

u(k) = −Kx(k) + b̄ (23.10.10)

where K and b̄ depend upon which constraints are active (i.e. which inequalities are
actually equalities for this particular initial state x(k)).
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Problem 23.9. The models presented below are related to real world case stud-
ies. The authors have found these models useful in testing various MIMO design
strategies. It is suggested that the reader use these examples to test his or her
understanding of MIMO control. Things that might be tried include

(i) Decentralized SISO designs

(ii) Centralized LQR design

(iii) Apply various constraints to the inputs of the systems and use anti-windup or
MPC methods to design controllers which take account of these constraints.

23.9.1 This example relates to a ship’s steering system. Y 1 is the heading angle of
the ship, Y 2 is the roll angle of the ship, U1 the rudder angle, and U2 the fin
angle. In theory the rudder is used to control the heading of the ship and the
fin is for used to control the roll angle of the ship. Of course, there is coupling
between these two control signals. A model covering this situation is:

Y (s) =




0.034(21.6s+ 1)
s(−59.1s+ 1)(8.1s+ 1)

0.00662(14.1s+ 1)
s(−59.1s+ 1)(8.1s+ 1)

−0.416(11.4s+ 1)(−6.8s+ 1)
(−51.9s+ 1)(8.1s+ 1)(45.118s2 + 0.903s+ 1)

−0.245
(45.118s2 + 0.903s+ 1)


U(s)

(23.10.11)

23.9.2 This problem relates to a distillation column. A model frequently used to
describe this kind of system is:

Y (s) =




0.66e−2.6s

6.7s+ 1
−0.61e−3.5s

8.64s+ 1
−0.49e−s

9.06s+ 1

1.11e−6.5s

3.25s+ 1
−2.36e−3s

5s+ 1
−1.2e−1.2s

7.09s+ 1

−0.3468e−9.2s

8.15s+ 1
0.462e−9.4s

10.9s+ 1
(10.1007s+ 0.87)e−s

73.132s2 + 22.69s+ 1



U(s)

(23.10.12)

23.9.3 This example is related to a mining system called an AG mill. The purpose
of this system is to take large rocks and to cause them to grind against each
other so as to produce rocks of a small size. The model used to describe this
is:
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Y (s) =




0.105e−65s

83s+ 1
−0.082e−80s

1766s+ 1
−0.0575e−460s

167s+ 1

−0.0468e−140s

1864s+ 1
0.00122

s

0.115e−120s

1984s+ 1

0.00253
s

0
−0.00299

s



U(s) (23.10.13)



Chapter 24

FUNDAMENTAL
LIMITATIONS IN MIMO

CONTROL

24.1 Preview

Arguably, the best way to learn about real design issues is to become involved in
practical applications. Hopefully, the reader may have gained some feeling for the
lateral thinking that is typically needed in most real world problems from reading
the various case studies that we have presented. In particular, we point to the five
MIMO case studies described in Chapter 22.

In this chapter, we will adopt a more abstract stance and extend the design
insights of Chapters 8 and 9 to the MIMO case. As a prelude to this, we recall
that in Chapter 17 we saw that by a combination of an observer and state estimate
feedback, the closed loop poles of a MIMO system can be exactly (or approximately)
assigned depending on the synthesis method used. However, as in the SISO case,
this leaves open two key questions; namely, where should the poles be placed and
what are the associated sensitivity trade-off issues. This raises fundamental design
issues which are the MIMO versions of the topics discussed in Chapters 8 and 9.

It has been shown in Chapters 8 and 9 that the open loop properties of a
SISO plant impose fundamental and unavoidable constraints on the closed loop
characteristics that are achievable. For example, we have seen that, for a one degree
of freedom loop, a double integrator in the open loop transfer function implies that
the integral of the error due to a step reference change must be zero. We have also
seen that real RHP zeros necessarily imply undershoot in the response to a step
reference change.

As might be expected, similar concepts apply to multivariable systems. However,
whereas in SISO systems, one has only the frequency (or time) axis along which to
deal with the constraints, in MIMO systems there is also a spatial dimension, i.e.
one can trade off limitations between different outputs as well as on a frequency by
frequency basis. This means that it is necessary to also account for the interactions

747
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Figure 24.1. MIMO feedback loop

between outputs rather than simply being able to focus on one output at a time.
These issues will be explored below.

24.2 Closed Loop Transfer Function

We consider the MIMO loop of the form shown in Figure 24.1.
We describe the plant modelGo(s) and the controllerC(s) in LMFD and RMFD

form as

Go(s) = GoN(s)[GoD(s)]−1 =
[
GoD(s)

]−1
GoN(s) (24.2.1)

C(s) = CN(s)[CD(s)]−1 =
[
CD(s)

]−1
CN(s) (24.2.2)

We recall, from Lemma 20.3 on page 606, that for closed loop stability, it is
necessary and sufficient that matrix Acl(s) be stably invertible, where

Acl(s)
�
=GoD(s)CD(s) +GoN(s)CN(s) (24.2.3)

For the purpose of the analysis in this chapter we will continue working under
the assumption that the MIMO plant is square, i.e. its model is an m×m transfer
function matrix. We also assume that Go(s) is non-singular for almost all s and,
in particular, that detGo(0) �= 0.

For future use, we describe the ith column of So(s) as [So(s)]∗i and the kth row
of To(s) as [To(s)]k∗, i.e
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So(s) =
[
[So(s)]∗1 [So(s)]∗2 . . . [So(s)]∗m

]
; To(s) =



[To(s)]1∗
[To(s)]2∗

. . .
[To(s)]m∗




(24.2.4)

From Chapter 20 we observe that good nominal tracking is, as in the SISO case,
connected to the issue of having low sensitivity in certain frequency bands. On
examining this requirement we see that it can be met if we can make

[I+Go(jω)Co(jω)]−1Go(jω)Co(jω) ≈ I (24.2.5)

for all ω in the frequency bands of interest.

24.3 MIMO Internal Model Principle

In SISO control design, a key design objective is usually to achieve zero steady
state errors for certain classes of references and disturbances. However, we have
also seen that this requirement may produce secondary effects on the transient
behavior of these errors. In MIMO control design similar features appear, as we
next demonstrate.

In Chapter 20, we showed that, to achieve zero steady state errors to step ref-
erence inputs on each channel, we require that

To(0) = I ⇐⇒ So(0) = 0 (24.3.1)

We have seen earlier in the book that a sufficient condition to obtain this result
is that we can write the controller as

C(s) =
1
s
C(s) where det(C(0)) �= 0 (24.3.2)

This is usually achieved in practice by placing one integrator in each error chan-
nel immediately after we form ei(t) = ri(t)− yi(t), i = 1, 2, . . . ,m.

The above idea can be generalized to cover more complex reference inputs
(ramps, sinusoids, etc.) and disturbances. All that is needed is to adjoin the
appropriate reference or disturbance generating function. This leads to a MIMO
version of the internal model principle.

24.4 The Cost of the Internal Model Principle

As in the SISO case, the internal model principle comes at a cost. As an illustration,
the following result extends Lemma 8.1 on page 209 to the multivariable case:
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Lemma 24.1. If zero steady state errors are required to a ramp reference input on
the rth channel, then it is necessary that

lim
s→0

1
s
[So(s)]∗r = 0 (24.4.1)

and as a consequence, in a one d.o.f. loop,∫ ∞

0

eri (t)dt = 0 i = 1, 2, . . . ,m (24.4.2)

where eri (t) denotes the error in the ith channel resulting from a step reference input
on the rth channel.

Proof

As for Lemma 8.1.
✷✷✷

It is interesting to note the essential multivariable nature of the result in Lemma
24.1, i.e. the integral of all channel errors is zero, in response to a step reference in
only one channel. We will observe similar situations in the case of RHP poles and
zeros.

Furthermore, Lemma 24.1 shows that all components of the MIMO plant output
will overshoot their stationary values, when a step reference change occurs on the
rth channel. We emphasize that this is due to the presence of a double integrator
in that channel. The only exception to this effect will be for the outputs of those
channels for which there is no coupling with channel r.

24.5 RHP Poles and Zeros

In the case of SISO plants we found that performance limitations are intimately
connected to the presence of open loop RHP poles and zeros. We shall find that
this is also true in the MIMO case. As a prelude to developing these results, we
first review the appropriate definitions of poles and zeros from Chapter 20.

Consider the plant model Go(s) as in (24.2.1). We recall from Chapter 20 say
that zo is a zero of Go(s), with corresponding left directions hT1 , h

T
2 , . . . , h

T
µz , if

det(GoN(zo)) = 0 and hTi (GoN(zo)) = 0 i = 1, 2, . . . , µz (24.5.1)

Similarly, we say that ηo is a pole of Go(s), with corresponding right directions
g1, g2, . . . , gµp , if

det(GoD(ηo)) = 0 and (GoD(ηo))gi = 0 i = 1, 2, . . . , µp (24.5.2)
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If we now assume that zo and ηo are not canceled by the controller, then the
following lemma holds:

Lemma 24.2. With zo and ηo defined as above, then

So(ηo)gi = 0 i = 1, 2, . . . µp (24.5.3)
To(ηo)gi = gi i = 1, 2, . . . µp (24.5.4)

hTi To(zo) = 0 i = 1, 2, . . . µz (24.5.5)

hTi So(zo) = hTi i = 1, 2, . . . µz (24.5.6)

Proof

Immediate from using (20.5.3), (20.5.4), (24.5.1), (24.5.2) and the identity So(s)+
To(s) = I

✷✷✷

We see that, as in the SISO case, open loop poles (i.e., the poles of Go(s)C(s))
become zeros of So(s), and open loop poles (i.e., the zeros of Go(s)C(s)) become
zeros of To(s). However we must now consider the associated directional properties
to have a better understanding of MIMO performance issues.

24.6 Time Domain Constraints

We saw in Lemma 8.3 that the presence of RHP poles and zeros had certain impli-
cations for the time responses of closed loop systems. We have the following MIMO
version of Lemma 8.3.

Lemma 24.3. Consider a MIMO feedback control loop having stable closed loop
poles, located to the left of −α for some α > 0. Also assume that zero steady
state error occurs for reference step inputs in all channels. Then for a plant zero
zo with left directions hT1 , h

T
2 , . . . , h

T
µz , and a plant pole ηo with right directions

g1, g2, . . . , gµp satisfying �(zo) > −α and �(ηo) > −α, we have

(i) For a positive unit reference step on the rth channel∫ ∞

0

hTi e(t)e
−zotdt =

hir
zo

; i = 1, 2, . . . , µz (24.6.1)

where hir is the rth component of hi.

(ii) For a (positive or negative) unit step output disturbance in direction gi, i =
1, 2, . . . , µp, the resulting error, e(t), satisfies
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∫ ∞

0

e(t)e−ηotdt = 0 (24.6.2)

(iii) For a (positive or negative) unit reference step in the rth channel and provided
that zo is in the RHP

∫ ∞

0

hTi y(t)e
−zotdt = 0; i = 1, 2, . . . , µz (24.6.3)

Proof

(i) We know that

E(s) = So(s)R(s) =
∫ ∞

0

e(t)e−stdt (24.6.4)

If we left multiply both sides by hTi , we obtain

hTi E(s) = hTi So(s)R(s) = hTi So(s)
Ro

s
=
∫ ∞

0

hTi e(t)e
−stdt (24.6.5)

where Ro is a constant vector. Evaluating equation (24.6.5) at s = zo (which
lies in the region of convergence of the Laplace transform), and using (24.5.6),
we have that

hTi E(zo) = hTi So(zo)
Ro

zo
= hTi

Ro

zo
=
∫ ∞

0

hTi e(t)e
−zotdt (24.6.6)

from where the result follows on taking all references equal to zero, save for
the one on the rth channel.

(ii) We know that, for the given output disturbance Do(s) = 1
sgi, the error is given

by

E(s) = −So(s)Do(s) = −So(s)1
s
gi =
∫ ∞

0

e(t)e−stdt (24.6.7)

from where the result follows from evaluating (24.6.7) at s = ηo, and using
(24.5.3).
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(iii) The proof relies on the fact that the region of convergence of the Laplace
Transform for y(t) and r(t) includes the open RHP, where zo lies.

Then

Y (s) = To(s)R(s) =
∫ ∞

0

y(t)e−stdt (24.6.8)

If we left multiply both sides by hTi , we obtain

hTi Y (s) = hTi To(s)R(s) =
∫ ∞

0

hTi y(t)e
−stdt (24.6.9)

The result follows on evaluating (24.6.9) at s = zo and using (24.5.5).

✷✷✷

Remark 24.1. When zo and ηo are in the RHP, parts (ii) and (iii) of Lemma 24.3
hold for any input whose Laplace Transform converges for �(s) > 0

✷✷✷

Comparing Lemma 24.3 with Lemma 8.3 clearly shows the multivariable nature
of these constraints. For example, (24.6.2) holds for disturbances coming from a
particular direction. Also, (24.6.1) applies to particular combinations of the errors.
Thus, the undershoot property can (sometimes) be shared amongst different error
channels depending on the directionality of the zeros.

Example 24.1 (Quadruple tank apparatus continued). Consider again the quadru-
ple tank apparatus in Example 20.4 on page 601 and Example 21.3 on page 636. For
the case γ1 = 0.43, γ2 = 0.34, there is a non-minimum phase zero at zo = 0.0229.
The associated left zero direction is approximately [1 − 1].

Hence, from Lemma 24.3 on page 751, we have∫ ∞

0

(y1(t)− y2(t))e−zotdt = 0 (24.6.10)∫ ∞

0

(e1(t)− e2(t))e−zotdt =
(−1)i−1

zo
(24.6.11)

for a unit step in the i− th channel reference.
The zero in this case is an interaction zero and hence we do not necessarily

get undershoot in the response. However there are constraints in the extent of
interaction that must occur. This explains the high level of interaction observed in
Figure 21.4 on page 638.

We actually see from (24.6.10) and (24.6.11) that there are two ways one can
deal with this constraint
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(i) If we allow coupling in the final response, then we can spread the constraint
between outputs; i.e. we can satisfy (24.6.10) and (24.6.11) by having y2(t)
(e2(t)) respond when a step is applied to channel 1 reference and vice-versa.
This may allow us to avoid undershoot at the expense of having interaction.
The amount of interaction needed grows as the bandwidth increases beyond zo.

(ii) If we design and achieve (near) decoupling, then only one the outputs can be
nonzero after each individual reference changes.

This implies that undershoot must occur in this case. Also, we see that under-
shoot will occur in both channels (i.e. the effect of the single RHP zero now
influences both channels). This is an example of spreading resulting from
dynamic decoupling.

As usual the amount of undershoot required to satisfy (24.6.10) and (24.6.11)
grows as the bandwidth increases beyond zo.

✷✷✷

It is interesting to see the impact of dynamic decoupling on (24.6.1). If we can
achieve a design with this property (a subject to be analyzed in greater depth in
Chapter 26), then it necessarily follows that for a reference step in the rth channel,
there will be no effect on the other channels, i.e.

ek(t) = 0 for ∀k �= r, ∀t > 0 (24.6.12)

Then (24.6.1) gives

∫ ∞

0

hirer(t)e−zotdt =
hir
zo

; i = 1, 2, . . . , µz (24.6.13)

or, for hir �= 0,

∫ ∞

0

er(t)e−zotdt =
1
zo

(24.6.14)

which is exactly the constraint applicable to the SISO case.
We may thus conclude that dynamic decoupling removes the possibility of shar-

ing the zero constraint amongst different error channels. Another interesting ob-
servation is that (24.6.14) holds for every zo having a direction with any non zero
component in the rth position. Thus, whereas (24.6.1) holds for a combination of
errors, (24.6.14) applies for a scalar error and there is a separate constraint for ev-
ery zero having a direction with any nonzero component in the rth position. Thus,
(24.6.14) implies that one zero might appear in more than one error constraint.
This can be thought of as a cost of decoupling. The only time that a zero does
not spread its influence over many channels is when the corresponding zero direc-
tion has only one non-zero component. We then say that the corresponding zero
direction is canonical.
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Example 24.2. Consider the following transfer function

Go(s) =




s− 1
(s+ 1)2

2(s− 1)
(s+ 1)2

1
(s+ 1)2

ε

(s+ 1)2


 (24.6.15)

We see that zo = 1 is a zero with direction hT1 = [1 0] which we see is canonical.
In this case, (24.6.1) gives

∫ ∞

0

[1 0]T e(t)e−tdt =
∫ ∞

0

e1(t)e−tdt =
1
zo

= 1 (24.6.16)

for a step input on the first channel. Note that, in this case, this is the same as
(24.6.14), i.e. there is no additional cost in decoupling. However, if we instead
consider the plant

Go(s) =




s− 1
(s+ 1)2

1
(s+ 1)2

2(s− 1)
(s+ 1)2

ε

(s+ 1)2


 (24.6.17)

then, the situation changes significantly.
In this case zo = 1 is a zero with direction hT1 = [ε − 1] which we see is non

canonical. Thus, (24.6.1) gives for a step reference in the first channel:

∫ ∞

0

[ε − 1]T e(t)e−tdt =
∫ ∞

0

(εe1(t)− e2(t))e−tdt =
ε

zo
= ε (24.6.18)

and for a step reference in the second channel:

∫ ∞

0

(εe1(t)− e2(t))e−tdt =
−1
zo

= −1 (24.6.19)

Whereas, if we insist on dynamic decoupling, we obtain, for a unit step reference
in the first channel,

∫ ∞

0

e1(t)e−tdt =
1
zo

= 1 (24.6.20)

and, for a step reference in the second channel,
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∫ ∞

0

e2(t)e−tdt =
1
zo

= 1 (24.6.21)

Clearly, in this example, a small amount of coupling from channel 1 into channel
2 can be very helpful in satisfying (24.6.18), when ε �= 0, whereas (24.6.20) and
(24.6.21) requires the zero to be dealt with, in full, in both scalar channels.

✷✷✷

The time domain constraints explored above are also matched by frequency
domain constraints which are the MIMO extensions of the SISO results presented
in Chapter 9. These are explored below.

24.7 Poisson Integral Constraints on MIMO Complementary Sen-
sitivity

We will develop the MIMO versions of results presented in section §9.5.
Note that the vector To(s)gi can be pre-multiplied by a matrix Bi(s) to yield a

vector τi(s)

τi(s) = Bi(s)To(s)gi =



τi1(s)
τi2(s)
...

τim(s)


 ; i = 1, 2, . . . , µp (24.7.1)

where Bi(s) is a diagonal matrix in which each diagonal entry, [Bi(s)]jj , is a scalar
inverse Blaschke product, constructed so that ln(τij(s)) is an analytic function in
the open RHP. This means

[Bi(s)]jj =
rj∏
k=1

s+ z∗jk
s− z∗jk

(24.7.2)

where zjk, k = 1, 2, . . . , rj , are the NMP zeros of the jth element of vector To(s)gi.
We also define a column vector gi(s), where

gi(s) = Bi(s)gi =


 [Bi(s)]11gi1(s)

...
[Bi(s)]mmgim(s)


 =

 gi1(s)...
gim(s)


 (24.7.3)

We next define a set of integers ∇i corresponding to the indices of the nonzero
elements of gi, i.e.
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∇i = {r|gir �= 0}; i = 1, 2, . . . , µp (24.7.4)

We can now state a theorem which describes the constraints imposed on the
complementary sensitivity by the presence of unstable open loop poles.

Theorem 24.1 (Complementary sensitivity and unstable poles). Consider
a MIMO system with an unstable pole located at s = ηo = α+ jβ and having asso-
ciated directions g1, g2, . . . , gµp , then

(i)

1
π

∫ ∞

−∞
ln|[To(jω)]r∗gi|dΩ(ηo, ω) = ln|Bir(ηo)gir|; r ∈ ∇i; i = 1, 2, . . . , µp

(24.7.5)

(ii)

1
π

∫ ∞

−∞
ln|[To(jω)]r∗gi|dΩ(ηo, ω) ≥ ln |gir|; r ∈ ∇i; i = 1, 2, . . . , µp

(24.7.6)

Where

dΩ(ηo, ω) =
α

α2 + (ω − β)2
dω =⇒

∫ ∞

−∞
dΩ(ηo, ω) = π (24.7.7)

Proof

(i) We first note that ln(τir(s)) = ln([Bi(s)]rr[To(s)]r∗gi) is a scalar function,
analytic in the open RHP.

If we evaluate ln(τir(s)) at s = ηo, on using (24.5.4) and (24.7.3), we obtain

ln(τir(ηo)) = ln([Bi(ηo)]rr[To(ηo)]r∗gi) = gir(ηo) (24.7.8)

We can next apply the Poisson-Jensen formula given in Lemma ??. The result
then follows.

(ii) We note that since zij and ηo are in the RHP, then |[Bi(ηo)]rr| ≥ 1, thus

ln |[Bi(ηo)]rrgir| = ln |[Bi(ηo)]rr| ln |gir| ≥ ln |gir| (24.7.9)
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Remark 24.2. Although (24.7.5) is a more precise conclusion than (24.7.6), it is
a constraint which depends on the controller. The result presented in the following
corollary is independent of the controller.

✷✷✷

Corollary 24.1. Consider theorem 24.1. Then, (24.7.6) can also be written as

∫ ∞

−∞
ln |[To(jω)]rr| dΩ(ηo, ω) ≥

∫ ∞

−∞
ln
∣∣∣∣ [To(jω)]rrgir∑

k∈∇[To(jω)]rkgik

∣∣∣∣ dΩ(ηo, ω) (24.7.10)

Proof

We first note that

ln |[To(jω)]r∗gi| = ln

∣∣∣∣∣∑
k∈∇

gik[To(jω)]kr

∣∣∣∣∣ = ln |[To(jω)]rr|+ ln(gir)

− ln
∣∣∣∣ gir[To(jω)]rr∑

k∈∇ gik[To(jω)]kr

∣∣∣∣ (24.7.11)

The result follows on using (24.7.11) in (24.7.6), and using the property of the
Poisson kernel in (24.7.7).

✷✷✷

24.8 Poisson Integral Constraints on MIMO Sensitivity

When the plant has NMP zeros, a similar result to that in Theorem 24.1 on the
page before can be established for the sensitivity function So(s).

We first note that the vector hTi So(s) can be post multiplied by a matrix B′
i(s)

to yield a vector υi(s)

υi(s) = hTi So(s)B
′
i(s) =

[
υi1(s) υi2(s) . . . υim(s)

]
; i = 1, 2, . . . , µz

(24.8.1)

where B′
i(s) is a diagonal matrix in which each diagonal entry, [B′

i(s)]jj , is a scalar
inverse Blaschke product, constructed so that ln(υij(s)) is an analytic function in
the open RHP. This means

[B′
i(s)]jj =

rj∏
k=1

s+ p∗jk
s− p∗jk

(24.8.2)

where pjk, k = 1, 2, . . . , r′j , are the unstable poles of the jth element of the row
vector hTi So(s).
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We also define a row vector hi(s), where

hi(s) = hTi (s)B
′
i(s) =


 hTi1(s)[B

′
i(s)]11

...
hTim(s)[B

′
i(s)]mm


 = [hi1(s) . . . him(s)

]
(24.8.3)

We next define a set of integers ∇′
i corresponding to the indices of the nonzero

elements of hi, i.e.

∇′
i = {r|hir �= 0}; i = 1, 2, . . . , µz (24.8.4)

We then have:

Theorem 24.2 (Sensitivity and NMP zeros). Consider a MIMO plant with a
NMP zero at s = zo = γ + jδ, with associated directions hT1 , h

T
2 , . . . , h

T
µz , then the

sensitivity in any control loop for that plant satisfies

(i)

1
π

∫ ∞

−∞
ln|hTi [So(jω)]∗r|dΩ(zo, ω) = ln|hir[B′

i(zo)]rr|; r ∈ ∇′
i; i = 1, 2, . . . , µp

(24.8.5)

(ii)

1
π

∫ ∞

−∞
ln|hTi [So(jω)]∗r|dΩ(zo, ω) ≥ ln |hir|; r ∈ ∇′

i; i = 1, 2, . . . , µp

(24.8.6)

Where

dΩ(zo, ω) =
γ

γ2 + (ω − δ)2
dω =⇒

∫ ∞

−∞
dΩ(zo, ω) = π (24.8.7)

Proof

The proof follows along the same lines as that of theorem 24.1.
✷✷✷

Corollary 24.2. Consider the set up in Theorem 24.2. Then, (24.8.6) can also be
written as

∫ ∞

−∞
ln |[So(jω)]rr| dΩ(zo, ω) ≥

∫ ∞

−∞
ln
∣∣∣∣ hir[So(jω)]rr∑

k∈∇′ hik[So(jω)]kr

∣∣∣∣ dΩ(zo, ω) (24.8.8)
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Proof

We first note that

ln
∣∣hTi [So(jω)]∗r∣∣ = ln

∣∣∣∣∣∑
k∈∇′

hik[So(jω)]kr

∣∣∣∣∣ = ln |[So(jω)]rr|+ ln(hir)

− ln
∣∣∣∣ hir[So(jω)]rr∑

k∈∇′ hik[So(jω)]kr

∣∣∣∣ (24.8.9)

The result follows on using (24.8.9) in (24.8.6), and using the property of the
Poisson kernel in (24.8.7).

✷✷✷

24.9 Interpretation

Theorem 24.2 on the page before shows that in MIMO systems, as is the case in
SISO systems, there is a sensitivity trade off along a frequency weighted axis. To
explore the issue further we consider the following lemma.

Lemma 24.4. Consider the lth column (l ∈ ∇′
i) in the expression (24.8.6), i.e.

the case when the lth sensitivity column, [So]∗l, is considered. Furthermore assume
that, due to some design specifications,

|So(jω)|kl ≤ εkl � 1; ∀ω ∈ [0, ωc]; k = 1, 2, . . . ,m (24.9.1)

Then, the following inequality must be satisfied:

‖[So]ll‖∞ +
m∑
k=1
k �=l

∣∣∣∣hikhil
∣∣∣∣ ‖[So]kl‖∞ ≥


εll + m∑

k=1
k �=l

∣∣∣∣hikhil
∣∣∣∣ εkl



−
ψ(ωc)

π − ψ(ωc)
(24.9.2)

where

ψ(ωc) =
∫ ωc

o

[
γ

γ2 + (ω − δ)2
+

γ

γ2 + (ω + δ)2

]
dω (24.9.3)
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Proof

We first note that

|hTi [So(jω)]∗l| ≤
m∑
k=1

|hik|[So(jω)]kl

≤
{
Lc

�
=
∑m

k=1 |hik|εkl for −ωc ≤ ω ≤ ωc

L∞
�
=
∑m

k=1 |hik|‖[So]kl‖∞ for |ω| > ωc

(24.9.4)

Consider now equation (24.8.6). We first split the integration interval, (−∞,∞)
into (−∞,−ωc)∪ [−ωc, 0)∪ [0, ωc)∪ [ωc,∞) and we then apply (24.8.6) substituting
|hTi [So(jω)]∗r| by its upper bound in each interval, i.e.

1
π

∫ ∞

−∞
ln|hTi [So(jω)]∗r|dΩ(zo, ω) ≤

ln(L∞)
π

∫ −ωc

−∞
dΩ(zo, ω) +

+
ln(Lc)
π

∫ ωc

−ωc

dΩ(zo, ω) +
ln(L∞)

π

∫ ∞

ωc

dΩ(zo, ω)

=
ln(L∞)

π

∫ ∞

−∞
dΩ(zo, ω) +

ln(Lc)− ln(L∞)
π

∫ ωc

−ωc

dΩ(zo, ω) (24.9.5)

We then note, on using (24.8.7) and (24.9.3), that

ln(Lc)− ln(L∞)
π

∫ ωc

−ωc

dΩ(zo, ω) =
ln(Lc)− ln(L∞)

π
ψ(ωc) (24.9.6)

and, on using (24.8.7)

ln(L∞)
π

∫ ∞

−∞
dΩ(zo, ω) = ln(L∞) (24.9.7)

If we now use (24.9.4)-(24.9.7) in (24.8.6), we obtain

π ln(|hil|) ≤ (π − ψ(ωc)) ln(L∞) + ψ(ωc) ln(Lc) (24.9.8)

And the result follows, on using the definition of Lc and L∞ from (24.9.4).
✷✷✷

These results are similar to those derived for SISO control loops, since we also
obtain lower bounds for sensitivity peaks. Furthermore these bounds grow with
bandwidth requirements, i.e. when we want εkl smaller and/or when we specify a
larger ωc.
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However, a major difference is that, in the MIMO case, the bound in (24.9.2)
refers to a linear combination of sensitivity peaks. This combination is determined
by the directions associated to the NMP zero under consideration. We will further
embellish this result in section §26.6 where we will add the additional constraint
that the closed loop system should be fully diagonal decoupled.

24.10 An Industrial Application: Sugar Mill

24.10.1 Model description

In this section we consider the design of a controller for a typical industrial process.
It has been chosen because it includes significant multivariable interaction, a non
self regulating nature and non-minimum phase behavior. A detailed description of
the process modeling and control can be found in the reference given at the end of
the chapter.
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fourth mill

feedback  juice

added water

first
mill

juiceboot of
fourth mill

intercarrier
no 3

bagasse

prepared
cane

buffer
chute

pressure
feed

rolls

crusher
rolls

shredder 
and
entry

Figure 24.2. A sugar Milling Train

The sugar mill unit under consideration constitutes one of multiple stages in the
overall process. A schematic diagram of the Milling Train is shown in Figure 24.2.
A single stage of this Milling Train is shown in Figure 24.3 on the facing page.

In this mill, bagasse (in intermediate form), which is milled sugar cane, is de-
livered via the inter-carrier from the previous mill stage. This is then fed into the
buffer chute. The material is fed into the pressure feed chute via a flap mechanism
and pressure feed rolls. The flap mechanism can be manipulated via a hydraulic
actuator to modify the exit geometry and volume of the buffer chute. The pressure
feed rolls grip the bagasse and force it into the pressure feed chute.

Cane is then fed to the pressure feed chute through the mill rolls. The pressure
feed chute increases the compression ratio of the bagasse, because the pressure feed
roll surface is slightly higher than the mill roll speed. The mill rolls are grooved, so
that no expressed juice can escape. The grooves are given a rough surface so that
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the mill rolls can grip the cane.
The mill rolls and pressure feed rolls are driven by a steam turbine through a

gear system. The steam turbine speed is controlled with a governor feedback system
with an adjustable set point.

For the purpose of maximal juice extraction, the process requires the control
of two quantities: the buffer chute height, h(t), and the mill torque τ(t). For the
control of these variables, the flap position, f(t), and the turbine speed set point,
ω(t), may be used. For control purposes, this plant can then be modeled as a MIMO
system with 2 inputs and 2 outputs. In this system, the main disturbance, d(t),
originates in the variable feed to the buffer chute.
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Figure 24.3. Single crushing mill

In this example, regulation of the height in the buffer chute is less important
for the process than regulation of the torque. Indeed, the purpose of this chute is
typically to filter out sudden changes in the feed.

After applying phenomenological considerations and performing different exper-
iments with incremental step inputs, a linearized plant model was obtained. The
outcome of the modeling stage is shown in Figure 24.4.

From Figure 24.4 we can compute the nominal plant model in RMFD form,
linking the inputs f(t) and ω(t) to the outputs τ(t) and h(t) as

Go(s) = GoN(s)[GoD(s)]−1 (24.10.1)

where
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+

+
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Figure 24.4. Sugar mill linearized block model

GoN(s) =
[−5 s2 − 0.005s− 0.005
1 −0.0023(s+ 1)

]
; GoD(s) =

[
25s+ 1 0

0 s(s+ 1)

]
(24.10.2)

We can now compute the poles and zeros of Go(s). The poles of Go(s) are the
zeros of GoD(s), i.e. (−1,−0.04, 0). The zeros of Go(s) are the zeros of GoN(s),
i.e. the values of s which are roots of det(GoN(s)) = 0 this leads to (−0.121, 0.137).
Note that the plant model has a non-minimum phase zero, located at s = 0.137.

We also have that

Go(0.137) =
[−1.13 0.084
0.226 −0.0168

]
(24.10.3)

From (24.10.3) we have that the direction associated with the NMP zero is given
by

hT =
[
1 5
]

(24.10.4)

24.10.2 SISO design

Before attempting any MIMO design, we start by examining a SISO design using two
separate PID controllers. In this approach, we initially ignore the cross coupling
terms in the model transfer function Go(s), and we carry out independent PID
designs for the resulting two SISO models
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G11(s) =
−5

25s+ 1
; and G22(s)

−0.0023
s

(24.10.5)

An iterative procedure was used to determine the final design. The iterations
were initially guided by a desire to obtain fast responses in both loops. However, the
design was subsequently refined by limiting the loop bandwidths so as not to exceed
the magnitude of the NMP zero (bandwidths of around 0.1[rad/s] were achieved).

Note that, for the second loop we decided to use a PID , instead of a PI controller,
since G22(s) has one pole at the origin, which suggests that two controller zeros are
more convenient to partially compensate the additional lag. The final controllers
were given by

C1(s) = −0.5s+ 0.02
s

; and C2(s) = −20s2 + 10s+ 0.2
s2 + s

(24.10.6)

To illustrate the limitations of this approach and the associated trade offs, Figure
24.5 shows the performance of the loop under the resultant SISO designed PID
controllers.
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Figure 24.5. Loop performance with SISO design

In this simulation, the (step) references and disturbance were set as follows

r1(t) = µ(t− 1); r2(t) = µ(t− 100); d(t) = −10µ(t− 250) (24.10.7)

The following observations follow from the results shown in Figure 24.5:

(i) Interaction between both loops is strong. In particular, we observe that a
reference change in channel 2 (height) will induce strong perturbations of the
output in channel 1 (torque).
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(ii) Both outputs exhibit non-minimum phase behavior. However, due to the
design imposed limitation on the bandwidth, this is not very strong in either
of the outputs in response to a change in its own reference. Notice, however,
that the transient in y1 in response to a reference change in r2 is - due to the
interaction neglected in the design - clearly non-minimum phase.

(iii) The effects of the disturbance on the outputs mainly show low frequency
components. This is due to the fact that abrupt changes in the feed rate are
filtered out by the buffer.

The above design suffers from a problem in so far that equal importance has
been given to the control of both variables. This leads to the undesirable feature
that the performance of channel 1 is severely perturbed by changes in the second
channel. For that reason we will next explore a design approach which accounts for
the interacting structure of this plant.

Remark 24.3. The reader is encouraged to try different PID settings for this prob-
lem, using SIMULINK file sugpid.mdl. It is also interesting to verify that by intro-
ducing input saturation in both channels, the dynamics of both loops is significantly
slowed down.

24.10.3 MIMO design. Preliminary considerations

We now consider a full MIMO design. We begin by analyzing the main issues
which will affect the MIMO design. They can be summarized in the following
considerations:

(i) The compensation of the input disturbance requires that integration be in-
cluded in the controller to be designed.

(ii) To ensure internal stability, the NMP zero must not be canceled by the con-
troller. Thus, C(s) should not have poles at s = 0.137.

(iii) In order to avoid the possibility of input saturation, the bandwidth should be
limited. We will work in the range of 0.1–0.2[rad/s].

(iii) The location of the NMP zero suggests that the dominant mode in the chan-
nel(s) affected by that zero should not be faster than e−0.137t. Otherwise,
responses to step reference and step input disturbances will exhibit significant
undershoot (see section §24.6).

(iv) From (24.10.4) the left direction, hT =
[
1 5
]
, associated with the NMP zero,

is not a canonical direction. Hence, if dynamic decoupling is attempted, the
NMP zero will affect both channels (see section §26.5). Thus, a controller
having triangular structure is desirable to restrict the NMP zero to only one
channel.
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24.10.4 MIMO design. Dynamic decoupling

The analysis in the previous section leads to the conclusion that a triangular de-
sign may be the best choice. However we first consider a fully dynamic decoupled
design to provide a benchmark against which the triangular decoupled design can
be compared.

We choose

M(s) = Go(s)C(s) =
[
M11(s) 0

0 M22(s)

]
(24.10.8)

which leads to the complementary sensitivity

To(s) =


T11(s) 0

0 T22(s)


 =



M11(s)
1 +M11(s)

0

0
M22(s)

1 +M22(s)


 (24.10.9)

Then

C(s) =


C11(s) C12(s)

C21(s) C22(s)


 = [Go(s)]−1M(s) (24.10.10)

Also

[Go(s)]−1 =


25s+ 1 0

0 s






n11(s)
d−(s)d+(s)

n12(s)
d−(s)d+(s)

n21(s)
d−(s)d+(s)

n22(s)
d−(s)d+(s)


 (24.10.11)

where

n11(s) = 0.0023(s+ 1) n12(s) = s2 − 0.005s− 0.005 (24.10.12)
n21(s) = s+ 1 n22(s) = 5(s+ 1) (24.10.13)

d−(s) = s+ 0.121 d+(s) = s− 0.137 (24.10.14)

Then, from (24.10.8) and (24.10.10), the controller is given by
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C(s) =



(25s+ 1)n11(s)M11(s)

d−(s)d+(s)
(25s+ 1)n12(s)M22(s)

d−(s)d+(s)

sn21M11(s)
d−(s)d+(s)

sn22(s)M22(s)
d−(s)d+(s)


 (24.10.15)

Since C(s) should not have poles at s = 0.137, the polynomial d+(s) should be
canceled in the four fraction matrix entries in (24.10.15). This implies that

M11(0.137) =M22(0.137) = 0 (24.10.16)

Furthermore, since we need to completely compensate the input disturbance,
we require integral action in the controller (in addition to the integral action in the
plant). We thus make the following choices

M11(s) =
(s− 0.137)p11(s)

s2l11(s)
; and M22(s) =

(s− 0.137)p22(s)
s2l22(s)

(24.10.17)

where p11(s), l11(s), l22(s) and p22(s) are chosen using polynomial pole placement
techniques (see Chapter 7). For simplicity, we choose the same denominator poly-
nomial for T11(s) and T22(s), namely Acl(s) = (s + 0.1)2(s + 0.2). Note that with
this choice we respect the constraint of having a dominant mode with decay speed
bounded (above) by the NMP zero. This leads, after solving the pole assignment
equation, to:

p11(s) = p22(s) = −(0.472s+ 0.0015); l11(s) = l22(s) = s+ 0.872
(24.10.18)

With these values, the controller is calculated from (24.10.15). A simulation was
run with this design and the same conditions as for the decentralized PID case, i.e.

r1(t) = µ(t− 1); r2(t) = µ(t− 100); d(t) = −10µ(t− 250) (24.10.19)

The results are shown in Figure 24.6.
The results shown in Figure 24.6 confirm the two key issues underlying this

design strategy, namely: the channels are dynamically decoupled, and the NMP
zero affects both channels.

24.10.5 MIMO Design. Triangular decoupling

The results in the previous section verify that dynamic decoupling is not an ideal
solution for this particular problem since the non-minimum phase behavior of the
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Figure 24.6. Loop performance with dynamic decoupling design

plant is dispersed over both outputs, rather than being isolated in the less important
output, height (y2(t)). We therefore aim for a triangular structure where the more
important torque channel will be chosen as the decoupled loop.

The resultant triangular structure will have the form

M(s) = Go(s)C(s) =


M11(s) 0

M21(s) M22(s)


 (24.10.20)

which leads to the complementary sensitivity

To(s) =


T11(s) T12(s)

T21(s) T22(s)


 =



M11(s)
1 +M11(s)

0

M21(s)
(1 +M11(s))(1 +M22(s))

M22(s)
1 +M22(s)




(24.10.21)

Then

C(s) =


C11(s) C12(s)

C21(s) C22(s)


 = [Go(s)]−1M(s) (24.10.22)

Also
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[Go(s)]−1 =


25s+ 1 0

0 s






n11(s)
d−(s)d+(s)

n12(s)
d−(s)d+(s)

n21(s)
d−(s)d+(s)

n22(s)
d−(s)d+(s)


 (24.10.23)

where

n11(s) = 0.0023(s+ 1) n12(s) = s2 − 0.005s− 0.005 (24.10.24)
n21(s) = s+ 1 n22(s) = 5(s+ 1) (24.10.25)

d−(s) = s+ 0.121 d+(s) = s+ 0.137 (24.10.26)

Then, from (24.10.20) and (24.10.22), the controller is given by

C(s) =



(25s+ 1)(n11(s)M11(s) + n12(s)M21(s))

d−(s)d+(s)
sn12(s)M22(s)
d−(s)d+(s)

(25s+ 1)(n21M11(s) + n22(s)M21(s))
d−(s)d+(s)

sn22(s)M22(s)
d−(s)d+(s)


 (24.10.27)

Since C(s) should not have poles at s = 0.137, the polynomial d+(s) should be
canceled in the four fraction matrix entries in (24.10.27). This implies that

M22(0.137) = 0 (24.10.28)

n11(s)M11(s) + n12(s)M21(s)
∣∣∣
s=0.137

= 0 (24.10.29)

n21(s)M11(s) + n22(s)M21(s)
∣∣∣
s=0.137

= 0 (24.10.30)

Equations (24.10.29) and (24.10.30) lead to

M21(s)
M11(s)

∣∣∣∣
s=0.137

= −n11(s)
n12(s)

∣∣∣∣
s=0.137

(24.10.31)

M21(s)
M11(s)

∣∣∣∣
s=0.137

= −n21(s)
n22(s)

∣∣∣∣
s=0.137

(24.10.32)

respectively. Note that (24.10.31) and (24.10.32) are simultaneously satisfied, since
for every zero, zo, of Go(s), we have that

n11(s)n22(s)− n12(s)n21(s)
∣∣∣
s=zo

= 0 (24.10.33)

The next step is to make some choices.
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(i) M11(s), M21(s) and M22(s) are chosen to have two poles at the origin. One
of these comes from the plant model and the other is added to ensure steady
state compensation of step input disturbances.

(ii) M11(s) is chosen to achieve a bandwidth of around 0.15[rad/s] in channel 1.
A possible choice is

M11(s) =
0.15s+ 0.01

s2
⇐⇒ T11(s) =

0.15s+ 0.01
s2 + 0.15s+ 0.01

(24.10.34)

(iii) A simple choice for M21(s) is to assign two poles to the origin, i.e.

M21(s) =
α

s2
(24.10.35)

where α is a parameter to be determined.

(iv) M22(s) is chosen to have two poles at the origin and to satisfy (24.10.28). We
choose

M22(s) =
(s− 0.137)p22(s)

s2l22(s)
(24.10.36)

where p22(s) and l22(s) are polynomials in s to be determined.

With the above choices, and the design considerations, we can proceed to com-
pute the controller.

First, α in (24.10.35) is computed to satisfy (24.10.30), this leads to α =
−0.0061, which, in turn, yields

C21(s) =
0.15(s+ 1)
s(s+ 0.121)

(24.10.37)

C11(s) =
−0.0058(25s+ 1)(s+ 0.0678)

s2(s+ 0.121)
(24.10.38)

We also have, from (24.10.36), that the complementary sensitivity in channel 2
is given by

T22(s) =
M22(s)

1 +M22(s)
=

(s− 0.137)p22(s)
s2l22(s) + (s− 0.137)p22(s)

(24.10.39)
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Then, p22(s) and l22(s) can be computed using polynomial pole assignment tech-
niques, as we did for the decoupled design. We choose the denominator polynomial
for T22(s) to be equal to (s+ 0.1)2(s+ 0.2). With this choice we obtain

M22(s) =
(−s+ 0.137)(0.4715s+ 0.0146)

s2(s+ 0.8715)
(24.10.40)

This leads to

C12(s) =
−(25s+ 1)(s2 − 0.005s− 0.005)(0.4715s+ 0.0146)

s2(s+ 0.121)(s+ 0.8715)
(24.10.41)

C22(s) =
−5(s+ 1)(0.4715s+ 0.0146)
s(s+ 0.121)(s+ 0.8715)

(24.10.42)

With the controller designed above, simulations were performed to assess the
performance of the MIMO control loop concerning tracking and disturbance com-
pensation.

Unit step references and a unit step disturbance were applied, as follows

r1(t) = µ(t− 1); r2(t) = −µ(t− 100); d(t) = −10µ(t− 250)
(24.10.43)

The results of the simulation, shown in Figure 24.7, motivate the following
observations:

(i) The output of channel 1 is now unaffected by changes in the reference for
channel 2. However, the output of channel 2 is affected by changes in the
reference for channel 1. The asymmetry is consistent with the choice of a
lower triangular complementary sensitivity, To(s).

(ii) The non-minimum phase behavior is evident in channel 2, but does not show
up in the output of channel 1. This has been also achieved by choosing a
lower triangular To(s); that is, the open loop NMP zero is a canonical zero
of the closed loop.

(iii) The transient compensation of the disturbance in channel 1 has also been
improved, with respect to the fully decoupled loop. Compare the results
shown in Figure 24.6.

(iv) The step disturbance is completely compensated in steady state. This is due
to the integral effect in the control for both channels.

(v) The output of channel one exhibits a significant overshoot (around 20%). This
was predicted in section §24.6 for any loop having double integrator.

✷✷✷

The reader can evaluate the loop performance with his (her) own design using
SIMULINK file sugmill.mdl.
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Figure 24.7. Loop performance with triangular design

24.11 Non-Square Systems

In most of the above treatment we have assumed equal number of inputs and out-
puts. However, in practice, there are either excess inputs (fat systems) or extra
measurements (tall systems). We briefly discuss these two scenarios below.

Excess inputs

Say we have m inputs and p outputs, where m > p. In broad terms, the design
alternatives can be characterized under four headings.

a) Squaring up

Since we have extra degrees of freedom in the input, it is possible to control
extra variables (even though they may not be measured). One possible strat-
egy, is to use an observer to estimate the missing variables. Indeed, when
the observer estimates a further m − p variables, then we can design a con-
troller for an m × m system. Note that, since the observer will normally
be unbiased, the transfer function from the input to the estimated variables
is nominally identical to the transfer function to the true, but unmeasured,
variables. Hence, no additional complexity arises.

b) Coordinated control

Another, very common situation, is where p inputs are chosen as the primary
control variables, but other variables from the remaining m − p inputs, are
used in some fixed, possibly dynamic, relationships to the primary controls.

A particularly common instance of this approach is where one uses fuel flow as
primary control variable (say to control temperature), but then ties air-flow
to the primary variable in a fixed ratio so as to achieve stoichiometric burning.
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c) Soft load sharing

If one decides to simply control the available measurements, then one can
share the load of achieving this control between the excess inputs. This can
be achieved via various optimization approaches (e.g. quadratic).

d) Hard load sharing

It is often the case that one has a subset of the inputs (say of dimension p)
that are a preferable choice form the point of view of precision or economics,
but these have limited amplitude or authority. In this case, other inputs can
be called upon to assist. A nice example of this kind of situation is where one
wishes to accurately control the flow of a material over a wide range. In this
application, the appropriate strategy is to use a big valve to regulate the flow
for large errors and then allow a small valve to trim the flow to the desired
value. This is a switching control strategy. More will be said about this in
the next chapter.

Excess outputs

Here we assume that p > m. In this case we cannot hope to independently con-
trol each of the measured outputs at all times. We investigate three alternative
strategies.

• Squaring down

Although all the measurements should be used in obtaining state estimates,
only m quantities can be independently controlled. Thus, any part of the
controller that depends on state estimate feedback should use the full set of
measurements, however, set point injection should only be carried out for a
subset of m variables (be they estimated or measured).

• Soft sharing control

If one really wants to control more variables than there exist inputs, then it is
possible to define their relative importance by using a suitable performance in-
dex. For example, one might use a quadratic performance index with different
weightings on different outputs. Note, of course, that zero steady state error
cannot, in general, be forced in all loops. Thus integral action (if desired) can
only be applied to, at most, m outputs.

• Switching strategies

It is also possible to take care of m variables at any one time by use of a
switching law. This law might include time division multiplexing or some
more sophisticated decision structure. An example of this has been presented
in section §11.4, where a single control is used to impose both state constraints
and output tracking by switching between two linear controllers, one designed
for each purpose.
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The availability of extra inputs or outputs can also be very beneficial in allow-
ing one to achieve a satisfactory design in the face of fundamental performance
limitations. We illustrate by an example.

Example 24.3 (Inverted pendulum). We recall the inverted pendulum problem
discussed in Example 9.4 on page 254. We saw that this system, when considered
as a single input (force applied to the cart), single output (cart position) problem,
has a real RHP pole which has a larger magnitude than a real RHP zero. Although
this problem is, formally, controllable, it was argued that this set-up, when viewed in
the light of fundamental performance limitations, is practically impossible to control
due to severe and unavoidable sensitivity peaks.

However the situation dramatically changes if we also measure the angle of the
pendulum. This leads to a single input (force) and two outputs (cart position, y(t),
and angle, θ(t)). This system can be represented in block diagram form as in Figure
24.8.

f(t) −K

(s− a)(s+ a)

−(s− b)(s+ b)

s2

θ(t)

y(t)

Figure 24.8. One input, two output inverted pendulum model

Note that this non-square system has poles at (0, 0, a, −a) but no finite (MIMO)
zeros. Thus, one might reasonably expect that the very severe limitations which
existed for the SISO system may no longer apply to this non-square system.

We use the same numerical values as in Example 9.4, i.e. K = 2, a =
√
20 and

b =
√
10. Then a suitable non-square controller turns out to be

U(s) =
[
Cy(s) Cθ(s)

] [R(s)− Y (s)
−Θ(s)

]
(24.11.1)

where R(s) = L [r(t)] is the reference for the cart position, and

Cy(s) = −4(s+ 0.2)
s+ 5

; Cθ(s) = −150(s+ 4)
s+ 30

(24.11.2)

Figure 24.9 on the following page shows the response of the closed loop system
for r(t) = µ(t− 1), i.e. a unit step reference applied at t = 1.

An interesting observation is that the non-minimum phase zero lies between the
input and y(t). Thus, irrespective of how the input is chosen, the performance
limitations due to that zero remain. For example, we have for a unit reference step
that
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Figure 24.9. Step response in a non-square control for the inverted pendulum.

∫ ∞

0

[r(t)− y(t)] e−btdt =
1
b

(24.11.3)

It is readily verified that this holds for the upper plot in Figure 24.9. In particu-
lar, the presence of the non-minimum phase zero places an upper limit in the closed
loop bandwidth irrespective of the availability of the measurement of the angle.

The key issue which explains the advantage of using non-square control in this
case, is that the second controller effectively shifts the unstable pole to the stabil-
ity region. Thus there is no longer a conflict between a small NMP zero and a
large unstable pole, and we need only to pay attention to the bandwidth limitations
introduced by the NMP zero.

24.12 Discrete Time Systems

The results presented in the previous sections also apply, mutatis mutandis, to
discrete time systems. The main differences are related to:

(i) different stability region
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(ii) the fact that in discrete time, pure delays simply appear as poles at the
origin (in the z-plane) whereas in continuous time, they lead to transcendental
functions of s

Point (ii) above is particularly important since it allows finite dimensional tech-
niques to be applied to time delay systems.

24.13 Summary

• Analogous to the SISO case, MIMO performance specifications can generally
not be addressed independently from another, since they are linked by a web
of trade-offs.

• A number of the SISO fundamental algebraic laws of trade-off generalize rather
directly to the MIMO case

◦ So(s) = I − To(s) implying a trade-off between speed of response to a
change in reference or rejecting disturbances (So(s) small) versus neces-
sary control effort, sensitivity to measurement noise or modeling errors
(To(s) small)

◦ Ym(s) = −To(s)Dm(s) implying a trade-off between the bandwidth of
the complementary sensitivity and sensitivity to measurement noise.

◦ Suo(s) = [Go(s)]−1To(s) implying that a complementary sensitivity
with bandwidth significantly higher than the open loop will generate
large control signals.

◦ Sio(s) = So(s)Go(s) implying a trade-off between input and output
disturbances.

◦ S(s) = So(s)S∆(s) where S∆(s) = [I+G∆l(s)To(s)]−1 implying a trade-
off between the complementary sensitivity and robustness to modeling
errors.

• There also exist frequency- and time-domain trade-offs due to unstable poles
and zeros:

◦ qualitatively they parallel the SISO results in that (in a MIMO measure)
low bandwidth in conjunction with unstable poles is associated with in-
creasing overshoot, whereas high bandwidth in conjunction with unstable
zeros is associated with increasing undershoot

◦ quantitatively, the measure in which the above is true is more complex
than in the SISO case: the effects of under- and overshoot, as well as in-
tegral constraints, pertain to linear combinations of the MIMO channels.

• MIMO systems are subject to the additional design specification of desired
decoupling.
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• Decoupling is related to the time- and frequency-domain constraints via di-
rectionality:

◦ The constraints due to open-loop NMP zeros with non-canonical direc-
tions can be isolated in a subset of outputs, if triangular decoupling is
acceptable.

◦ Alternatively, if dynamic decoupling is enforced, the constraint is dis-
persed over several channels.

• Advantages and disadvantages of completely decentralized control, dynami-
cal and triangular decoupling designs were illustrated with an industrial case
study:

Sugar mill case study

Design Advantage Disadvantage

Decentralized Simpler SISO theory can
be used

Interactions are ignored;
poor performance

Dynamic Decoupling Outputs can be con-
trolled separately

Both output must obey
the lower bandwidth con-
straint due to one NMP
zero

Triangular Decoupling Most important output
decoupled and without
NMP constraint

The second (albeit less
important) output is af-
fected by the first output
and NMP constraint.
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24.15 Problems for the Reader

Problem 24.1. Consider a 2× 2 MIMO plant with transfer function given by

Go(s) =
20

(s+ 2)(s+ 5)2


s− 2 −s− 1

s− 2 −5


 (24.15.1)

24.1.1 Compute the system NMP zeros and the associated left and right directions.

24.1.2 Determine the sensitivity constraints due to those zeros.

Problem 24.2. Consider a 2× 2 MIMO plant having a nominal model given by

Go(s) =
1

(s+ 1)2


s− 2 1

−2 −2


 (24.15.2)

24.2.1 Show that this system has an interacting NMP zero and compute its asso-
ciated left direction(s).

24.2.2 Is this case analogous to the quadruple tank case analyzed in Example 24.1
on page 753?. Discuss.

Problem 24.3. Consider the same plant as in Problem 24.2. Assume that a feed-
back control loop has to be designed to achieve zero steady state errors for constant
references and a bandwidth of 0.5 [rad/s] in both channels.

24.3.1 Design a controller to achieve a diagonal complementary sensitivity.

24.3.2 Design a controller to achieve a lower triangular complementary sensitivity.

24.3.3 Compare the performance of both designs.

Problem 24.4. Consider a MIMO plant having a nominal model satisfying

Go(s) = GoN(s)[GoD(s)]−1 where GoD(3) =


 2 0

−1 0


 (24.15.3)
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24.4.1 Determine the directions associated to the unstable pole.

24.4.2 Determine the constraints that will affect the controller output u(t) for a
step output disturbance in the i− th channel (i = 1, 2).

Problem 24.5. Derive the time domain constraints for discrete time systems in
the presence of NMP zeros and unstable poles.

Problem 24.6. Consider a 2× 2 MIMO plant with transfer function given by

Go(s) =
20

(s− 2)(s+ 5)2


 1 0.2(s+ 5)

−0.125(s+ 5)2 2


 (24.15.4)

This plant has to be digitally controlled with sampling period ∆ = 0.1 [s] and a
zero order hold.

24.6.1 Compute the model for the sampled data system, [Gh0Go]q (z).

24.6.2 Determine the time domain constraints arising from unstable poles and
NMP zeros (if any).

Problem 24.7. Consider a feedback control loop for a 2× 2 MIMO plant having
a NMP zero at s = 2, with (unique) associated left direction hT = [1 − 1]. Then,
equation (24.6.3) says that for a step input in either of the channels, we have that

∫ ∞

0

hT y(t)e−zotdt =
∫ ∞

0

(
y1(t)− y2(t)

)
e−2tdt = 0 (24.15.5)

where y1(t) and y2(t) are the plant outputs in channels 1 and 2, respectively.
Equation (24.15.5) might suggest that we can avoid undershoot if the controller is

designed to achieve a complementary sensitivity where T11(s) = T21(s) and T12(s) =
T22(s), since then we can have y1(t)− y2(t) = 0 for all t. Why is this not a sensible
idea?
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Problem 24.8. Consider a MIMO system having a model given by

Go(s) =
2

(s+ 1)2(s+ 2)



2(−s+ 3) 0.5(−s+ 3) (−s+α)

0.5(s+ 1) −β −(s+ 2)

−1 0.5 2.5


 (24.15.6)

If α = 3 and β = 1, find all time domain constraints for the feedback control of
this system. (The reader is reminded that there may be more than one left direction
associated with a NMP zero.)
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PREVIEW

This final part of the book covers some advanced ideas in MIMO control. We
begin in Chapter 25 with the MIMO extension of the controller parameterizations
described in Chapter 15 for the SISO case. Finally in Chapter 26, we bring together
many ideas in the book. Our aim here is to describe some advanced design ideas.
However, we also want to illustrate to the reader that having reached this point he
or she can understand quite sophisticated design issues. In particular, we show how
full dynamic and partially decoupling can be achieved via one and two degree of
freedom controllers. We also show how dynamic decoupling can be retained in the
presence of actuator amplitude and slew rate limitations.
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Chapter 25

MIMO CONTROLLER
PARAMETERIZATIONS

25.1 Preview

In this chapter we will extend the SISO design methods of Chapter 15 to the MIMO
case. We will find that many issues are common between the SISO and MIMO
cases. However, there are distinctive issues in the MIMO case which warrant sep-
arate treatment. The key factor leading to these differences is once again the fact
that MIMO systems have spatial coupling, i.e. each input can affect more than one
output and each output can be affected by more than one input. The consequences
of this are far reaching. Examples of the difficulties which arise from these interac-
tions include stability, non minimum phase zeros with their directionality properties
and tracking performance.

Notwithstanding these differences, the central issue in MIMO control system
design still turns out to be that of (approximate) inversion. Again, because of
interactions, inversion is more intricate than in the SISO case, and we will thus
need to develop more sophisticated tools for achieving this objective.

25.2 Affine Parameterization: Stable MIMO Plants

We refer the reader to Chapter 15 and in particular to section §15.3 where we pre-
sented the parameterization of all stabilizing controllers for a stable linear system.
The generalization to the multivariable case is straightforward. Indeed, all con-
trollers that yield a stable closed loop for a given open loop stable plant having
nominal transfer function Go(s) can be expressed as

C(s) = [I−Q(s)Go(s)]−1Q(s) = Q(s)[I−Go(s)Q(s)]−1 (25.2.1)

where Q(s) is any stable proper transfer function matrix.
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The resulting nominal sensitivity functions are

To(s) = Go(s)Q(s) (25.2.2)
So(s) = I−Go(s)Q(s) (25.2.3)
Sio(s) = (I−Go(s)Q(s))Go(s) (25.2.4)
Suo(s) = Q(s) (25.2.5)

These transfer function matrices are simultaneously stable if and only if Q(s) is
stable. A key property of (25.2.2) to (25.2.5) is that they are affine in the matrix
Q(s). We will exploit this property below when we discuss various design issues.

Remark 25.1. Note that the following are a valid LMFD and RMFD for the nom-
inal plant and controller.

CD(s) = I−Q(s)Go(s) CN(s) = Q(s) (25.2.6)
CD(s) = I−Go(s)Q(s) CN(s) = Q(s) (25.2.7)

GoD(s) = I GoN(s) = Go(s) (25.2.8)
GoD(s) = I GoN(s) = Go(s) (25.2.9)

Actually the above choices show that (22.12.22) is satisfied and hence that closed
loop stability is guaranteed by having Q(s) stable. We will find (25.2.6) and (25.2.7)
a convenient MFD for the controller which will facilitate subsequent design proce-
dures.

✷✷✷

An idealized target sensitivity function is T(s) = I. We then see from (25.2.2)
and (25.2.3) that the design of Q(s) reduces to the problem of finding an (approx-
imate) right inverse for Go(s), such that the trade-offs are approximately met in
the different frequency regions.

We refer the reader to section §15.3.2 where the following issues arose in the
SISO problem of finding approximate inverses:

• non minimum phase zeros

• model relative degree

• disturbance trade-offs

• control effort

• robustness

• uncontrollable modes
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These same issues appear in the MIMO case, but they are compounded by
directionality issues. In the sequel, we will explore the issues of MIMO relative
degree, robustness and non minimum phase zeros.

25.3 Achieved Sensitivities

As in the SISO case, we need to distinguish between the nominal sensitivities and the
achieved sensitivities. The results of section 20.8 apply here as well. For example,
the achieved sensitivity is given, as in (20.8.3), by

S(s) = So(s)[I+G∆l(s)To(s)]−1 (25.3.1)
= [I−Go(s)Q(s)][I+Gε(s)Q(s)]−1 (25.3.2)

where Gε(s) is the additive model error, defined in analogy to (4.12.1) as

G(s) = Go(s) +Gε(s) (25.3.3)

25.4 Dealing with Model Relative Degree

We recall from Chapter 15, that in the SISO case, we dealt with model relative
degree issues by simply introducing extra filtering to render the appropriate transfer
function bi-proper. This same principle applies to the MIMO case save that the
filter needed to achieve a bi-proper matrix transfer function is a good deal more
interesting then in the SISO case. To understand this, we need to pause to study
the issue of MIMO relative degree.

25.4.1 MIMO relative degree

The issue of MIMO model degree is more subtle than in the SISO case. In the
following sections we define MIMO relative degree and explore some of its properties.

(a) Interactor matrices

We recall that the relative degree of a SISO model, amongst other things, sets a
lower limit to the relative degree of the complementary sensitivity. In the SISO case
we say that the relative degree of a (scalar) transfer function G(s) is the degree of
a polynomial p(s) such that

lim
s→∞ p(s)G(s) = K where 0 < |K| < ∞ (25.4.1)

This means that p(s)G(s) is biproper, i.e. (p(s)G(s))−1 is also proper.
We can actually make this polynomial p(s) unique if we require that it should

belong to the class of polynomials P = {sk|k ∈ N}.
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In the MIMO case, every entry in the transfer function matrix G(s) may have
a different relative degree. Thus, to generate a multivariable version of the scalar
polynomial p(s) in (25.4.1), we will need to consider the individual entries and their
interactions. To see how this can be done, consider an m×m matrix G(s).

We will show that there exist matrices ξL(s) and ξR(s) such that the following
properties (which are the multivariable analogues of (25.4.1)) hold:

lim
s→∞ ξL(s)G(s) = KL 0 < | det(KL)| < ∞ (25.4.2)

lim
s→∞G(s)ξR(s) = KR 0 < | det(KR)| < ∞ (25.4.3)

This result is established in the following theorem.

Theorem 25.1. Consider a square transfer function m×m matrix G(s), nonsin-
gular almost everywhere in s. Then there exists unique transfer matrices ξL(s)and
ξR(s)(left and right interactor matrices respectively), such that (25.4.2) and (25.4.3)
are satisfied and where

ξL(s) =HL(s)DL(s) (25.4.4)
DL(s) = diag (sp1 , . . . , spm) (25.4.5)
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HL(s) =




1 0 · · · · · · 0

hL21(s) 1 · · · · · · 0

hL31(s) hL32(s)
. . .

...

...
...

. . .
...

hLm1(s) hLm2(s) · · · · · · 1




(25.4.6)

ξR(s) = DR(s)HR(s) (25.4.7)
DR(s) = diag (sq1 , . . . , sqm) (25.4.8)

HR(s) =




1 hR12(s) hR13(s) · · · hR1m(s)

0 1 hR23(s) · · · hR2m(s)

...
...

. . .
...

...
...

. . .
...

0 0 · · · · · · 1




(25.4.9)

and where hLij(s) and hRij(s) are polynomials in s, satisfying hLij(0) = 0 and hRij(0) =
0.

Proof

[By construction]
We first recall that G(s) can always be expressed in RMFD in such a way that

GoN(s)and GoD(s)are right coprime polynomial matrices, and such that GoD(s)is
column proper. Let nd be the sum of the degrees of the columns of GoD(s), and let
nn be the degree of det(GoN(s)), then the relative degree of G(s) is nd − nn, and
properness of G(s) implies that nn ≤ nd.

We will prove the theorem for the left interactor. The case of the right interactor
can be proved by mirroring the arguments, with regard to rows and columns.

Consider first the ith row of G(s), [G(s)]i∗. Then there exists a minimum
nonnegative integer ni such that

lim
s→∞ sni [G(s)]i∗ = fTi (25.4.10)
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where fTi is a row vector, not identically zero and having finite entries.
Then one can proceed to construct ξL(s) as follows

(i) Choose the first row of ξL(s), [ξL(s)]1∗, as

[ξL(s)]1∗ = [sn1 0 0 . . . 0] (25.4.11)

Then

[KL]1∗ = lim
s→∞[ξL(s)]1∗G(s) = rT1 (25.4.12)

where rT1 is a row vector such that rT1 = fT1

(ii) Consider the second row vector fT2 . If fT2 is linearly independent of rT1 , then
choose the second row of ξL(s), [ξL(s)]2∗, as

[ξL(s)]2∗ = [0 sn2 0 0 . . . 0] (25.4.13)

This will lead to

[KL]2∗ = lim
s→∞[ξL(s)]2∗G(s) = rT2 (25.4.14)

(iii) If f2 is linearly dependent of r1, i.e. there exists a nonzero β1
2 such that

fT2 = β1
2r

T
1 , then we cannot choose [ξL(s)]2∗ as in (25.4.13), since then, the

matrix KL in (25.4.2) would be singular. Instead we form the row vector

[ξL(s)]
1
2∗ = sn

1
2([0 sn2 0 0 . . . 0]− β1

2 [ξL(s)]1∗) (25.4.15)

where n1
2 is the unique integer such that

lim
s→∞[ξL(s)]

1
2∗G(s) = (r1

2)
T (25.4.16)

and r12 is a vector not identically zero and with finite entries.

If r1
2 is linearly independent of r1, then choose the second row of ξL(s),

[ξL(s)]2∗, as

[ξL(s)]2∗ = [ξL(s)]
1
2∗ (25.4.17)
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If r1
2 is linearly dependent of r1, then there exists a nonzero β2

2 such that
r2 = β2

2r1. Next, form the row vector

[ξL(s)]
2
2∗ = (sn

2
2([ξL(s)]

1
2∗ − β1

2 [ξL(s)]1∗) (25.4.18)

where n2
2 is the unique integer such that

lim
s→∞[ξL(s)]

2
2∗G(s) = (r2

2)
T (25.4.19)

where r22 is a vector not identically zero and with finite entries.

If r2
2 is linearly independent of r1, then choose the second row of ξL(s),

[ξL(s)]2∗, as

[ξL(s)]2∗ = [ξL(s)]
2
2∗ (25.4.20)

If r
(2)
2 is linearly dependent of r1, then the process is repeated, until either

linear independence is achieved, or when the kth attempt yields n1 + nk2 =
nd − nn, in which case make p2 = 0 and the corresponding off diagonal terms
h21, . . . , h2(m−1) equal zero. Note that n1+nk2 can never be larger than nd−nn,
since this latter value is the relative degree of the matrix.

(iv) Proceed with the other rows in a similar fashion.

✷✷✷

We illustrate the procedure with the following example.

Example 25.1. Consider the transfer function matrix G(s) given by

G(s) =


(s+ 1)2 (s+ 1)

2(s+ 1) 1


 [(s+ 1)3I]−1 (25.4.21)

Then nd = 6 and nn = 2. We also have that n1 = 1, with f1 = [1 0]T , and n2 = 2
with f2 = [2 0]T .

(i) We first form

[ξL(s)]1∗ = [sn1 0 0 . . . 0] = [s 0] (25.4.22)

Then

lim
s→∞[ξL(s)]1∗[G(s)]1∗ = rT1 = [1 0] (25.4.23)
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(ii) Consider the row vector fT2 . Since f2 is linearly dependent on r1, with β1
2 = 2,

i.e. f2 = 2r1, we then choose the second row of ξL(s), [ξL(s)]2∗, as

[ξL(s)]
1
2∗ = sx([0 s2]− β1

2 [ξL(s)]1∗) = [−2s1+x s2+x] (25.4.24)

where x is found on noting that

lim
s→∞[ξL(s)]

1
2∗G(s) = (r1

2)
T = lim

s→∞

[−2s1+x

(s+ 1)2
−s2+x − 2s1+x

(s+ 1)3

]
(25.4.25)

from where we obtain x = 1. This leads to

r12 = [−2 − 1]T (25.4.26)

which is linearly independent of fT1 . Thus the choice (25.4.24), with x = 1, is
a valid choice as the second row of the interactor matrix. Thus

ξL(s) =


 s 0

−2s2 s3


 (25.4.27)

✷✷✷

Remark 25.2. It is straightforward to see that the interactors can be defined using
diagonal matrices DL(s) and DR(s) in (25.4.4), (25.4.7), with arbitrary polynomial
diagonal entries with degrees p1, p2, . . . , pm, which are invariants of the interactor
representation of a given matrix G(s). This flexibility is important since we can
always choose stable polynomials, implying that the inverses of ξL(s) and ξR(s) are
also stable.

(b) Interpretation

Interactor matrices play a central role in control, since they define the (multivari-
able) relative degree. For example, they define the minimum achievable relative
degree of any complementary sensitivity obtainable using a proper controller.

The left interactor matrix has the interpretation that ξL(s)Y (s) is a particular
combination of predicted outputs having the special property that the transfer
function connecting ξL(s)Y (s) to U(s) has non zero high frequency gain. This
property can be used to develop a prototype control law by setting the predicted
output ξL(s)Y (s) equal to some desired value. This interpretation can be best seen
by a simple discrete time example as follows:



Section 25.4. Dealing with Model Relative Degree 795

Example 25.2. Consider the following transfer function expressed in terms of the
Z-transform variable:

Goq(z) =
1
z2


 z 2

3z 4


 (25.4.28)

In agreement with the definitions above, the left interactor ξL(z) turns out to be

ξL(z) =


 z 0

−3z2 z2


 (25.4.29)

Using ξL(z) we can define a new variable YqL(z) as follows:

YqL(z)
�
= ξL(z)Yq(z) = ξL(z)Goq(z)Uq(z)

=




zYq(z)(1)

−3z2Yq(z)(1) + z2Yq(z)(2)


 =

1 2z−1

0 −2


Uq(z)

(25.4.30)

where Yq(z)(1) and Yq(z)(2) denote the first and second elements in the output vector
Yq(z), respectively.

We see from the right most expression in (25.4.30) that we have built a predictor
for a combination of the future outputs which depends on present and past values
of the inputs. Moreover, the dependence on the present inputs is via an invertible
matrix. Thus, there exists a choice for the present inputs, which brings yL[k] =
Z−1 [YqL(z)] to any desired value, y∗L[k].

We define Y ∗
qL(z) as ξL(1)Y ∗

q (z). We then define the control law by setting
YqL(z) equal to Y ∗

qL(z). This leads to the proper control law


1 2z−1

0 −2


Uq(z) = Y ∗

qL(z) (25.4.31)

or

u[k](1) = −2u[k − 1](2) + y∗qL[k]
(1) and u[k](2) = −0.5y∗qL[k](2) (25.4.32)
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This leads to the result

YqL(z) = ξL(z)Yq(z) = Y ∗
qL(z) = ξL(1)Y

∗
q (z) (25.4.33)

So that finally

Yq(z) = [ξL(z)]
−1ξL(1)Y

∗
q (z)

=


 z

−1 0

3z−1 z−2





1 0

−3 1


Y ∗

q (z)

=


 z−1 0

3z−1(1− z−1) z−2


 Y ∗

q (z)

(25.4.34)

We can evaluate the resultant time response of the system as follows.
A unit step in y∗1 [k] (the first component of y∗[k]) produces the following output

sequences:

{y1[k]} = [0 1 1 1 · · · ] (25.4.35)
{y2[k]} = [0 3 3 0 · · · ] (25.4.36)

Similarly, a unit step in y∗2 [k] (the second component of y∗[k]) produces

y1[k] = [0 0 0 0 · · · ] (25.4.37)
y2[k] = [0 0 1 1 · · · ] (25.4.38)

Note that y(1) responds in one sample but produces significant coupling into y(2).
We can remove this coupling by accepting a longer delay in the prediction. For

example, instead of 25.4.33, we might use

Y ∗
qL(z) = ξL(z)


z

−2 0

0 z−2


 Y ∗

q (z) (25.4.39)

If we then set YqL(z) = Y ∗
qL(z), we obtain the causal control law
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ξL(z)


z

−2 0

0 z−2


Y ∗(z) =


1 2z−1

0 −2


Uq(z) (25.4.40)

which gives

Yq(z) =


z

−2 0

0 z−2


 Y ∗

q (z) (25.4.41)

So we see that we now have a dynamically decoupled system but an extra delay
(i.e. a zero at z = ∞) has been introduced in the response to a unit step in channel 1.

In summary we see that

(i) the interactor captures the minimum delay structure in the system, i.e. the
structure of the zeros at ∞.

(ii) To exploit this minimum delay structure in control may lead to dynamic cou-
pling.

(iii) We can get dynamic decoupling, but this may be at the expense of extra delay,
i.e. extra zeros at ∞.

Actually these kind of properties will be mirrored in more general MIMO designs
which we discuss below.

✷✷✷

We can develop an analogous interpretation for the right interactor. Indeed, if
we write

Go(s) = Go(s)ξR(s)[ξR(s)]
−1 (25.4.42)

then we see that [ξR(s)]−1U(s) is a particular combination of past inputs which
has the property that the high frequency gain of the transfer function relating
[ξR(s)]

−1U(s) to the output Y (s) is nonsingular. This can also be used to develop
a prototype control law by attempting to find a particular combination of past
controls that bring the current output to some desired value. We again illustrate
by a simple discrete time example.

Example 25.3. Consider again the transfer function given in (25.4.28). For this
example, the right interactor is
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ξR(z) =


z 0

0 z2


 and Goq(z)ξR(z) =


1 2

3 4


 (25.4.43)

We can use this to build a predictor for the current output in terms of combi-
nations of past inputs. In particular, we have

Yq(z) =Goq(z)Uq(z) = (Goq(z)ξR(z))([ξR(z)]
−1Uq(z))

=


1 2

3 4





z−1U

(1)
q (z)

z−2U
(2)
q (z)




(25.4.44)

where U
(1)
q and U

(2)
q are the first and second components of the input vector, respec-

tively.
We can now attempt to determine that particular combination of past inputs

that brings the current output to suitable past values of y∗[k].
We thus define Uq(z) by setting

Go(s)ξR(s)[ξR(s)]
−1Uq(z) =


z

−n1 0

0 z−n2


Y ∗

q (z) (25.4.45)

This leads to

Uq(z) = ξR(z)[Goq(z)ξR(z)]
−1


z

−n1 0

0 z−n2


Y ∗

q (z) (25.4.46)

where n1 and n2 are chosen to make the controller causal. For our example, we end
up with

Uq(z) =


z 0

0 z2




1 2

3 4



−1 z

−2 0

0 z−2


Y ∗

q (z) (25.4.47)

Leading to
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Yq(z) =


z

−2 0

0 z−2


 Y ∗

q (z) (25.4.48)

✷✷✷

25.4.2 Approximate inverses

We next show how interactors can be used to construct approximate inverses ac-
counting for relative degree.

A crucial property of ξL(s) and ξR(s) is that

ΛR(s)
�
= Go(s)ξR(s); and ΛL(s)

�
= ξL(s)Go(s) (25.4.49)

are both biproper transfer functions having non singular high frequency gain. This
simplifies the problem of inversion. Note that both, ΛR(s)and ΛL(s), have a state
space representation of the form

ẋ(t) = Ax(t) +Bu(t) (25.4.50)

y(t) = Cx(t) +Du(t) (25.4.51)

where detD �= 0. Note also that A and C are the same as in the plant description
(22.2.1)-(22.2.2).

The key point about (25.4.50) and (25.4.51) is that the exact inverse of Λ(s) can
be obtained by simply reversing the roles of input and output to yield the following
state space realization of [Λ(s)]−1:

ẋ(t) = Ax(t) +BD−1 (y(t)−Cx(t)) (25.4.52)
= Aλx(t) +Bλũ(t) (25.4.53)

u(t) = D−1 (y(t)−Cx(t)) (25.4.54)
= Cλx(t) +Dλũ(t) (25.4.55)

where ũ(t) denotes the input to the inverse, i.e. ũ(t) = y(t), and u(t) denotes the
output, of the inverse. Also, in (25.4.52) to (25.4.54)

Aλ = A−BD−1C Bλ = BD−1 (25.4.56)

Cλ = −D−1C Dλ = D−1 (25.4.57)
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We can use [ΛL(s)]−1 or [ΛR(s)]−1 to construct various approximations to the
inverse of Go(s). For example,

Ginv
R (s)

�
= [ξL(s)Go(s)]−1ξL(0) (25.4.58)

is an approximate right inverse with the property

Go(s)Ginv
R (s) = [ξL(s)]

−1ξL(0) (25.4.59)

which is lower triangular, and equal to the identity matrix at d.c.
Similarly

Ginv
L (s)

�
= ξR(0)[Go(s)ξR(s)]

−1 (25.4.60)

is an approximate left inverse with the property

Ginv
L (s)Go(s) = ξR(0)[ξR(s)]

−1 (25.4.61)

which is also lower triangular, and equal to the identity matrix at d.c.
With the above tools in hand, we return to the original problem of constructing

Q(s) as an (approximate) inverse for Go(s). For example, we could choose Q(s) as

Q(s) = [ΛL(s)]−1ξL(0) = [ξL(s)Go(s)]−1ξL(0) (25.4.62)

With this choice, we find that

To(s) = Go(s)Q(s)

= Go(s)[ΛL(s)]−1ξL(0)

= [ξL(s)]
−1ξL(0)

(25.4.63)

Thus, by choice of the relative degree modifying factors (s + α) we can make
To(s) equal to I at d.c. and triangular at other frequencies, with bandwidth deter-
mined by the factors (s+ α) used in forming ξL(s).

25.5 Dealing with NMP Zeros

25.5.1 z-interactors

We have seen in section §25.4.1 that interactor matrices are a convenient way of
describing the relative degree or zeros at ∞ of a plant. Also we have seen that the
interactor matrix can be used to pre-compensate the plant so as to isolate the zeros
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at ∞, thus allowing a proper inverse to be computed for the remainder. The same
basic idea can be used to describe the structure of finite zeros. The appropriate
transformations are known as z -interactors. They allow a pre-compensator to
be computed which isolates particular finite zeros. In particular, when applied to
isolating the non-minimum phase zeros and combined with interactors for the zeros
at ∞, z-interactors allow a stable and proper inverse to be computed.

The extension of Theorem 25.1 on page 790 to a finite zero is the following.

Lemma 25.1. Consider a non singular m × m matrix G(s). Assume that this
matrix has a real NMP zero located at s = zo. Then there exists upper and lower
triangular matrices, ψR(s) and ψL(s) respectively, such that

lim
s→zo

ψL(s)G(s) = KLz 0 < | det(KLz)| < ∞ (25.5.1)

lim
s→zo

G(s)ψR(s) = KRz 0 < | det(KRz)| < ∞ (25.5.2)

with

ψL(s) = HL(υ)DL(υ) (25.5.3)
DL(υ) = diag (υp1 , . . . , υpm) (25.5.4)

HL(υ) =




1 0 · · · · · · 0
hL21(υ) 1 · · · · · · 0

hL31(υ) hL32(υ)
. . .

...
...

...
. . .

...
hLm1(υ) hLm2(υ) · · · · · · 1


 (25.5.5)

ψR(s) = DR(υ)HR(υ) (25.5.6)
DR(υ) = diag (υq1 , . . . , υqm) (25.5.7)

HR(υ) =




1 hR12(υ) hR13(υ) · · · hR1m(υ)

0 1 hR23(υ) · · · hR2m(υ)
...

...
. . .

...
...

...
. . .

...
0 0 · · · · · · 1




(25.5.8)

where hLij(υ) and hRij(υ) are polynomials in υ, satisfying hLij(0) = 0 and hRij(0) = 0.
and where

υ = − szo
s− zo

(25.5.9)
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Proof

We observe that the mapping (25.5.9) converts the zero at s = zo to a zero at
υ = ∞. We can then apply Theorem 25.1.

✷✷✷

Remark 25.3. As was the case in Theorem 25.1, z-interactors can also be de-
fined using diagonal matrices DL(υ) and DR(υ) with arbitrary polynomial diagonal
entries with degrees p1, p2, . . . , pm, which are invariants of the interactor represen-
tation for a given matrix G(s). In particular, we can substitute υ by (υ+ α) where
α ∈ R+. Then, (25.5.9) has to be transformed, accordingly, to

υ = −s(α+ zo)
s− zo

(25.5.10)

Then, hLij(υ) and hRij(υ) become polynomials in (υ + α), satisfying hLij(−α) = 0
and hRij(−α) = 0

Remark 25.4. Note that these interactors remove the NMP zero, in the sense that
the products ψL(s)G(s) and G(s)ψR(s) are nonsingular at s = zo. This also means
that [ψL(s)]−1 and [ψR(s)]−1 are singular for s = zo.

We illustrate the above ideas with the following example.

Example 25.4. Consider a plant having the nominal model

Go(s) =
1

(s+ 1)(s+ 2)

[
s+ 1 1
2 1

]
(25.5.11)

We observe that this system has a NMP zero located at s = zo = 1. We define
the transformation (25.5.9), which yields

υ = − szo
(s− zo)

= − s

s− 1
⇐⇒ s =

υ

υ + 1
(25.5.12)

This transformation, when applied to Go(s) leads to

Vo(υ)
�
= Go(s)

∣∣∣
s= υ

υ+1

=
1

(2υ + 1)(3υ + 2)

[
(υ + 1)(2υ + 1) (υ + 1)2

2(υ + 1)2 (υ + 1)2

]
(25.5.13)

We will next compute the left interactor (for relative degree) for this transformed
plant. Note that, although every entry in Vo(υ) is biproper, the matrix itself is
strictly proper, since its determinant vanishes for υ = ∞. We use the construction
procedure outlined in the proof of Theorem 25.1.

Note that n1 = 0 with f1 =
1
6
[2 1] and n2 = 0 with f2 =

1
6
[2 1]
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(i) We first form

[ξL]1∗(υ) = [υn1 0 0 . . . 0] = [1 0] (25.5.14)

Then

lim
υ→∞[ξL]1∗(υ)Vo(υ) = rT1 = [1 0] (25.5.15)

(ii) Consider the row vector fT2 . f2 is linearly dependent of r1, with β1
2 = 1, i.e.

f2 = r1. We then choose the second row of ξL(υ), [ξL(υ)]2∗, as

[ξL(υ)]
1
2∗ = υx([0 1]− β1

2 [ξL(υ)]1∗) = [−υx υx] (25.5.16)

where x is found on noting that

lim
υ→∞[ξL(υ)]

1
2∗Vo(υ) = (r1

2)
T = lim

υ→∞

[
υx(v + 1)

(3υ + 2)(2υ + 1)
0
]

(25.5.17)

From where we obtain x = 1. This leads to

r1
2 = [1 0]T (25.5.18)

which is linearly independent of fT1 . Thus, the choice (25.5.16), with x = 1,
is a valid choice as the second row of the interactor matrix. Thus

ξL(υ) =
[
1 0
−υ υ

]
(25.5.19)

(iii) Since we want to have [ξL(υ)]−1 stable, without loosing the essential nature
of the interactor, we can substitute υ by υ + α with, say, α = 1, leading to

ξL(υ) =
[

1 0
−(υ + 1) (υ + 1)

]
(25.5.20)

We can now transform back the interactor matrix ξL(υ) to obtain ψL(s) as

ψL(s) =


 1 0

s+ 1
s− 1

−s+ 1
s− 1


 and [ψL(s)]

−1 =


1 0

1 −s− 1
s+ 1




(25.5.21)

Note that det(ψL(s)) = − s+1
s−1 . This ensures that det (ψL(s)Go(s)) is non-

singular for s = zo = 1.
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25.5.2 Q synthesis using interactors and z-interactors

We will next show how z-interactors can be used to design the controller in the
Q-parameterized structure for NMP plants.

For illustration purposes, say thatGo is a stable transfer function matrix having
one NMP zero, located at s = zo. We recall from section §25.5.1 that if ψL(s) is a
left z-interactor matrix, and if ψR(s) is a right z-interactor matrix, then

lim
s→zo

ψL(s)Go(s) = KLz 0 < | det(KLz)| < ∞ (25.5.22)

lim
s→zo

Go(s)ψR(s) = KRz 0 < | det(KRz)| < ∞ (25.5.23)

We also recall that, by construction, matrices ψL(s) and ψR(s) have, amongst
others, the following properties:

• ψL(s) and ψR(s) are unstable matrices.

• ψL(s) and ψR(s) are lower and upper triangular matrices respectively, with
entries of the form

[
−zo(α+ s)

s− zo

]k
where k ∈ N and α ∈ R

+ (25.5.24)

• [ψL(s)]
−1 and [ψR(s)]

−1 are stable triangular matrices with diagonal elements
of the form

[
− s− zo
zo(α+ s)

]k
(25.5.25)

• lims→∞ψL(s) = ZL and lims→∞ψR(s) = ZR are matrices with finite nonzero
determinant.

• det
(
ψL(0)

)
= det
(
ψR(0)

)
= 1. (This property is a consequence of (25.5.24).)

Consider the following choice for Q(s)

Q(s) = [ξL(s)Ho(s)]−1ξL(s)DQ(s) = [Ho(s)]−1DQ(s) (25.5.26)

where Ho(s) is the plant pre-compensated by the left z-interactor ψL(s), i.e.,

Ho(s)
�
= ψL(s)Go(s) (25.5.27)
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and ξL(s) is the left interactor for the zero at ∞. DQ(s) in (25.5.26) is a stable
matrix with other properties to be defined below.

Note that, by virtue of the pre-compensation, Ho(s) is a stable and minimum
phase matrix.

Using (25.2.2), (25.5.26) and (25.5.27) we see that the complementary sensitivity
is given by

To(s) = Go(s)Q(s) = [ψL(s)]
−1Ho(s)Q(s) = [ψL(s)]

−1DQ(s) (25.5.28)

We can now see that DQ(s) can be used to shape the structure and frequency
response of the MIMO loop (constrained by the unavoidable presence of the plant
non minimum phase zero). Thus, DQ(s) should be chosen to achieve the desired
dynamics in the different channels. For example, we can always achieve triangular
coupling by choosing DQ(s) as a lower triangular matrix. The relative degree of
the entries in DQ(s) must be chosen to make Q(s) proper (usually, biproper).

Note that the presence of [ψL(s)]−1 in (25.5.28) ensures internal stability, by
forcing the NMP zero of Go in To(s). Also, [ψL(s)]−1 contributes to the loop
dynamics with poles located at s = −α (see (25.5.25)), which are usually chosen
much larger than the required bandwidth.

We illustrate by a simple example.

Example 25.5. Consider a plant having a nominal model given by

G(s) =
1

(s+ 1)(s+ 3)


s+ 1 1

2 1


 (25.5.29)

Design a MIMO control loop with bandwidths of, approximately, 0.5[rad/s] in
both channels.

Solution

This is a stable and strictly proper plant. However, it has a NMP zero located at
s = zo = 1. We can then use z-interactors to synthesize Q(s) (see subsections
§25.5.1 and §25.5.2).

We first need to find the left z-interactor ψL(s) for the matrix Go(s) and the
matrix Ho(s).

To compute ψL(s) we note that this plant is similar to that in example 25.4,
where α = 1 was chosen. It is then straightforward to prove that
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ψL(s) =




1 0

s+ 1
s− 1

−s+ 1
s− 1


 and [ψL(s)]

−1 =



1 0

1 −s− 1
s+ 1


 (25.5.30)

We then compute Ho(s), which is given by

Ho(s) = ψL(s)Go(s) =
1

(s+ 1)(s+ 3)


s+ 1 1

s+ 1 0


 (25.5.31)

We also need to compute the exact model inverse [Go(s)]−1. This is given by

[Go(s)]−1 =
(s+ 1)(s+ 3)

(s− 1)


 1 −1

−2 s+ 1


 (25.5.32)

From (25.5.28) and the above expressions we have that

To(s) = [ψL(s)]
−1DQ(s) =


1 0

1 −s− 1
s+ 1


DQ(s) (25.5.33)

We first consider a choice of DQ(s) to make To(s) diagonal. This can be
achieved with a lower triangular DQ(s), i.e.

DQ(s) =


D11(s) 0

D21(s) D22(s)


 (25.5.34)

Then

To(s) =


1 0

1 −s− 1
s+ 1




D11(s) 0

D21(s) D22(s)


 =



D11(s) 0

D11 − s− 1
s+ 1

D21(s) −s− 1
s+ 1

D22(s)




(25.5.35)
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and

Q(s) = [Ho(s)]−1DQ(s) = (s+ 1)(s+ 3)



0

1
s+ 1

1 −1




D11(s) 0

D21(s) D22(s)




=


 (s+ 3)D21(s) (s+ 3)D22(s)

(s+ 1)(s+ 3)(D11(s)−D21(s)) −(s+ 1)(s+ 3)D22(s)




(25.5.36)

We immediately observe from (25.5.35) that, to make To(s) diagonal, it is nec-
essary that (s+1)D11(s) = (s−1)D21(s). This means that the NMP zero will appear
in channel 1, as well as in channel 2 of the closed loop. As we will see in Chapter
26, the phenomenon that decoupling forces NMP zeros into multiple channels is not
peculiar to this example, but more generally a trade off associated with full dynamic
decoupling.

If, instead, we decide to achieve only triangular decoupling, we can avoid having
the NMP zero in channel 1. Before we choose DQ(s), we need to determine, from
(25.5.36), the necessary constraints on the degrees of D11(s), D21(s) and D22(s), so
as to achieve a biproper Q(s).

From (25.5.36) we see that Q(s) is biproper if the following conditions are si-
multaneously satisfied

(c1) Relative degree of D22(s) equal to 2.

(c2) Relative degree of D21(s) equal to 1.

(c3) Relative degree of D11(s)−D21(s) equal to 2.

Conditions c2 and c3 are simultaneously satisfied if D11(s) has relative degree
1, and at the same time D11(s) and D21(s) have the same high frequency gain.

Furthermore, we assume that it is required that the MIMO control loop be decou-
pled at low frequencies (otherwise, steady state errors appear for constant references
and disturbances). From equation (25.5.35), we see that this goal is attained if
D11(s) and D21(s) have low frequency gains of equal magnitudes but opposite signs.

A suitable choice which simultaneously achieves both biproperness of Q(s) and
decoupling at low frequencies is

D21(s) =
s− β

s+ β
D11(s) (25.5.37)

where β ∈ R+ is much larger than the desired bandwidth, say β = 5.
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We can now proceed to choose DQ(s) in such a way that (25.5.37) is satisfied,
together with the bandwidth constraints.

A possible choice is

DQ(s) =




0.5(s+ 0.5)
s2 + 0.75s+ 0.25

0

0.5(s+ 0.5)(s− 5)
(s2 + 0.75s+ 0.25)(s+ 5)

0.25
s2 + 0.75s+ 0.25


 (25.5.38)

The performance of this design can be evaluated via simulation with the SIMULINK
file mimo3.mdl. Note that you must first run the MATLAB program in file
pmimo3.m

✷✷✷

Remark 25.5. When Go(s) has nz > 1 (different) NMP zeros, say at zo1, . . . , zonz ,
then the above approach can still be applied if we choose

Q(s) = [ξL(s)Ho(s)]
−1
ξL(s)DQ(s) (25.5.39)

where Ho(s) is now defined as:

Ho(s)
�
=

nz∏
k=1

ψL(s)
(k)Go(s) (25.5.40)

and where ψL(s)
(k) is the z-interactor for the pole located at s = zok.

25.5.3 Q synthesis as a model matching problem

Although the use of interactors and z-interactors gives insight into the principal
possibilities and fundamental structure of Q-synthesis for MIMO design, the pro-
cedure described in subsection §25.5.2 is usually not appropriate for numerically
carrying out the synthesis. In addition to being difficult to automate as a numerical
algorithm, the procedure would require the analytical removal of unstable pole-zero
cancellation which is awkward. The difficulty lies entirely with the z-interactor
part of the computation since robust state space methods are readily available for
computing the normal interactor.

In this section, we therefore investigate an alternative method for computing a
stable approximate inverse using the model matching procedures of section §22.6.
This circumvents the need for using z-interactors.

We first turn the plant into biproper form by using a normal interactor, ξL(s).
Let us assume that the target complementary sensitivity is T∗(s). We know

from (25.2.2) that, using the MIMO affine parameterization for the controller, the
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nominal sensitivity is Go(s)Q(s). Hence we can convert the Q-synthesis problem
into a model matching problem by choosing Q(s) to minimize

J =
1
2π

∫ ∞

−∞

∥∥M(jω)−N(jω)Γ(jω)
∥∥2
F
dω (25.5.41)

where M, N, Γ correspond to T∗, ξLGo and Q respectively. We can then, at least
in principle, apply the methods of subsection §25.5.4 to synthesize Q.

We begin by examining Q one column at a time. For the ith column we have

Ji =
1
2π

∫ ∞

−∞

∥∥[M(jω)]∗i −N(jω)[Γ(jω)]∗i
∥∥2
F
dω (25.5.42)

As in subsection §25.5.4, we convert to the time domain and use

ẋ1(t) = A1x1(t); x1(0) = B1 (25.5.43)
y1(t) = C1x1(t) (25.5.44)

to represent the system with transfer function [M(s)]∗i and we use

˙̃x2(t) = A2x̃2(t) + B̃2u(t) (25.5.45)

z2(t) = C2x̃2(t) + D̃u(t) (25.5.46)

to represent the system with bi-proper transfer function ξL(s)Go(s). Also, for
square plants, we know from the properties of ξL(s) that det{D̃} �= 0.

This seems to fit the theory given in section §22.6 for Model Matching. However,
an important difference is that here we have no weighting on the control effort u(t).
This was not explicitly allowed in the earlier work. Thus, we pause to extend the
earlier results to cover the case where no control weighting is used.

25.5.4 Model matching with unweighted solution

Here we consider a special case of the general MMP set-up. Specifically, in the basic
MMP, as described in (22.6.3), we seek an answer to the problem in which the size
of Θ is of no concern. In this case, we take R = 0 and Γ = I.

However, a difficulty is that this setting leads to an equivalent LQR problem
where the weighting penalizing the control effort is zero. This was not allowed in
the original LQR set-up. It can be rectified in a number of ways. We will show
how one can get around the problem by using a left interactor ξL(s) (see subsection
§25.4.1). We choose the elements of the interactors as (τs + 1)n, (for τ small) to
change the state space model for y2 into one for Z2(s) = ξL(s)Y2(s) having a direct
path from u to z2. Then z2(t) satisfies a state space model of the form:
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˙̃x2(t) = A2x̃2(t) + B̃2u(t) (25.5.47)

z2(t) = C2x̃2(t) + D̃u(t) (25.5.48)

where D̃T D̃ is non singular.
The optimal control form of the MMP then changes to

J =
∫ ∞

0

∥∥y1(t)− z2(t)
∥∥2

2
dt =
∫ ∞

0

[
x̃T (t) uT (t)

]Ψ̃ ST

S Φ




x̃(t)
u(t)


 dt

(25.5.49)

where

dx̃(t)
dt

= Ãx̃(t) + B̃u(t); x̃(0) =


B1

0


 (25.5.50)

Φ = D̃T D̃ C̃=
[
C1 −C2

]
Ψ̃ = C̃T C̃ (25.5.51)

ST = −C̃T D̃ Ã =


A1 0

0 A2


 B̃ =


 0
B̃2


 (25.5.52)

The cost function has cross coupling between x̃(t) and u(t) but this can be
removed by redefining the control law as

u(t) = u(t)−Φ−1Sx̃(t) (25.5.53)

This transforms the problem into

x̃(t)
dt

= Ax̃(t) +Bu(t) (25.5.54)

Jt =
∫ ∞

0

{
x̃(t)T Ψ x̃(t) + u(t)T Φu(t)

}
dt (25.5.55)

where
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A = Ã− B̃Φ−1S (25.5.56)

B = B̃ (25.5.57)

Ψ = C̃T [I− D̃Φ−1D̃T]C̃ (25.5.58)

Φ = Φ = D̃T D̃ (25.5.59)

Now we see from section §22.5 that a stabilizing solution to the problem exists
provided (A,Ψ

1
2 ) has no unobservable zeros on the imaginary axis. Under these

conditions, we can express the optimal u(t) as

u(t) = −Ksx̃(t) = −
[
K1

s K2
s

]
x̃(t) (25.5.60)

or, using (25.5.53)

u(t) = −K̃x̃(t) = −
[
K̃1 K̃2

]
x̃(t) (25.5.61)

where

K̃1 =K1
s − D̃−1C1

K̃2 =K2
s + D̃−1C2

As in subsection §22.6.3, we seek that particular state feedback for the original
system that solves the optimization problem. Thus u(t) can be generated from

dx̃(t)
dt

= Ãx̃(t) + B̃u(t); x̃(0) =


B1

0


 (25.5.62)

u(t) = −K̃x̃(t) (25.5.63)

Taking the Laplace transform gives the final realization of the optimal Θ(s) as

Θ(s) = [−I+ K̃2

(
sI−A2 + B̃2K̃2

)−1

B̃2] K̃1 (sI−A1)
−1 B̃1 (25.5.64)



812 MIMO Controller Parameterizations Chapter 25

Remark 25.6. The above model matching procedure constrains Θ(s) to be stable.
However as we have argued in Chapters 7 and 15, it is usually necessary, e.g. in
the presence of input disturbances, to distinguish between stable and desirable closed
loop pole locations. The method described above can be modified so that Θ(s) is
constrained to have poles in various desirable regions as in section §22.8.

Remark 25.7. In the case when D̃ is square and nonsingular, then we see from
(25.5.58) that Ψ will be identically zero. This will be the situation when we use this
algorithm for Q synthesis – see below.

25.5.5 Application to Q synthesis for non-minimum phase zeros

We can now apply the results of subsection §25.5.4 to the Q Synthesis problem.
Applying (25.5.64) to the problem posed in (25.5.45), (25.5.46) leads to the result:

[Θ(s)]∗i = [−I+ K̃2

(
sI−A2 + B̃2K̃2

)−1

B̃2] K̃1 (sI−A1)
−1 B̃1 (25.5.65)

where

K̃1 =Ks
1(s)− D̃−1C1 (25.5.66)

K̃2 =Ks
2(s)− D̃−1C2 (25.5.67)

Actually, the associated LQR problem has some special features since, as pointed
out in Remark 25.7, Ψ = 0, i.e. there is no weighting on the states in the cost
function.

We therefore need to carefully apply the results in Appendix ?? to understand
the fine detail of the solution. We refer to the transformed problem given in (25.5.54)
to (25.5.59). For this set-up, we have

(i)

When the system is minimum phase, then Aλ is stable. It then follows from Ap-
pendix ??, that the only positive semi-definite solution to the CTARE is P∞ = 0,
giving the optimal feedback gain as Ks

1(s) = 0, Ks
2(s) = 0. Note that P(t) con-

verges to P∞ for any positive definite initial condition. Substituting into (25.5.65),
(25.5.66), (25.5.67) gives

[Θ(s)]∗i = [−I+ D̃−1C2

(
sI−A2 + B̃2D̃−1C2

)−1

B̃2] [−D̃−1C1 (sI−A1)
−1 B̃1]

(25.5.68)

= [D̃−1 − D̃−1C2

(
sI−A2 + B̃2D̃−1C2

)−1

B̃2D̃−1] [C1 (sI−A1)
−1 B̃1]

(25.5.69)



Section 25.5. Dealing with NMP Zeros 813

The reader is invited to check that this is exactly equal to [Λ(s)]−1[T∗]∗i(s)
where [Λ(s)]−1 has the state space realization (25.4.56), (25.4.57). Thus in the
minimum phase case, the model matching algorithm has essentially resulted in the
exact inverse of ξL(s)Go(s) multiplied by the target complementary sensitivity
T∗(s). This is heuristically reasonable.

(ii)

When the system is non-minimum phase then, Ks
1(s) and K

s
2(s) will, in general, be

non zero ensuring that the eigenvalues of A2 − B̃2K̃2 lie in the stabilizing region.
Indeed, it can be shown that the eigenvalues of A2−B̃2K̃2 correspond to the stable
eigenvalues of A2 together with the unstable eigenvalues of A2 reflected through
the stability boundary. Furthermore Ks

2 satisfies the following CTARE:

0 = P22B̃2Φ−1B̃T
2P22 +P22A2 +A2

TP22 (25.5.70)

Ks
2 = Φ−1B̃2P22 (25.5.71)

Finally, the solution has the form:

[Q(s)]∗i(s) = L(s)[Γ(s)]∗i (25.5.72)

where

L(s) = −I+ K̃2

(
sI−A2 + B̃2K̃2

)−1

B̃2 (25.5.73)

and

[Γ(s)]∗i = K̃1 (sI−A1)
−1 B̃1 (25.5.74)

Furthermore, putting the columns of Q(s) side by side we have

Q(s) = L(s)Γ(s); Γ(s) =
[
[Γ(s)]∗1, [Γ(s)]∗2 . . . [Γ(s)]∗m

]
(25.5.75)

where Γ(s) is affine in T∗(s).

Remark 25.8. The above design (although optimal in an L2 sense) does not guar-
antee that Q(0) = [Go(0)]−1, i.e. there is no guarantee of integral action in the
controller. To achieve integral action we can do one of two things:

(i) Multiply Q(s) on the left by a constant matrix M to yield MQ(0) = [Go(0)]−1.

(ii) Follow the procedure described in section §16.3.4, i.e. express

Q(s) = [Go(0)]−1 + sQ(s) (25.5.76)

and optimize Q(s).

We also modify the cost function to include a weighting function W(s) = I/s.
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Remark 25.9. The above procedure finds an exact inverse for minimum phase
stable systems and an approximate inverse for non minimum phase system. For
the non minimum phase case, the plant unstable zeros are reflected in the stability
boundary to then appear as poles in Q(s). Additional poles in Q(s) are introduced
by [ξL(s)]

−1 which appears as part of the inverse system.
Three interesting questions arise concerning this design procedure. These are

(i) How do we assign the poles of Q(s) to some region rather than simply ensuring
that Q(s) is stable? This can be achieved with the transformations introduced
in section §22.8.

(ii) How do we choose the factors (s + α) in the interactor? This is related,
amongst other things, to the NMP zeros, that are present. As we have seen
in Chapter 24, the NMP zeros place an upper limit on the bandwidth which
is desirable to use. Other factors which determine (s + α) are the allowable
input range and the presence of measurement noise.

(iii) How do we impose additional design constraints such as diagonal decoupling.
This topic requires additional work and is taken up in Chapter §26.

Example 25.6. Consider a 2× 2 MIMO plant with nominal model given by

Go(s) =




−1
s+ 2

2
s+ 1

2
s+ 2

7(−s+ 1)
(s+ 1)(s+ 2)


 (25.5.77)

This is a stable but non minimum phase system, with poles at −1, −2 and −2 and
a zero at s = 5.

The target sensitivity function is chosen as

T∗(s) =
9

s2 + 4s+ 9

[
1 0
0 1

]
(25.5.78)

To cast this into the problem formulation outlined above, we next reparameterize
Q(s) to force integration in the feedback loop. We thus use

Q(s) = Go(0)−1 + sQ(s) =
1
15

[−14 8
4 2

]
+ sQ(s) (25.5.79)

and the introduction of a weighting function Ws(s) = I/s. Then, with reference to
(22.6.3) we have that

M(s) =Ws(s)
(
T∗(s)−Go(s)Go(0)−1

)
; and N(s) = Go(s) (25.5.80)
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Thus

M(s) =




−1.46s2 + 1.13s+ 5.8
(s2 + 4s+ 9)(s+ 1)(s+ 2)

0.267
(s+ 1)(s+ 2)

3.73
(s+ 1)(s+ 2)

−0.13s2 + 6.466s+ 17.8
(s2 + 4s+ 9)(s+ 1)(s+ 2)


 (25.5.81)

To solve the problem following the approach presented above, we need to build the
left interactor, ξL(s), for N(s). This interactor is given by ξL(s) = sI leading to

ξL(α)
−1ξL(s+ α)N(s) =

τs+ 1
(s+ 1)(s+ 2)

[−(s+ 1) 2(s+ 2)
2(s+ 1) 7(−s+ 1)

]
(25.5.82)

where τ = α−1 = 0.1.
And, on solving the quadratic problem we get

Q(s) =

[
Q11(s) Q12(s)
Q21(s) Q22(s)

]
s4 + 19s3 + 119s2 + 335s+ 450

(25.5.83)

Q11(s) = 7.11s3 + 83.11s2 + 337.11s+ 328.67
Q12(s) = 3.55s3 + 31.56s2 + 123.56s+ 189.33
Q21(s) = 2.22s3 + 24.00s2 + 100.44s+ 142.67
Q22(s) = 1.11s3 + 12.0s2 + 50.22s+ 71.33

And finally, using (25.5.79) we recover Q(s) as

Q(s) =

[
Q11(s) Q12(s)
Q21(s) Q22(s)

]
s4 + 19s3 + 119s2 + 335s+ 450

(25.5.84)

Q11(s) = 6.18s4 + 65.38s3 + 226.04s2 + 16.00s− 420.00
Q12(s) = 4.09s4 + 41.69s3 + 187.02s2 + 368.00s+ 240.00
Q21(s) = 2.49s4 + 29.07s3 + 132.18s2 + 232.00s+ 120.00
Q22(s) = 1.24s4 + 14.53s3 + 66.09s2 + 116.00s+ 60

The design is tried with unit step references. The results are shown in Figure
25.1.

25.5.6 Q synthesis of decentralized controllers

As a potential application of the MIMO Q parameterization, we consider the design
of a decentralized controller for a plantGo. Say that we are given a full multivariable
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Figure 25.1. Optimal quadratic design. Step reference tracking

solution with complementary sensitivity Ho. Say we choose a particular pairing of
the inputs and outputs which we take to be (u1, y1) . . . (um, ym) without loss of
generality.

Then define the following diagonal nominal model with associated additive error,
Gε(s).

Gd
o(s) = diag[go11(s), . . . , g

o
mm(s)], Gε(s) = Go(s)−Gd

o(s) (25.5.85)

Say that the plant is stable, then we can use the stable Q parameterization of all
decentralized controllers that stabilize Gd

o(s) i.e.

Cd
o(s) = Qd

o [I−Gd
o(s)Q

d
o(s)]

−1 (25.5.86)

where Qd
o(s) and Cd

o(s) are diagonal.
The achieved sensitivity on the full plant is (see equation (25.3.1))

SA(s) = [I−Gd
o(s)Q

d
o(s)][I+Gε(s)Qd

o(s)]
−1 (25.5.87)

We can then design Qd
o(s) by minimizing a measure of the weighted sensitivity

error:

J =
∫ ∞

0

∥∥(I−Ho(s)− SA(s))W(s)
∥∥2
F
dω (25.5.88)

where W(s) = [I+Gε(s)Qd
o(s)] and

∥∥ ∥∥
F
denotes the Fröbenius norm.

We see that J takes the form

J =
∫ ∞

0

∥∥M−NQd
o

∥∥2
F
dω (25.5.89)
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where M(s) = Ho, N(s) = (−HoGε(s) +Go(s)).
However, this is exactly the form of the model matching problem discussed in

section §22.6. Hence we can design Qd
o(s) to bring the achieved sensitivity, SA(s),

close to the target sensitivity, ST(s) − Ho(s), where closeness is measured via
(25.5.88).

A normalized measure of the cost of using decentralized control would then be:

ν =
Jo∫∞

0

∥∥ST(s)W(s)
∥∥2
F
dω

(25.5.90)

where Jo is the minimum value of (25.5.88).

Remark 25.10. In the above example we have implicitly taken stable to mean de-
sirable. If one wishes to restrict the region in which the closed loop poles lie then
one needs to constrain Q as was done in the SISO case.

We next study the Q synthesis problem for open loop unstable systems. Note
that, as in Chapter 15, we take the term unstable open loop poles to also include
undesirable open loop poles, such as resonant modes.

25.6 Affine Parameterization: Unstable MIMO Plants

We consider a LMFD and RMFD for the plant of the form

Go(s) = [GoD(s)]−1GoN(s) = GoN(s)[GoD(s)]−1 (25.6.1)

Note that one such representation can be obtained as in subsection §20.3.4.
In this case, we have that GoN(s),GoD(s),GoN(s) and GoD(s) are given by the
expressions (22.12.16) to (22.12.19).

Observe also that, if Go(s) is unstable, then GoD(s) and GoD(s) will be non
minimum phase. Similarly, if Go(s) is non minimum phase, then so are GoN(s)
and GoN(s).

The following result is the MIMO version of the result described in section §15.7.
Lemma 25.2 (Affine parameterization for unstable MIMO plants). Con-
sider a plant described in MFD as in (25.6.1), where GoN(s),GoD(s), GoN(s) and
GoD(s) are a coprime factorization as in Lemma 20.1, i.e. satisfying


 CD(s) CN(s)

−GN(s) GD(s)




GD(s) −CN(s)

GN(s) CD(s)


 = I (25.6.2)

Then the class of all stabilizing controllers for the nominal plant can be expressed
as
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C(s) = CNΩ(s)[CDΩ(s)]−1 = [CDΩ(s)]−1[CNΩ(s)] (25.6.3)

where

CDΩ(s) = CD(s)−Ω(s)GoN(s) (25.6.4)

CNΩ(s) = CN(s) +Ω(s)GoD(s) (25.6.5)
CDΩ(s) = CD(s)−GoN(s)Ω(s) (25.6.6)
CNΩ(s) = CN(s) +GoD(s)Ω(s) (25.6.7)

where Ω(s) is any stable m×m proper transfer matrix.

Proof

(i) Sufficiency

The resulting four sensitivity functions in this case are

So(s) = (CD(s)−GoN(s)Ω(s))GoD(s) (25.6.8)

To(s) = GoN(s)(CN(s) +Ω(s)GoD(s)) (25.6.9)

Sio(s) = (CD(s)−GoN(s)Ω(s))GoN(s) (25.6.10)

To(s) = GoD(s)(CN(s) +Ω(s)GoD(s)) (25.6.11)

These transfer functions are clearly stable if Ω(s) is stable.

(ii) Necessity

As in Chapter 15 this result follows from the algebraic structure of the problem;
see the references for details.

The controller described above is depicted in Figure 25.2.
From Figure 25.2, if we make the special choice

Ω(s) = CD(s)Ω(s) (25.6.12)

we can represent the system as in Figure 25.3.
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In this case, we have

So(s) = (CD(s)−GoN(s)CD(s)Ω(s))GoD(s)

= (I− [CD(s)]−1GoN(s)CD(s)Ω(s))CD(s)GoD(s)

= (I− [CD(s)]−1(CD(s)GoN(s))Ω(s))CD(s)GoD(s)

= (I−GoN(s)Ω(s))CD(s)GoD(s)
= SΩ(s)SC(s) (25.6.13)

where SC(s) is the sensitivity achieved with the pre-stabilizing controller (see Fig-
ure 25.3 on the page before), and SΩ(s) is the sensitivity function

SΩ(s) = I(s)−GoN(s)Ω(s) (25.6.14)

We recognize SΩ(s) as having the form of (25.2.3) for the stable equivalent plant
GoN(s). Thus the techniques developed earlier in this chapter for Q design in the
stable open loop case can be used to design Ω(s).

Note however, that it is desirable to ensure that SC(s) is sensible, or else this will
negatively interact with the choice of SΩ(s). For example, if SC(s) is not diagonal,
then making SΩ(s) diagonal does not give dynamic decoupling. We take this topic
up in the next chapter.

25.7 State Space Implementation

We have seen in Chapter 15, that there exists a nice state space interpretation to the
class of all stabilizing controllers for the open-loop unstable case. A similar inter-
pretation applies to the MIMO case. This interpretation is particular useful in the
MIMO case since a state space format greatly facilitates design and implementation.

We begin with the transfer function form of the controller shown in Figure 25.3
on the preceding page. We give a state space form for each of the blocks in the
controller as follows:

(i) Stabilizing structure.

This is readily achieved by state estimate feedback. All that is required is
an observer (possibly designed via Kalman filter theory) and stabilizing state
estimate feedback (possibly designed via LQR theory). Thus we write

e(t) = y(t)− r(t) (25.7.1)

˙̂x1(t) = Ax̂1(t) +Bu(t) + J1(e(t)−Cx̂1)−Bue(t) (25.7.2)
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u(t) = −Kx̂1(t) + ue(t) (25.7.3)

In the above expressions, ue(t) corresponds to the inverse Laplace transform
of the quantity Ue(s) in Figure 25.3 on page 819. We have injected ue(t) into
the above equations so as to correctly position CD(s)−1 in the loop. This is
verified on noting that (25.7.2) can be written in transfer function form as:

X̂1(s) = T1(s)U(s) +T2(s)E(s)−T1(s)Ue(s) (25.7.4)

where

T1(s) = (sI−A+ J1C)
−1 B (25.7.5)

T2(s) = (sI−A+ J1C)
−1 J1 (25.7.6)

Then equation (25.7.3) becomes

U(s) = −KT1(s)U(s) −KT2(s)E(s) +KT1(s)Ue(s) + Ue(s) (25.7.7)

This equation has the form:

U(s) = −CD(s)−1CN(s)E(s) +CD(s)−1CD(s)Ue(s) (25.7.8)

= −CD(s)−1CN(s)E(s) + Ue(s) (25.7.9)

where

CD(s) = I+KT1(s) and CN(s) = KT2(s) (25.7.10)

We see that (25.7.9) corresponds to Figure 25.2 on page 819.

(ii) Disturbance estimator

We also know from Chapter 20, that the LMFD in the disturbance block can
be realized by an observer i.e.

˙̂x2(t) = Ax̂2(t) +Bu(t) + J2(e(t)−Cx̂2(t)) (25.7.11)

ξ(t) = −(e(t)−Cx̂2(t)) (25.7.12)

These equations immediately have the form 1

1Note that Ξ(s) = L [ξ(t)]
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Ξ(s) = −GoD(s)E(s) +GoN(s)U(s) (25.7.13)

where

GoD(s) = I−C (sI−A+ J2C)
−1 J2 (25.7.14)

GoN(s) = C (sI−A+ J2C)
−1 B (25.7.15)

We see that (25.7.13) corresponds to the estimate feedforward block in Figure
25.3.

(iii) Design of estimate feedforward block

The block Ω(s) can be designed by inverting GoN(s) where, from (25.7.15)
we see that GoN(s) has state space model

˙̂x
′
(t) = Ax̂′(t) +Bu(t)− J2Cx̂′(t) (25.7.16)

ξ′(t) = Cx̂′(t) (25.7.17)

Introducing a left interactor, this model can be converted to a biproper form:

˙̂x
′′
(t) = Ax̂′′(t) +Bu(t)− JC2x̂

′′(t) (25.7.18)
ξ′′(t) = C′′x̂′′(t) +D′′u(t) (25.7.19)

where D′′ is square and nonsingular. Provided this system is minimum phase,
then we can immediately invert this system by reversing the roles of input and
output.

Note that the controller will be biproper if Ω(s) is bi-proper. This follows since
GoD(s) is biproper.
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25.8 Summary

• The generalization of the affine parameterization for a stable multivariable
model, Go(s), is given by the controller representation

C(s) = [I−Q(s)Go(s)]−1Q(s) = Q(s)[I−Go(s)Q(s)]−1

yielding the nominal sensitivities
To(s) = Go(s)Q(s)
So(s) = I−Go(s)Q(s)
Sio(s) = [I−Go(s)Q(s)]Go(s)
Suo(s) = Q(s)

• The associated achieved sensitivity, when the controller is applied to G(s) is
given by
S(s) = So(s)[I+Gε(s)Q(s)]−1

where Gε(s) = G(s)−Go(s) is the additive modeling error.

• In analogy to the SISO case, key advantages of the affine parameterization
include

◦ explicit stability of the nominal closed loop if and only if Q(s) is stable.

◦ highlighting the fundamental importance of invertibility, i.e. the achiev-
able and achieved properties of Go(s)Q(s) and G(s)Q(s).

◦ Sensitivities that are affine in Q(s); this facilitates criterion-based syn-
thesis, which is particularly attractive for MIMO systems.

• Again in analogy to the SISO case, inversion of stable MIMO systems involves
the two key issues

◦ relative degree; i.e., the structure of zeros at infinity

◦ inverse stability; i.e., the structure of NMP zeros

• Due to directionality, both of these attributes exhibit additional complexity
in the MIMO case

• The structure of zeros at infinity is captured by the left (right) interactor,
ξL(s) (ξR(s)).

• Thus ξL(s)Go(s) is biproper, i.e., its determinant is a non zero bounded
quantity for s → ∞.

• The structure of NMP zeros is captured by the left (right) z-interactor, ψL(s)
(ψR(s)).

• Thus, analytically, ψL(s)Go(s) is a realization of the inversely stable portion
of the model (i.e., the equivalent to the minimum phase factors in the SISO
case).
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• However, the realization ψL(s)Go(s)

◦ is non minimal

◦ generally involves cancellations of unstable pole-zero dynamics (the NMP
zero dynamics of Go(s)).

• Thus, the realization ψL(s)Go(s)

◦ is useful for analyzing the fundamentally achievable properties of the key
quantity Go(s)Q(s), subject to the stability of Q(s)

◦ is generally not suitable for either implementation or inverse implemen-
tation, as it involves unstable pole-zero cancellation.

• A stable inverse suitable for implementation is generated by model matching
which leads to a particular linear quadratic regulator (LQR) problem which
is solvable via Riccati equations.

• If the plant model is unstable, controller design can be carried out in two steps

(i) pre-stabilization, for example via LQR

(ii) detailed design by applying the theory for stable models to the pre-
stabilized system.

• All of the above results can be interpreted equivalently in either a trans-
fer function or a state space framework; for MIMO systems, the state space
framework is particularly attractive for numerical implementation.
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25.10 Problems for the Reader

Problem 25.1. Consider a stable MIMO plant, having a state space model given
by (Ao,Bo,Co,0). Assume that state estimate feedback is used to design the one
d.o.f. controller in IMC form.

Show that the controller Q(s) has a state space realization given by the 4− tuple
(AQ,BQ,CQ,0), where

AQ =


Ao −BoK −JCo

0 Ao − JCo


 ; BQ =


J
J


 ; CQ =

[
K 0

]
(25.10.1)

where J and K are the observer gain and the state feedback gain respectively. (Hint:
Use Lemma 22.3 to obtain a state space model for Q(s) = C(s)[I +Go(s)C(s)]−1.
Then perform a suitable similarity transformation on the state.)

Problem 25.2. Consider a linear plant having a model given by

Go(s) =
1

(s+ 1)3


 (s+ 1)2 (s+ 1)

−2(s+ 1) 1


 (25.10.2)

25.2.1 Find the left interactor matrix, ξL(s), assuming that the loop bandwidth
must be, at least 3[rad/s].

25.2.2 Obtain ΛL(s)
�
= ξL(s)Go(s) and its state space representation.

25.2.3 Obtain Q(s), in the IMC architecture, as defined in (25.4.62) on page 800
(use MATLAB routine minv.m).

25.2.4 Evaluate your design using reference inputs in the frequency band [0, 3][rad/s].

Problem 25.3. A discrete time system is formed from the following continuous
transfer function using a zero order hold and sampling period of 0.1 seconds.

Go(s) =
1

(s+ 1)(s+ 2)


 1 3

−2 1


 (25.10.3)
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25.3.1 Find a simple controller which stabilizes this system.

25.3.2 Parameterize all stabilizing controllers.

Problem 25.4. Consider a continuous time system having nominal model given
by

Go(s) =
1

(s+ 1)(s+ 2)


s+ 4 3

2 1


 (25.10.4)

Find two matrices V(s) and W(s) such that V(s)Go(s)W(s) is stable, biproper
and minimum phase.

Problem 25.5. Consider the same plant model as in the previous example, and
define Λ(s) as

Λ(s) =
1

(s+ 1)3


(α

′)−1(s+ α′)(s+ 1)2 (s+ 1)

−2(s+ 1) (α′)−3(s+ α′)3


 (25.10.5)

where α′ is chosen equal to the value of α in the building of the left interactor. Note
that Λ(s) is a biproper matrix, since det

(
Λ(∞)

)
has a finite nonzero value.

25.5.1 Obtain a state space realization for Λ(s).

25.5.2 Compare Λ(s) and ΛL(s) used in problem 25.2 (use singular values).

25.5.3 Build a control loop with the IMC architecture, choosing Q(s) = [Λ(s)]−1.
Evaluate under the same conditions used in problem 25.2. Compare and
discuss.

Problem 25.6. Consider an unstable MIMO plant having a model given by

Go(s) =
1

(s+ 1)(s+ 2)(s− 1)


4(s+ 1)(s+ 2) (s+ 1)

(s+ 2)(s− 1) 2(s− 1)


 (25.10.6)
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25.6.1 Find a state space model for this plant and determine the gain matrices, K
and J to implement a state estimate feedback scheme. The loop must exhibit
zero steady state errors for constant references and disturbances. The closed
transient should have, at least, the same decay speed as e−4t. Evaluate your
design.

25.6.2 Using the results presented in section §25.6, synthesize Q(s) to implement
a one d.o.f. control loop with similar performance to that obtained with the
design above.

Problem 25.7. Show how you would incorporate integration to the solution for
decentralized control proposed in subsection §25.5.6.



Chapter 26

DECOUPLING

26.1 Preview

An idealized requirement in MIMO control system design is that of decoupling. As
discussed in section §21.6, decoupling can take various forms ranging from static
(where decoupling is only demanded for constant reference signals) up to full dy-
namic decoupling (where decoupling is demanded at all frequencies). Clearly full
dynamic decoupling is a stringent demand. Thus, in practice, it is more usual to
seek dynamic decoupling over some desired bandwidth. If a plant is dynamically
decoupled, then changes in the set-point of one process variable leads to a response
in that process variable but all other process variables remain constant. The ad-
vantages of such a design are intuitively clear; i.e. a temperature may be required
to be changed but it may be undesirable for other variables (e.g. pressure) to suffer
any associated transient.

This chapter describes the design procedures necessary to achieve dynamic de-
coupling. In particular, we discuss

• dynamic decoupling for stable minimum phase systems

• dynamic decoupling for stable non-minimum phase systems

• dynamic decoupling for open loop unstable systems.

As might be expected, full dynamic decoupling is a strong requirement and is
generally not cost free. We will thus also quantify the costs of decoupling using
frequency domain procedures. These allow a designer to assess a priori whether
the cost associated with decoupling is acceptable in a given application.

Of course, some form of decoupling is a very common requirement. For example,
static decoupling is almost always called for. The question then becomes, over what
bandwidth will decoupling (approximately) hold. All forms of decoupling come at
a cost, and this can be evaluated using the techniques presented here. It will turn
out that the additional cost of decoupling is a function of open loop poles and zeros
in the right half plane. Thus, if one is interested in restricting decoupling to some
bandwidth then by restricting attention to those open loop poles and zeros that
fall within this bandwidth one can get a feel for the cost of decoupling over that

829



830 Decoupling Chapter 26

bandwidth. In this sense, the results presented in this chapter are applicable to
almost all MIMO design problems since some form of decoupling over a limited
bandwidth (usually around dc) is almost always required.

We will also examine the impact of actuator saturation on decoupling. In the
case of static decoupling, it is necessary to avoid integrator wind-up. This can be
achieved using methods that are analogous to the SISO case treated in Chapter 11.
In the case of full dynamic decoupling, special precautions are necessary to maintain
decoupling in the face of actuator limits. We show that this is indeed possible by
appropriate use of MIMO anti wind-up mechanisms.

26.2 Stable Systems

We first consider the situation when the open-loop poles of the plant are located in
desirable locations. We will employ the affine parameterization technique described
in Chapter 25 to design a controller that achieves full dynamic decoupling.

26.2.1 Minimum phase case

We refer to the general Q-design procedure outlined in Chapter 25.
To achieve dynamic decoupling, we make the following choice for Q(s)

Q(s) = ξR(s)[ΛR(s)]−1DQ(s) (26.2.1)
ΛR(s) =Go(s)ξR(s) (26.2.2)

DQ(s) = diag
(

1
p1(s)

,
1

p2(s)
, · · · , 1

pm(s)

)
(26.2.3)

where ξR(s) is the right interactor defined in (25.4.3), and p1(s), p2(s), . . . pm(s) are
stable polynomials chosen to make Q(s) proper. Actually, these polynomials can
be shown to have the corresponding column degrees of the left interactor for Go(s).
The polynomials p1(s), p2(s), . . . pm(s) should be chosen to have unit d.c. gain.

We observe that with the above choice, we achieve the following nominal com-
plementary sensitivity:

To(s) = Go(s)Q(s) (26.2.4)

= Go(s)ξR(s)[ΛR(s)]−1DQ(s) (26.2.5)

= Go(s)ξR(s)[Go(s)ξR(s)]
−1DQ(s) (26.2.6)

= diag
(

1
p1(s)

,
1

p2(s)
, · · · , 1

pm(s)

)
(26.2.7)
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We see that this is diagonal, as required. The associated control system structure
would then be as shown in Figure 26.1.

Plant

Go(s)

�R(s)
y(t)u(t)u(t)

[ΛR(s)]−1ũ(t)
DQ(s)

ν(t)

−
+

−

+

Figure 26.1. IMC decoupled control of stable MIMO plants

.

Actually, the above design is not unique. For example, an alternative choice for
Q(s) is

Q(s) = [ΛL(s)]−1ξL(s)DQ(s) (26.2.8)

where DQ(s) is given by (26.2.3).
Note also that DQ(s) can have the more general structure

DQ(s) = diag (t1(s), t2(s), · · · , tm(s)) (26.2.9)

where t1(s), t2(s), . . . tm(s) are proper stable transfer functions having relative de-
grees equal to the corresponding column degrees of the left interactor for Go(s).
The transfer functions t1(s), t2(s), . . . tm(s) should be chosen to have unit d.c. gain.

We illustrate by a simple example.

Example 26.1. Consider a stable 2 × 2 MIMO system having a nominal model
given by

Go(s) =
1

(s+ 1)2(s+ 2)


2(s+ 1) −1

(s+ 1)2 (s+ 1)(s+ 2)


 (26.2.10)

Choose a suitable matrix Q(s) to control this plant, using the affine parame-
terization, in such a way that the MIMO control loop is able to track references
of bandwidths less than, or equal to, 2[rad/s] and 4[rad/s], in channels 1 and 2,
respectively.
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Solution

We will attempt a decoupled design, i.e. to obtain a complementary sensitivity
matrix given by

To(s) = diag(T11(s), T22(s)) (26.2.11)

where T11(s) and T22(s) will be chosen of bandwidths 2[rad/s] and 4[rad/s], in
channels 1 and 2, respectively.

Then, Q(s) must ideally satisfy

Q(s) = [Go(s)]−1To(s). (26.2.12)

We also note that matrix Go(s) is stable and with zeros strictly inside the LHP.
Then the only difficulty to obtain an inverse of Go(s) lies in the need to achieve a
proper (biproper) Q. This may look simple to achieve, since it would suffice to add a
large number of fast, stables poles to T11(s) and T22(s). However, usually having the
relative degrees larger than strictly necessary adds unwanted lag at high frequencies.
We may also be interested to obtain a biproper Q(s) to implement anti wind-up
architectures (see later in the chapter). Here is where interactors play a useful role.
We choose the structure (26.2.8), from where we see that To(s) = DQ(s). Hence,
the relative degrees of T11(s) and T22(s) will be chosen equal to the degrees of the
first and second column of the left interactor for Go(s) respectively.

We then follow section §25.4.1 to compute the left interactor ξL(s). This leads
to

ξL(s) = diag
(
(s+ α)2, (s+ α)

)
; α ∈ R

+ (26.2.13)

Then (26.2.12) can also be written as

Q(s) = [ξL(s)Go(s)]−1ξL(s)To(s). (26.2.14)

Hence, Q(s) is proper if and only if To(s) is chosen so as to make ξL(s)To(s)
proper.

Thus, possible choices for T11(s) and T22(s) are

T11(s) =
4

s2 + 3s+ 4
; and T22(s) =

4(s+ 4)
s2 + 6s+ 16

(26.2.15)

The reader is invited to check that these transfer functions have the required
bandwidths.
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To obtain the final expression for Q(s), we next need to compute [Go(s)]−1,
which is given by

[Go(s)]−1 =
s+ 2
2s+ 5


(s+ 1)(s+ 2) 1

−(s+ 1)2 2(s+ 1)


 (26.2.16)

from where we finally obtain

Q(s) = [Go(s)]−1To(s) =
s+ 2
2s+ 5



4(s+ 1)(s+ 2)
s2 + 3s+ 4

4(s+ 4)
s2 + 6s+ 16

−4(s+ 1)2

s2 + 3s+ 4
8(s+ 4)(s+ 1)
s2 + 6s+ 16


 (26.2.17)

The above design can be tested using SIMULINK file mimo4.mdl.
✷✷✷

The above design procedure is limited to minimum phase systems. In particular
it is clear that Q(s) chosen as in (26.2.1), or as in (26.2.8), is stable if and only
if Go(s) is minimum phase, since [ΛR(s)]−1 and [ΛL(s)]−1 involve an inverse of
Go(s). We therefore need to modify Q(s) so as to ensure stability, when Go(s) is
non minimum phase. A way of doing this is described in the next subsection.

26.2.2 Non-minimum phase case

We will begin with the state space realization for [ΛR(s)]−1, defined by a 4-tuple
(Aλ,Bλ,Cλ,Dλ)1. We will denote by ũ(t) the input to this system. Our objective
is to modify [ΛR(s)]−1 so as to achieve two objectives, namely (i) render the transfer
function stable, whilst (ii) retaining its diagonalizing properties.

To this end, we define the following subsystem which is driven by the ith com-
ponent of ũ(t)

ẋi(t) = Aixi(t) +Biũi(t) (26.2.18)
υi(t) = Cixi(t) +Diũi(t) (26.2.19)

where υi(t) ∈ Rm, ũi(t) ∈ R and where (Ai, Bi,Ci, Di) is a minimal realization of
the transfer function from the ith component of ũ(t) to the complete vector output
u(t). Thus (Ai, Bi,Ci, Di) is a minimal realization of (Aλ,Bλei,Cλ,Dλei), where
ei is the ith column of the m×m identity matrix.

1Note that the NMP zeros of Go(s) are eigenvalues of A�, i.e. A� is assumed unstable here
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We next apply stabilizing state feedback to each of these subsystems, i.e. we
form

ũi(t) = −Kixi(t) + ri(t); i = 1, 2, . . . ,m (26.2.20)

where ri(t) ∈ R. The design of Ki can be done in any convenient fashion, e.g. by
linear quadratic optimization.

Finally we add together the m vectors υ1(t), υ2(t), . . . υm(t) to produce an out-
put, which can be renamed as u(t), i.e.

u(t) =
m∑
i=1

υi(t) (26.2.21)

With the above definitions, we are in position to establish the following result.

Lemma 26.1. a) The transfer function from r(t) = [r1(t) r2(t) . . . rm(t)]T to
u(t) is given by

W(s) = [ΛR(s)]−1Dz(s) (26.2.22)

where

[ΛR(s)]−1 = (Cλ[sI−Aλ]−1Bλ +Dλ) (26.2.23)

Dz(s) = diag
{
[1 +Ki[sI−Ai]−1Bi]−1

}
(26.2.24)

b) ΛR(s)W(s) is a diagonal matrix

c) W(s) has a state space realization as in (26.2.18) to (26.2.21)

Proof

a) From equations (26.2.18)-(26.2.20), the transfer function from r̃i(t) to υi(t) is
given by

Wi(s) = (Ci −DiKi)[sI−Ai +BiKi]−1Bi +Di (26.2.25)

Using the matrix inversion lemma (Lemma 18.2 on page 522) and (26.2.18)-
(26.2.20) we obtain

Wi(s) = (Cλ[sI−Aλ]−1Bλ +Dλ)ei[1 +Ki[sI−Ai]−1Bi]−1 (26.2.26)
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Then, the transfer function from r(t) to u(t), defined in (26.2.21), is given by

W(s) =
m∑
i=1

Wi(s)eTi (26.2.27)

= (Cλ[sI−Aλ]−1Bλ +Dλ) diag
{
[1 +Ki[sI−Ai]−1Bi]−1

}
(26.2.28)

b) Immediate from the definition of [ΛR(s)]−1

c) By construction.

✷✷✷

Returning now to the problem of determining Q(s), we choose

Q(s) = ξR(s)W(s)DQ(s) (26.2.29)

This is equivalent to

Q(s) = ξR(s)[ξR(s)]
−1[Go(s)]−1Dz(s)DQ(s) (26.2.30)

where DQ(s) is as in (26.2.9) (or (26.2.3)) and Dz(s) is as in (26.2.24) and we have
used (26.2.20). Then

Q(s) = [Go(s)]−1Dz(s) diag {t1(s), t2(s), · · · , tm(s)} (26.2.31)

where t1(s), t2(s), . . . , tm(s) are as in (26.2.9). Finally, we see that the resulting
nominal complementary sensitivity is

To(s) = diag
{
[1 +Ki[sI−Ai]−1Bi]−1ti(s)

}
(26.2.32)

Note that any non minimum phase zeros in the plant are retained in To(s),
which is a requirement for internal stability.

The reader will notice that it is implicit in (26.2.32) that some of the NMP
zeros have been duplicated and appear in multiple diagonal elements. At worst,
each NMP zero will appear in every diagonal term. Precisely, how many zeros
will appear in which channel depends on the degree of each minimum realization
involved in the determination of the models in (26.2.18)-(26.2.20). We will not prove
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K1

υ1(t)S1

υm(t)

r̃1

�R

r̃m

r̃ r̃2 u(t)υ2(t)ν(t)

+

x1(t)

+

−

diag {ti(s)}
u(t)

Figure 26.2. Diagonal decoupling MIMO controller (Q(s))

it here, but the NMP zeros appearing in (26.2.32) are diagonalizing invariants and
appear in all possible diagonalized closed loops. Thus, spreading NMP dynamics
into other channels is a trade-off inherently associated with decoupling.

The final implementation of Q(s) is as in Figure 26.2.
In Figure 26.2, S1 denotes the system described, in state space form by the 4-

tuple (A1, B1,C1, D1) as in (26.2.18), (26.2.19). Vector signals have been depicted
with thick lines.

The previous analysis has had the goal of finding a stable inverse which ensures
dynamic decoupling. Of course other structures are possible.

Example 26.2. Consider a plant with nominal model given by

Go(s) =
1

(s+ 1)2

[
s+ 2 −3
−2 1

]
(26.2.33)

This model has a NMP zero at s = 4. Then, to synthesize a controller following
the ideas presented above, we first compute a right interactor matrix which turns out
to have the general form ξR(s) = diag{s+ α, (s + α)2}. For numerical simplicity
we choose α = 1. Then

[ΛR(s)]−1 = [Go(s)ξR(s)]
−1 =

1
s− 4

[
s+ 1 3(s+ 1)
2 s+ 2

]
(26.2.34)

and a state space realization for [ΛR(s)]−1 is

Aλ =
[
4 0
0 4

]
; Bλ = I ; Cλ =

[
5 15
2 6

]
; Dλ =

[
1 3
0 1

]
(26.2.35)

We next compute (Ai, Bi,Ci, Di) as a minimal realization of (Aλ,Bλei,Cλ,Dλei),
for i = 1 and i = 2. This computation yields

A1 = 4 B1 = 1 C1 = [5 2]T D1 = [1 0]T (26.2.36)

A2 = 4 B2 = 1 C2 = [15 6]T D2 = [3 1]T (26.2.37)
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These subsystems can be stabilized by state feedback with gains K1 and K2 re-
spectively. For this case, each gain is chosen to shift the unstable pole at s = 4
to a stable location, say s = −10, which leads to K1 = K2 = 14. Thus, Dz(s) in
(26.2.24) is a 2× 2 diagonal matrix given by

Dz(s) =
s− 4
s+ 10

I (26.2.38)

We finally choose DQ(s) in (26.2.29) to achieve a bandwidth approximately equal
to 3 [rad/s], say

DQ(s) = diag
{ −9(s+ 10)
4(s2 + 4s+ 9)

−90
4(s2 + 4s+ 9)

}
(26.2.39)

Note that the elements t1(s) and t2(s) in DQ(s) have been chosen of relative
degree equal to the corresponding column degrees of the interactor ξR(s). Also their
d.c. gains have been chosen to yield unit d.c. gain in the complementary sensitivity
To(s), leading to

To(s) = diag
{ −9(s− 4)
4(s2 + 4s+ 9)

−90(s− 4)
4(s+ 10)(s2 + 4s+ 9)

}
(26.2.40)

26.3 Pre and post Diagonalization

The transfer function matrix Q(s) presented in (26.2.29) is actually a right diago-
nalizing compensator for a stable (but not necessarily minimum phase) plant. This
can be seen on noting that (as in (26.2.32)),

Go(s)ΠR(s) = diag
{
[1 +Ki[sI−Ai]−1Bi]−1ti(s)

}
(26.3.1)

where

ΠR(s) = Q(s)
= ξR(s)W(s)DQ(s) (26.3.2)

We will find later that it is sometimes also desirable to have a left diagonalizing
compensator. We could derive such a compensator from first principles. However,
a simple way is to first form

Go(s) = GT
o (s) (26.3.3)

We then find a right diagonalizing compensator ΠR(s) for Go(s) using the
method outlined above. We then let ΠL(s) = ΠR(s)T , which has the following
property.
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ΠL(s)Go(s) = Π
T

R(s)Go(s)T = [Go(s)ΠR(s)]T (26.3.4)

which is a diagonal matrix by construction.

Example 26.3. Consider the same plant as in Example 26.2 on page 836. Then

ΠR(s) = ξR(s)W(s)DQ(s) =
−9(s+ 1)2

4(s2 + 4s+ 9)(s+ 10)

[
s+ 10 120
s+ 10 40(s+ 2)

]
(26.3.5)

If we repeat the procedure in Example 26.2, but this time for GT
o (s), we have that

[ΛR(s)]−1 = [GT
o (s)ξR(s)]

−1 =
1

s− 4

[
s+ 1 2(s+ 1)
3 s+ 2

]
(26.3.6)

and, in this case, a state space realization for [ΛR(s)]−1 is

Aλ =
[
4 0
0 4

]
; Bλ =

[
2 0
0 4

]
; Cλ =

[
2.5 2.5
1.5 1.5

]
; Dλ =

[
1 2
0 1

]
(26.3.7)

Then the minimal realization (Ai, Bi,Ci, Di) for (Aλ,Bλei,Cλ,Dλei), for i =
1 and i = 2 are

A1 = 4 B1 = 2 C1 = [2.5 1.5]T D1 = [1 0]T (26.3.8)

A2 = 4 B2 = 4 C2 = [2.5 1.5]T D2 = [2 1]T (26.3.9)

These subsystems can be stabilized by state feedback with gains K1 and K2 re-
spectively. We make the same choice as in Example 26.2, i.e. we shift the unstable
pole at s = 4 to a stable location, say s = −10, which is achieved with K1 = 7 and
K2 = 3.5. Thus, Dz(s) is a 2× 2 diagonal matrix given by

Dz(s) =
s− 4
s+ 10

I (26.3.10)

DQ(s) is chosen as (26.2.39), to achieve the same bandwidth of 3 [rad/s]. This
finally yields

ΠL(s) =ΠT
R(s) =

−9(s+ 1)2

4(s2 + 4s+ 9)(s+ 10)

[
s+ 10 2(s+ 10)
30 10(s+ 2)

]
(26.3.11)
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26.4 Unstable Systems

We next turn to the problem of designing a decoupling controller for an unstable
MIMO plant. Here we have an additional complexity since some minimal feedback
is necessary to ensure stability. To gain insight into this problem, we will present
four alternative design choices:

(i) a two degree of freedom design based on pre-filtering the reference,

(ii) a two degree of freedom design using the affine parameterization,

(iii) a design based on one degree of freedom state feedback, and

(iv) a design integrating both state feedback and the affine parameterization.

26.4.1 Two degree of freedom design based on pre-filtering the
reference

If one requires full dynamic decoupling for reference signal changes only, then this
can be readily achieved by first stabilizing the system using some suitable con-
troller C(s) and then using pre-filtering of the reference signal. The essential idea
is illustrated in Figure 26.3.

r(t)
H(s) C(s)

+

−
Plant

Prefilter

y(t)

Figure 26.3. Prefilter design for full dynamic decoupling

Say that the plant has transfer function Go(s), then the closed loop transfer
function linking R(s) to Y (s) in Figure 26.3 is

Gcl(s) =
[
I+Go(s)C(s)

]−1
Go(s)C(s)H(s) (26.4.1)

To achieve decoupling one then only need to chooseH(s) as a right diagonalizing
pre-compensator for the stable transfer function

[
I+Go(s)C(s)

]−1
Go(s)C(s). We

illustrate by an example.

Example 26.4. Consider the plant

Go(s) = GoN(s)[GoD(s)]−1 (26.4.2)

where
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GoN(s) =
[−5 s2

1 −0.0023
]
; GoD(s) =

[
25s+ 1 0

0 s(s+ 1)2

]
(26.4.3)

(i) Convert to state space form and evaluate the zeros.

(ii) Design a pre-stabilizing controller to give static decoupling for reference sig-
nals.

(iii) Design a prefilter to give full dynamic decoupling for reference signals.

Solution

(i)

If we compute det(GoN(s)) we find that this is a non-minimum phase system with
zeros at s = ±0.1072. We wish to design a controller which achieves dynamic
decoupling. We proceed in a number of steps.

Step 1. State space model

The state space model for the system is

ẋp(t) = Aoxp(t) +Bou(t) (26.4.4)
y(t) = Coxp(t) +Dou(t) (26.4.5)

where

Ao =



−0.04 0 0 0
0 −2 −1 0
0 1 0 0
0 0 1 0


 Bo =



1 0
0 1
0 0
0 0


 (26.4.6)

Co =
[−0.2 1 0 0
0.04 0 0 −0.0023

]
Do = 0 (26.4.7)

(ii)

We will design a stabilizing controller using the architecture shown in Figure 26.4
We design an observer for the state xp(t) given the output y(t). This design

uses Kalman filter theory with Q = BoBo
T and R = 0.05I2×2

The optimal observer gains turn out to be

J =



−3.9272 1.3644
2.6120 0.1221
−0.6379 0.1368
−2.7266 −4.6461


 (26.4.8)
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Figure 26.4. Optimal quadratic design with integral action

We wish to have zero steady state errors in the face of step input disturbances.
We therefore follow the procedure of section §22.13 and introduce an integrator with
transfer function I/s at the output of the system (after the comparator). That is we
add 2

ż(t) = −y(t) = −Coxp(t) (26.4.9)

We can now define a composite state vector x(t) = [xTp (t) zT (t)]T leading to the
composite model

ẋ(t) = Ax(t) +Bu(t) (26.4.10)

where

A =
[
Ao 0
−Co 0

]
; B =

[
Bo

0

]
(26.4.11)

We next consider the composite system and design a state controller via LQR
theory.

We choose

Ψ =


Co

TCo 0 0
0 0.005 0
0 0 0.1


 ; Φ = 2I2×2 (26.4.12)

2For simplicity we consider the reference r(t) to be equal to 0 here.
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leading to the feedback gain K = [K1 K2], where

K1 =
[
0.1807 −0.0177 0.1011 −0.0016
−0.0177 0.1496 0.0877 0.0294

]
; K2 =

[
0.0412 −0.1264
0.0283 0.1844

]
(26.4.13)

This leads to the equivalent closed loop shown in Figure 26.5 (where we have
ignored the observer dynamics since these disappear in steady state).

u(t) +−
y(t)

1

s
I

−K2

r(t)

Co(sI−Ao +BoK1)
−1Bo

Figure 26.5. Equivalent closed loop (ignoring the observer dynamics)

The resulting closed loop responses, for unit step references, are shown in Figure
26.6, where r1(t) = µ(t − 1) and r2(t) = −µ(t − 501). Note that, as expected, the
system is statically decoupled but significant coupling occurs during transients,
especially following the step in the second reference.
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Figure 26.6. Statically decoupled control.
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(iii)

The closed loop has transfer function

To(s) = (I+ G̃(s))−1G̃(s) (26.4.14)

where

G̃(s) = Co(sI−Ao +BoK1)−1BoK2
1
s

(26.4.15)

This is a stable proper transfer function. Note, however, that this is non-
minimum phase since the original plant was non-minimum phase.

We use the techniques of subsection §26.2.2 to design an inverse that retains dy-
namic decoupling in the presence of non-minimum phase zeros. To use those tech-
niques the equivalent plant is the closed loop system with transfer function (26.4.14)
and with state space model given by the 4-tuple (Ae,Be,Ce,0), where

Ae =
[
Ao −BoK1 BoK2

−Co 0

]
; Be =

[
0 I
]T ; Ce =

[
Co 0

]
(26.4.16)

An interactor for this closed loop system is

ξL(s) =
[
(s+ α)2 0

0 (s+ α)2

]
; α = 0.03

This leads to an augmented system having state space model (A′
e,B

′
e,C

′
e,D

′
e)

with

A′
e = Ae

B′
e = Be

C′
e = α2Ce + 2αCeAe +CeAe

2

D′
e = CeAeBe

The exact inverse then has state space model (Aλ,Bλ,Cλ,Dλ) where

Aλ = A′
e −B′

e[D
′
e]

−1C′
e

Bλ = B′
e[D

′
e]

−1C′
e

Cλ = −[D′
e]

−1C′
e

Dλ = [D′
e]

−1

We now form the two subsystems as in subsection §26.2.2. We form a min-
imal realization of these two systems which we denote by (A1,B1,C1,D1) and
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(A2,B2,C2,D2). We determine stabilizing feedback for these two systems using
LQR theory with

Ψ1 = C1
TC1 Φ1 = 106

Ψ2 = C2
TC2 Φ2 = 107

We then implement the precompensator as in Figure 26.2 where we choose

t1(s) = α2 1−K1[A1]−1B1

(s+ α)2

t2(s) = α2 1−K2[A2]−1B2

(s+ α)2

where K1, K2 now represent the stabilizing gains for the two subsystems as in
subsection §26.2.2.

The resulting closed loop responses for step references are shown in Figure 26.7,
where r1(t) = µ(t− 1) and r2(t) = −µ(t− 501). Note that, as expected, the system
is now fully decoupled from the reference to the output response.
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Figure 26.7. Dynamically decoupled control.

✷✷✷

26.4.2 Two degree of freedom design based on the affine param-
eterization

Here we present an alternative two degree of freedom decoupling design using the
ideas of Chapter 25.
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We first recall the affine parameterization of all stabilizing controllers for a not
necessarily stable system given in Lemma 25.2 on page 817. This representation is
redrawn in Figure 26.8.

+

+

+

+

+

Ω(s)

GoD(s)GoN(s)

R(s)

CN(s)

CD(s)
−1 Plant

Stabilizing

Y (s)

−

structure

Figure 26.8. Q parameterization for MIMO unstable plants

Next consider the arrangement in Figure 26.9 which incorporates two degrees of
freedom.

Plant

GoN(s)

Ω(s)

+ −

CD(s)−1CN(s)

GoD(s)Γ(s)

+

+

+r(t)

GoN(s)Γ(s)

−
+

Y (s)

GoD(s)

r(t)

+

Figure 26.9. Q parameterization with two d.o.f for unstable MIMO plants

It can readily be shown that the nominal transfer function from r(t) to y(t) is
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given by

Hcl(s) = GoN(s)Γ(s) (26.4.17)

Hence, we simply need to choose Γ(s) as a stable right diagonalizing compensator
for the special stable plant GoN(s). This can be done as in section §26.2 and section
§26.3. Note that this will give independent design of the reference to output transfer
function (determined by Γ(s)) from the disturbance sensitivities (determined by
Ω(s)).

26.4.3 One degree of freedom design using state feedback

The design methods presented in subsections §26.4.1 and §26.4.2 achieve diagonal
decoupling for reference signals only since they are based on two d.o.f. architectures.

In this subsection we will show how the pre-stabilizing loop can be designed
(when this is possible!) to achieve a diagonal nominal sensitivity. We aim to achieve
dynamic decoupling for both reference signals and output disturbances.

We first express the plant by a LMFD–RMFD pair as follows

G(s) = [GoD(s)]−1GoN(s) = GoN(s)[GoD(s)]−1 (26.4.18)

We then use the following steps

Step 1. We first use the methods of section §26.3, to find stable pre and post
compensators ΠL(s) and ΠR(s) such that

GoN(s)ΠR(s) = D1(s) and ΠL(s)GoD(s) = D2(s) (26.4.19)

where D1(s) and D2(s) are diagonal.

By designGoN(s) andGoD(s) are stable, but not necessarily minimum phase.
We thus recognize this sub-problem as the problem of finding stable, pre and
post diagonalizing compensators for stable transfer matrices. This is precisely
the problem solved in section §26.3.
Now if it were possible to choose

CN(s) =ΠR(s) and ΠL(s) = CD(s) (26.4.20)

and it were true that Lemma 20.1 on page 598 held, then we would have
achieved diagonal To(s) and So(s) as required. The difficult is that solutions
to (26.4.19), in general, will not satisfy Lemma 20.1 on page 598. We thus
cannot use (26.4.20) directly but instead proceed as follows
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Step 2. We solve the following equation (if possible), for stable diagonal D̃1(s)
and D̃2(s) such that

D1(s)D̃1(s) + D̃2(s)D2(s) = I (26.4.21)

where D1(s)and D2(s) are as in (26.4.19).

Notice that (26.4.21) is a set of m independent scalar Bezout identities. We
know that this is solvable if and only if the numerators of the corresponding
diagonal terms in D1(s) and D2(s) have no common unstable factors.

It has been shown (see references at the end of the chapter), that this is
actually a necessary and sufficient condition for the existence of a one d.o.f.
diagonalizing controller. Hence, if there is no stable diagonal solution to
(26.4.21), then decoupling, in a one d.o.f. architecture, is not possible by
any method! Actually D1(s) and D2(s) are commonly called the diagonal
structures for the numerator GoN(s) and denominator GoD(s) respectively.
Having unstable common modes in these structures implies that one d.o.f.
decoupling would necessarily lead to unstable pole-zero cancellations, which
is not permissible. We thus assume the contrary and proceed to step 3.

Step 3. We build the controller C(s) in a RMFD form as

C(s) = CN(s)[CD(s)]−1

where

CN(s) = GoD(s)CN(s)[GoD(s)]−1

CD(s) = D̃2(s)ΠL(s)

together with

CN(s) = ΠR(s)D̃1(s) (26.4.22)

We then have the following result

Lemma 26.2. The above controller, if it can be constructed, ensures that

(i) The feedback loop is stable, i.e.

GoD(s)CD(s) +GoN(s)CN(s) = I

(ii) The nominal sensitivity is diagonal, i.e.

So(s) = CD(s)GoD(s) is diagonal
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(iii) An alternative LMFD for C(s) is

C(s) = [CD(s)]−1CN(s)

where CN(s) is as in (26.4.22) and

CD(s) = [I−CN(s)GoN(s)][GoD(s)]−1

Proof

(i)

GoD(s)CD(s) +GoN(s)CN(s) = GoD(s)D̃2(s)ΠL(s)

+GoN(s)GoD(s)CN(s)[GoD(s)]−1 = (GoD(s)D̃2(s)ΠL(s)GoD(s) +

GoN(s)GoD(s)ΠR(s)D̃1(s))[GoD(s)]−1

= (GoD(s)D̃2(s)D2(s) +GoD(s)GoN(s)ΠR(s)D̃1(s))[GoD(s)]−1

= (GoD(s)D̃2(s)D2(s) +GoD(s)D1(s)D̃1(s))[GoD(s)]−1

=GoD(s)(D̃2(s)D2(s) +D1(s)D̃1(s))[GoD(s)]−1 = I (26.4.23)

(ii)

So(s) = CD(s)[GoD(s)CD(s) +GoN(s)CN(s)]−1GoD(s)

= CD(s)GoD(s) using part (i)

= D̃2(s)ΠL(s)GoD(s) = D̃2(s)D2(s) (26.4.24)

which is diagonal.
✷✷✷

The reader is warned that although the above procedure is correct, it is numeri-
cally sensitive since we needs to perform the unstable pole-zero cancellation implicit
in (26.4.24) exactly. Hence, in practice, one may prefer the two-degree-of-freedom
designs presented earlier.

26.5 Zeros of Decoupled and Partially Decoupled Systems

We have seen above that NMP zeros and unstable poles significantly affect the ease
with which decoupling can be achieved. Indeed, the analysis above suggests that a
single RHP zero or pole may need to be dealt with in multiple loops if decoupling
is a design requirement. We illustrate this below by a different argument. Consider
a plant having nominal model Go(s). Assume that this model has a NMP zero
located at s = zo, with direction hT = [h1 h2 . . . hm], i.e.,
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hTGo(zo) = 0 (26.5.1)

Let us assume that a controller C(s) is designed to achieve dynamic decoupling,
i.e., to obtain diagonal sensitivity matrices. This means that the open transfer
function matrix M(s)

�
= Go(s)C(s) must also be diagonal, i.e.,

M(s) = diag(M11(s),M22(s), . . . ,Mmm(s)) (26.5.2)

then

hTM(zo) =
[
h1M11(zo) h2M11(zo) . . . hmM11(zo)

]
= 0 (26.5.3)

Thus, we must have that hiMii(zo) = 0, for i = 1, 2, ...,m. This implies that
Mii(zo) = 0 for all i such that the corresponding component hi is nonzero.

A similar situation arises with unstable poles. In that case we consider the
direction g associated with an unstable pole ηo. We recall that ηo is an unstable
pole if there exists a nonzero vector g = [g1 g2 . . . gm]T such that, when Go(s) is
expressed in LMFD, Go(s) = [GoD(s)]−1GoN(s), then

GoD(ηo)g = 0 =⇒ [Go(ηo)]−1g = 0 (26.5.4)

Dynamic decoupling implies that [M(s)]−1 must also be diagonal. Thus

[M(zo)]−1g = [(M11(zo))−1g1 (M11(zo))−1g2 . . . (Mmm(zo))−1gm]T = 0 (26.5.5)

Thus, we must have that (Mii(zo))−1gi = 0, for i = 1, 2, ...,m. This implies that
Mii(zo) = 0 for every i such that the corresponding component gi is nonzero.

To obtain a more complete understanding of this phenomenon we have the fol-
lowing example, where for simplicity, we only address the issue of NMP zeros.

Example 26.5. Consider a plant having the nominal model

Go(s) =
1

(s+ 1)(s+ 2)

[
s+ 1 2
1 1

]
(26.5.6)

This plant has a zero at s = zo = 1, with geometric multiplicity µz = 1 and
correspondingly left direction hT = [1 − 2].

Assume that we aim to have a decoupled MIMO control loop, i.e, with a diagonal
complementary sensitivity matrix. Then, the open loop transfer function matrix
M(s) = Go(s)C(s) must also be diagonal, i.e.
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Go(s)C(s) =
[
M11(s) 0

0 M22(s)

]
(26.5.7)

giving

To(s) =




M11(s)
1 +M11(s)

0

0
M22(s)

1 +M22(s)


 (26.5.8)

From (26.5.7), the controller must satisfy

C(s) = [Go(s)]−1

[
M11(s) 0

0 M22(s)

]
(26.5.9)

The inverse of the plant model is given by

[Go(s)]−1 =
(s+ 1)(s+ 2)

(s− 1)

[
1 −2
−1 s+ 1

]
(26.5.10)

This confirms the presence of a NMP zero located at s = 1.
Then, using (26.5.10) in (26.5.9) we obtain

C(s) =
(s+ 1)(s+ 2)

(s− 1)

[
M11(s) −2M22(s)
−M11(s) (s+ 1)M22(s)

]
(26.5.11)

It is straightforward to show, using (20.4.8), that the control sensitivity matrix,
Suo(s) is given by

Suo(s) = [Go(s)]−1




M11(s)
1 +M11(s)

0

0
M22(s)

1 +M22(s)


 (26.5.12)

from where it follows that the loop will not be internally stable unless both M11(s)
and M22(s) vanish at s = zo.

We then see that the NMP zero must appear in both channels to avoid instability.
Consider next a modified model given by

Go(s) =
1

(s+ 1)(s+ 2)

[−s+ 1 −s+ 1
2 1

]
(26.5.13)
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We note that this plant also has a NMP zero, located at s = zo = 1. To get the
same open loop transfer function as in (26.5.7), the controller should now be chosen
as

C(s) =
(s+ 1)(s+ 2)

(s− 1)

[
M11(s) (−s+ 1)M22(s)
2M11(s) (−s+ 1)M22(s)

]
(26.5.14)

Then, the stability of the loop can be achieved without requiring that M22(s)
vanishes at s = zo. However, it is necessary that M11(s) vanishes at s = zo.

We observe that the direction associated with the NMP zero in this case is hT =
[1 0].

We next investigate whether there is something to be gained, by not forcing
dynamic decoupling. We will consider the original plant having the model given in
(26.5.6). We choose to have an upper triangular sensitivity matrix, i.e. the open
loop transfer function matrix is required to have the form:

Go(s)C(s) =
[
M11(s) M12(s)

0 M22(s)

]
(26.5.15)

and

To(s) =




M11(s)
1 +M11(s)

M12(s)
(1 +M11(s))(1 +M22(s))

0
M22(s)

1 +M22(s)


 (26.5.16)

Then the required controller has the form

C(s) =
(s+ 1)(s+ 2)

(s− 1)

[
M11(s) M12(s)− 2M22(s)
−M11(s) −M12(s) + (s+ 1)M22(s)

]
(26.5.17)

and

Suo(s) =
(s+ 1)(s+ 2)

s− 1




M11(s)
1 +M11(s)

M12(s)− 2M22(s)(1 +M11(s))
(1 +M11(s))(1 +M22(s))

− M11(s)
1 +M11(s)

−M12(s) + (s+ 1)M22(s)(1 +M11(s))
(1 +M11(s))(1 +M22(s))




(26.5.18)

We then conclude that to achieve closed loop stability, we must have that M11(s)
vanishes at s = 1, i.e. the NMP zero must appear in channel 1. We also need that



852 Decoupling Chapter 26

[M12(s)− 2M22(s)]s=1 = 0 (26.5.19)

[−M12(s) + (s+ 1)M22(s)]s=1 = 0 (26.5.20)

i.e. it is not necessary that the NMP zero appears also in channel 2. Instead, we
can choose the coupling term M12(s) in such a way that (26.5.19) and (26.5.20) are
satisfied. The reader is encouraged to investigate why both conditions are always
simultaneously satisfied.

It is evident that had we chosen a lower triangular coupling structure, then the
NMP zero would have appeared in channel 2, but not necessarily in channel 1.

This example confirms that a single NMP zero may be transferred to more than
one channel when full dynamic decoupling is enforced. The specific way in which
this happens depends on the direction associated with that zero.

This situation, which may also occur with unstable poles, yields additional per-
formance trade-offs, given the unavoidable trade-offs which arise from the presence
of NMP zeros and unstable poles.

The example also confirms the conclusions that triangular decoupling may im-
prove the overall design trade-offs, compared to that which apply with full dynamic
decoupling.

✷✷✷

26.6 Frequency Domain Constraints for Dynamically Decoupled
Systems

Further insight into the multivariable nature of frequency domain constraints can
be obtained by examining the impact of decoupling on sensitivity trade-offs as in
Chapter 24. In particular, we suggest that the reader revise Theorem 24.2 on
page 759.

Consider a MIMO control loop where So(s) and consequently, To(s), are diag-
onal stable matrices. We first have that

Lemma 26.3. Consider a MIMO plant with a NMP zero at s = zo = γ+ jδ , with
associated directions hT1 , h

T
2 . . . hTµz .

Assume, is addition, So(s) is diagonal, then for any value of r such that hir �= 0,

∫ ∞

−∞
ln|[So(jω)]rr|dΩ(zo, ω) = 0; for r ∈ ∇′

i (26.6.1)

Proof

Since the loop is decoupled we have that [So(s)]kr = 0 for all k ∈ {1, 2, . . . ,m},
except for k = r. This implies that
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hTi [So(jω)]∗r = hir[So(jω)]rr (26.6.2)

On using this property in equation (24.8.6) of Theorem 24.2 on page 759 we obtain

1
π

∫ ∞

−∞
ln|hir [So(jω)]rr|dΩ(zo, ω) = ln(|hir|)

π

∫ ∞

−∞
dΩ(zo, ω)

+
1
π

∫ ∞

−∞
ln |[So(jω)]rr|dΩ(zo, ω) ≥ ln(|hir |) (26.6.3)

Then, the result follows on using(24.8.7).
✷✷✷

Corollary 26.1. Under the same hypothesis of Lemma 26.3, if the MIMO loop is
decoupled (diagonal sensitivity matrix) and the design specification is |[So(jω)]rr| ≤
εrr � 1 for ω ∈ [0, ωr], then

||[So(jω)]rr||∞ ≥
(

1
εrr

) ψ(ωr)
π−ψ(ωr)

(26.6.4)

Proof

As in equation (24.9.2) of section §24.9 and using (26.6.1) where ψ(ωr) is as in
(24.9.3).

✷✷✷

We also have the following corresponding result for the complementary sensitiv-
ity function.

Lemma 26.4. Consider a MIMO system with an unstable pole located at s = ηo =
α+jβ and having associated directions g1, . . . , gµp. Assume, in addition, that To(s)
is diagonal, then for any value of r such that gir �= 0,

∫ ∞

−∞
ln|[To(jω)]rr|dΩ(ηo, ω) = 0; for r ∈ ∇i (26.6.5)

Proof

Since the loop is decoupled we have that [To(s)]rk = 0 for all k ∈ {1, 2, . . . ,m},
except for k = r. This implies that

[To(jω)]r∗gi = gir[To(jω)]rr (26.6.6)
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On using this property in equation (24.7.6) of Theorem 24.1 on page 757 we obtain

1
π

∫ ∞

−∞
ln|gir[To(jω)]rr|dΩ(ηo, ω) = ln(|gir|)

π

∫ ∞

−∞
dΩ(ηo, ω)

+
1
π

∫ ∞

−∞
ln |[To(jω)]rr|dΩ(ηo, ω) ≥ ln(|gir|) (26.6.7)

Then, the result follows on using(24.7.7).
✷✷✷

26.7 The Cost of Decoupling

We can now investigate the cost of dynamic decoupling,by comparing the results
in Chapter 24 (namely Lemma 24.4 on page 760) with those in corollary 26.1. To
make the analysis more insightful, we assume that the geometric multiplicity µz of
the zero is 1, i.e. there is only one left direction, h1, associated with the particular
zero.

We first assume that h1 has more than one element different from zero, i.e. the
cardinality of∇′

1 is larger than one. We then compare equations (24.8.8) (applicable
to a loop with interaction) and (26.6.1) (applicable to a dynamically decoupled
MIMO loop). In the first equation, we see that the right hand side of the inequality
may be negative, for certain combinations of non zero off diagonal sensitivities.
Thus, it is feasible to use off diagonal sensitivities to reduce the lower bound on the
diagonal sensitivity peak. This can be interpreted as a two dimensional sensitivity
trade off, since it involves a spatial as well as a frequency dimension.

A similar analysis can be carried out regarding equations (24.9.2) and (26.6.4).
We then observe that in (24.9.2), the lower bound on ||[So(jω)]rr||∞ can be made
smaller by proper selection of the off diagonal sensitivity specifications. Thus the
sensitivity constraint arising from (24.9.2) can be made softer than that in (26.6.4),
which corresponds to the decoupled case.

The conclusion from the above analysis is that it is less restrictive, from the
point of view of design trade-offs and constraints, to have an interacting MIMO
control loop compared to a dynamically decoupled one. However, it is a significant
fact that to draw these conclusions we relied on the fact that h1 had more than
one nonzero element. If that is not the case, i.e. if only h1r �= 0 (the corresponding
direction is canonical), then there is no additional trade-off imposed by requiring a
decoupled closed loop.

When h1 has only one nonzero element, h1r �= 0, it means that the rth sensitivity
column is zero, i.e. [So]∗r(zo) = 0, and the remaining columns of So(zo) are linearly
independent. The zero is then associated only with the rth input, ur(t). On the
contrary, if h1 has more than one nonzero element, then the zero is associated with
a combination of inputs.

The other simplification in the above analysis was that, Go(s) is a full rank
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m×m matrix, and Go(zo) is of rank m− 1, i.e. the null space associated with the
zero at s = zo is of dimension µz = 1. When this constraint is lifted, we might have
the favorable situation that the directions hT1 , h

T
2 , . . . , h

T
µz can be chosen in such a

way that every one of these directions has only one nonzero element. This suggests
that there would be no cost in dynamic decoupling.

We illustrate the above analysis with the following example:

Example 26.6. Consider the following MIMO system

Go(s) =




1− s

(s+ 1)2
s+ 3

(s+ 1)(s+ 2)

1− s

(s+ 1)(s+ 2)
s+ 4

(s+ 2)2


 =GoN(s)[GoD(s)]−1I (26.7.1)

where

GoN(s) =
[

(1− s)(s+ 2)2 (s+ 1)(s+ 2)(s+ 3)
(1 − s)(s+ 2)(s+ 3) (s+ 1)2(s+ 4)

]
(26.7.2)

GoD(s) = (s+ 1)2(s+ 2)2 (26.7.3)

(i) Determine the location of RHP zeros and their directions.

(ii) Evaluate the integral constraints on sensitivity that apply without enforcing
dynamic decoupling and obtain bounds on the sensitivity peak.

(iii) Evaluate the integral constraints on sensitivity that apply if dynamic decoupling
is required and obtain bounds on the sensitivity peak.

(iv) Compare the bounds obtained in parts (ii) and (iii).

Solution

(i) The zeros of the plant are the roots of det(GoN(s)), i.e. the roots of −s6 −
11s5 − 43s4 − 63s3 + 74s+ 44. Only one of these roots, that located at s = 1,
lies in the RHP. Thus zo = 1, and

dΩ(zo, ω) =
1

1 + ω2
dω (26.7.4)

We then compute Go(1) as

Go(1) =

[
0 2

3

0 5
9

]
(26.7.5)
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from where it can be seen that the dimension of the null space is µz = 1 and
the (only) associated (left) direction is hT = [5 − 6]. Clearly this vector has
two nonzero elements, so we could expect that there will be additional design
trade-offs arising from decoupling.

(ii) Applying Theorem 24.2 on page 759 part (ii) for r = 1 and r = 2 we obtain
respectively

1
π

∫ ∞

∞
ln |5[So(jω)]11 − 6[So(jω)]21| 1

1 + ω2
dω ≥ ln(5) (26.7.6)

1
π

∫ ∞

∞
ln |5[So(jω)]12 − 6[So(jω)]22| 1

1 + ω2
dω ≥ ln(6) (26.7.7)

If we impose design requirements, as in Lemma 24.4 on page 760, we have,
for the interacting MIMO loop, that

‖[So]11‖∞ +
6
5
‖[So]21‖∞ ≥

(
1

ε11 + 6
5ε21

) ψ(ωc)
π−ψ(ωc)

(26.7.8)

‖[So]22‖∞ +
5
6
‖[So]12‖∞ ≥

(
1

ε22 + 5
6ε21

) ψ(ωc)
π−ψ(ωc)

(26.7.9)

(iii) If we require dynamic decoupling, expressions (26.7.6)and (26.7.7) simplify,
respectively to

1
π

∫ ∞

∞
ln |[So(jω)]11| 1

1 + ω2
dω ≥ 0 (26.7.10)

1
π

∫ ∞

∞
ln |[So(jω)]22| 1

1 + ω2
dω ≥ 0 (26.7.11)

And, with dynamic decoupling, (26.7.8) and (26.7.9), simplify to

‖[So]11‖∞ ≥
(

1
ε11

) ψ(ωc)
π−ψ(ωc)

(26.7.12)

‖[So]22‖∞ ≥
(

1
ε22

) ψ(ωc)
π−ψ(ωc)

(26.7.13)
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(iv) To quantify the relationship between the magnitude of the bounds, in the cou-
pled and the decoupled situations, we use an indicator κ1d, formed as the
quotient between the right hand sides of inequalities (26.7.8) and (26.7.12) ,
i.e.

κ1d
�
=
(
1 +

6
5
λ1ε

)− ψ(ωc)
π−ψ(ωc)

where λ1ε
�
=

ε21
ε11

(26.7.14)

Thus, λ1ε is a relative measure of interaction in the direction from channel 1
to channel 2.

The issues discussed above are captured in graphical form in Figure 26.10.
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Figure 26.10. Cost of decoupling in terms of sensitivity peak lower bounds

In Figure 26.10 we show a family of curves, each corresponding to a different
bandwidth ωc. Each curve represents, for the specified bandwidth, the ratio between
the bounds for the sensitivity peaks, as a function of the decoupling indicator, λ1ε.
We can summarize our main observations, as follows

a) When λ1ε is very small, there is virtually no effect of channel 1 into channel 2
(at least in the frequency band [0, ωc]), then the bounds are very close (κ1d ≈
1).

b) As λ1ε increases, we are allowing the off diagonal sensitivity to become larger
than the diagonal sensitivity in [0, ωc]. The effect of this manifests itself in
κ1d < 1, i.e. in bounds for the sensitivity peak which are smaller than for the
decoupled situation.

c) If we keep λ1ε fixed, and we increase the bandwidth, then the advantages of
using a coupled system also grow.
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Also note that the left hand sides of (26.7.8) and (26.7.12) are different. In
particular, (26.7.8) can be written as

‖[So]11‖∞ ≥
(

1
ε11 + 6

5ε21

) ψ(ωc)
π−ψ(ωc) − 6

5
‖[So]21‖∞

≥
(

1
ε11 + 6

5ε21

) ψ(ωc)
π−ψ(ωc) − 6

5
ε21

(26.7.15)

✷✷✷

We see from the above example, that decoupling can be relatively cost free
depending upon the bandwidth over which one requires that the closed loop system
operates. This is in accord with intuition since zeros only become significant when
one pushes the bandwidth beyond their locations.

26.8 Input Saturation

Finally we explore the impact that input saturation has on linear controllers which
enforce decoupling. We will also develop anti-windup mechanisms which preserve
decoupling in the face of saturation using methods which are the MIMO equivalent
of the SISO anti-windup methods of Chapter 11.

We assume that our plant is modeled as a square system with input u(t) ∈
R
m and output y(t) ∈ R

m. We also assume that the plant input is subject to
saturation3. Then, if u(i)(t) corresponds to the plant input in the ith channel,
i = 1, 2, . . . ,m, the saturation is described by

u(i)(t) = Sat〈û(i)(t)〉 �
=




u
(i)
max if û(i)(t) > u

(i)
max,

û(i)(t) if u(i)
min ≤ û(i)(t) ≤ u

(i)
max,

u
(i)
min if û(i)(t) < u

(i)
min.

(26.8.1)

For simplicity of notation, we further assume that the linear region is symmet-
rical with respect to the origin, i.e. |u(i)

min| = |u(i)
max| = u

(i)
sat, for i = 1, 2, . . . ,m. We

will describe the saturation levels by usat ∈ Rm, where

usat
�
=
[
u

(1)
sat u

(2)
sat . . . u

(m)
sat

]T
(26.8.2)

The essential problem, as in Chapter 11, with input constraints is that the
control signal can wind-up during periods of saturation.

3A similar analysis can be developed for input slew limitations.
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26.9 MIMO Anti Wind-Up Mechanism

In Chapter 11 the wind-up problems were dealt with using a particular implemen-
tation of the controller. This idea can be easily extended to the MIMO case as
follows.

Assume that the controller transfer function matrix, C(s), is biproper, i.e.

lim
s→∞C(s) = C∞ (26.9.1)

where C∞ is nonsingular. The multivariable version of the anti-windup scheme of
Figure 11.6 on page 296 is as shown in Figure 26.11.

v(t)

element
NonlinearC1

[C(s)]−1 − [C1]−1

+ −

e(t) û(t) u(t)

Figure 26.11. Anti wind-up controller implementation. MIMO case

In the scalar case, we found that the nonlinear element in Figure 26.11 could be
thought of in many different ways, e.g. a simple saturation or as a reference gov-
ernor. However, for SISO problems, all these procedures turn out to be equivalent.
In the MIMO case, subtle issues arise due to the way that the desired control, û(t),
is projected into the allowable region. We will explore three possibilities:

(i) simple saturation
(ii) input scaling
(iii) error scaling

(i)

Input saturation is the direct analog of the scalar case and simply requires that
(26.8.1) be inserted into as the nonlinear element in Figure 26.11.

(ii)

Input scaling. Here compensation is achieved by scaling down the controller out-
put vector û(t) to a new vector, βû(t), every time that one (or more) component
of û(t) exceeds its corresponding saturation level. The scaling factor, β, is chosen
in such a way that u(t) = βû(t), i.e. the controller is forced to come back just to
the linear operation zone. This idea is schematically shown in Figure 26.12.
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Sat〈◦〉e(t) u(t)

−+

h〈◦〉
βI

usat

[C(s)]−1 − [C∞]−1

C∞

abs〈◦〉

û(t) βû(t)

−+

Figure 26.12. Scheme to implement the scaling of controller outputs

(iii)

Error scaling. The third scheme is built by scaling the error vector down to bring
the loop just into the linear region. We refer to Figure 26.13.

Note that û can only be changed instantaneously by modifying w2, since w1(t)
is generated through a strictly proper transfer function. Hence, the scaling of the
error is equivalent to bring w2 to a value such that û is just inside the linear region.

Sat〈◦〉e(t)
û(t)

+

−
αI

u(t)

[C(s)]−1 − [C∞]−1

C∞

abs〈◦〉

−+

usat

w2(t) = αe(t)

w1(t)

f〈◦〉

Figure 26.13. Implementation of anti wind-up via error scaling

In Figure 26.13, the block f〈◦〉 denotes a function which generates the scal-
ing factor 0 < α < 1. We observe that the block with transfer function matrix
[C(s)]−1 − C∞ is strictly proper, so that any change in the error vector e(t) will
translate immediately into a change in the vector û(t). Instead of introducing abrupt
changes in e(t) (and thus in û(t)), a gentler strategy can be used. An example of
this strategy is to generate α as the output of a first order dynamic system with
unit D.C. gain, time constant τ and initial condition α(0) = 1. The input to this
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υ(t) is generated as follows

(i) At the time instant when one (or more) of the components of û(t) hits a
saturation limit, set υ(t) = 0, where α(t) decreases towards 0 at a speed
controlled by τ .

(ii) As soon as all components of û(t) are in the linear region, set υ(t) = 1. Then
α(t) grows towards 1 at a speed also determined by τ .

The three techniques discussed above can be summarized in the following graph,
which illustrates the case m = 2.

u
(1)
sat

u(2)

û
us

uu

w1

ue

u(1)

w2

Figure 26.14. Effect of different techniques to deal with saturation in MIMO
systems

In Figure 26.14 we have that

û : raw control signal

us : control signal which results from directly saturating u(1)

uu : control signal obtained with the scaled control technique (as in Figure 26.12)
ue : control signal obtained with the scaled error technique (as in Figure 26.13)

(26.9.2)

Remark 26.1. From Figure 26.14 it is evident that when w1 lies outside the linear
region, then there may be no scaling of the error which brings the control back to
the linear region and, at the same time, preserves directionality. In this case, one
can revert to one of the other strategies, e.g. simple saturation.

Remark 26.2. Note that error scaling is equivalent to introducing a non linear
controller gain, and none of the above schemes guarantees that the control loop will
be stable. In particular, when the plant is open loop unstable, saturation of the
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plant input may drive the plant states to values from where it may be impossible to
recapture them with the limited control magnitude available

We will illustrate the above ideas by a simple example.

Example 26.7. Consider a MIMO process having a nominal model given by

Go(s) =
1

(s2 + 2s+ 4)

[−s+ 2 2s+ 1
−3 −s+ 2

]
with det(Go(s)) =

s2 + 2s+ 7
(s2 + 2s+ 4)2

(26.9.3)

For this plant carry out the following

(a) Design a dynamically decoupling controller to achieve a closed loop bandwidth
of approximately 3 [rad/s]

(b) Examine what happens if the controller output in the first channel saturates
at ±2.5.

(c) Explore the effectiveness of the three anti wind-up procedures outlined above.

Solution

(a)

Note that this model is stable and minimum phase. Therefore dynamic decoupling
is possible without significant difficulties.

We are required to design a controller to achieve a closed loop bandwidth of
around 3[rad/s]. Denote by M(s) the (diagonal) open loop transfer function, i.e.
Go(s)C(s) = M(s). We need to choose M(s) of minimum relative degree, in such
a way that the controller is biproper. We choose

C(s) = [ξL(s)Go(s)]−1ξL(s)M(s) = [ξL(s)Go(s)]−1ξL(s)
[
M1(s) 0
0 M2(s)

]
(26.9.4)

where ξL(s) is the left interactor for Go(s), see section §25.4.1. We then observe
that M(s) must be chosen in such a way that

lim
s→∞ ξL(s)M(s) = KM (26.9.5)

with KM a bounded nonsingular matrix.
Using the procedure explained in subsection §25.4.1, we find that

ξL(s) =
[
s 0
0 s

]
(26.9.6)
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Thus, the relative degree of M1(s) and M2(s) must be 1 to obtain a biproper
controller, i.e. to satisfy (26.9.1). We also require integration in both channels to
ensure zero steady state error for constant references and disturbances. Say, we
choose

M(s) =
2(s+ 2)
s(s+ 1)

I2 ⇐⇒ To(s) =
2(s+ 2)

s2 + 3s+ 4
I2 (26.9.7)

This leads to the following controller

C(s) =
2(s+ 2)(s2 + 2s+ 4)
s(s+ 1)(s2 + 2s+ 7)

[−s+ 2 −2s− 1
3 −s+ 2

]
(26.9.8)

The design is evaluated assuming that step references are applied at both channels
but at different times. We choose

r(t) =
[
µ(t− 1) 1.5µ(t− 10

]T (26.9.9)

We first run a simulation assuming that there is no input saturation. The results
are shown in Figure 26.15. Observe that full dynamic decoupling has indeed been
achieved.
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Figure 26.15. Decoupled design in the absence of saturation

(b)

We run a second simulation including saturation for the controller output in the
first channel, at symmetrical levels ±2.5. The results are shown in Figure 26.16.
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Figure 26.16. Linear decoupled design. Saturation in channel 1, at ±2.5.

Clearly the results are very poor. This is due to wind-up effects in the con-
troller which have not been compensated. We therefore next explore anti wind-up
procedures.

(c)

We examine the three anti windup procedures described above.

(i) Basic saturation The results of simply putting a saturation element into the
nonlinear element of Figure 26.11 on page 859 are shown in Figure 26.17. It
can be seen that this is unsatisfactory – indeed the results are similar to those
seen in part (b) where no anti-windup mechanism was used.

(ii) Input scaling When the idea shown in Figure 26.12 is applied to our example,
the control output u1(t) is automatically adjusted, as shown in Figure 26.18.
In this figure u1(t) and η(t) are depicted. Note that 0 < β < 1, over the time
interval when the control signal û1(t) is beyond the saturation bound (in this
example, −2.5).
However, a rather disappointing result is observed regarding the plant outputs.
They are shown in Figure 26.19. The SIMULINK schematic can be found in
file mmawu.mdl.

The results shown in Figure 26.19 show a slight improvement over those ob-
tained using the pure anti wind-up mechanism (i).

(iii) Error scaling When the error scaling strategy is applied to our example we
obtain the results shown in Figure 26.20.
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Figure 26.17. Decoupled linear design with saturation in channel 1 and anti
wind-up scheme (i)
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Figure 26.18. Controller output (channel 1) using control scaling
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Figure 26.19. Plant outputs using control scaling
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Figure 26.20. Plant outputs using scaled errors

In the case shown in Figure 26.20, a value of 0.1 was chosen for τ . The results
are remarkably better than those produced by the rest of the strategies treated so
far. The SIMULINK schematic can be found in file mmawe.mdl. Actually,
full dynamic decoupling is essentially retained here – the small coupling evident
in Figure 26.20 is due to the implementation of the error scaling via a (fast)
dynamical system.

✷✷✷

In the above example we found that the anti wind-up mechanism incorporating
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error scaling proved the most effective. Indeed, it was shown that it preserved full
dynamic decoupling for reference signal changes. We have tested the idea on many
other problems and fount it to give excellent result in almost all cases.

Further ideas on MIMO saturating actuators are explored in the references at
the end of the chapter.

26.10 Summary

• Recall that key closed loop specifications shared by SISO and MIMO design
include

◦ continued compensation of disturbances

◦ continued compensation of model uncertainty

◦ stabilization of open-loop unstable systems

whilst not

◦ becoming too sensitive to measurement noise

◦ generating excessive control signals

and accepting inherent limitations due to

◦ unstable zeros

◦ unstable poles

◦ modeling error

◦ frequency and time domain integral constraints

• Generally, MIMO systems also exhibit additional complexities due to

◦ directionality (several inputs acting on one output)

◦ dispersion (one input acting on several outputs)

◦ and the resulting phenomenon of coupling

• Designing a controller for closed loop compensation of this MIMO coupling
phenomenon is called decoupling.

• Recall that there are different degrees of decoupling, including

◦ static (i.e., To(0) is diagonal)

◦ triangular (i.e., To(s) is triangular)

◦ dynamic (i.e., To(s) is diagonal)

• Due to the fundamental law of So(s) +To(s) = I, if To exhibits any of these
decoupling properties, so does So.
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• The severity and type of trade-offs associated with decoupling depend on

◦ whether the system is minimum phase

◦ the directionality and cardinality of non-minimum phase zeros

◦ unstable poles.

• If all of a systems unstable zeros are canonical (their directionality affects
one output only), then their adverse effect is not spread to other channels by
decoupling provided that the direction of decoupling is congruent with the
direction of the unstable zeros.

• The price for dynamically decoupling a system with non-canonical non-minimum
phase zeros of simple multiplicity is that

◦ the effect of the non-minimum phase zeros is potentially spread across
several loops

◦ therefore, although the loops are decoupled, each of the affected loops
needs to observe the bandwidth and sensitivity limitations imposed by
the unstable zero dynamics.

• If one accepts the less stringent triangular decoupling, the effect of dispersing
limitations due to non-minimum phase zeros can be minimized.

• Depending on the case, a higher cardinality of non-minimum phase zeros can
either enforce or mitigate the adverse effects.

• If a system is also open-loop unstable, there may not be any way at all for
achieving full dynamic decoupling by a one d.o.f. controller although it is
always possible by a two d.o.f. architecture for reference signal changes.

• If a system is essentially linear but exhibits actuator nonlinearities such as
input or slew rate saturations, then the controller design must reflect this
appropriately.

• Otherwise, the MIMO generalization of the SISO wind-up phenomenon may
occur.

• MIMO wind-up manifests itself in two aspects of performance degradation:

◦ transients due to growing controller states

◦ transients due to the nonlinearity impacting on directionality

• The first of these two phenomenon . . .

. . . is in analogy to the SISO case
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. . . is due to the saturated control signal not being able to annihilate the con-
trol errors sufficiently fast compared to the controller dynamics; therefore
the control states continue to grow in response to the non-decreasing
control. These wound up states produce the transients when the loop
emerges from saturation.

. . . can be compensated by a direct generalization of the SISO anti wind-up
implementation.

• The second phenomenon . . .

. . . is specific to MIMO systems

. . . is due to uncompensated interactions arising from the input vector loosing
its original design direction.

• In analogy to the SISO case, there can be regions in state space, from which an
open loop unstable MIMO system with input saturation cannot be stabilized
by any control.

• More severely than in the SISO case, MIMO systems are difficult to control in
the presence of input saturation, even if the linear loop is stable and the con-
troller is implemented with anti wind-up. This is due to saturation changing
the directionality of the input vector.

• This problem of preserving decoupling in the presence of input saturation can
be addressed by anti wind-up schemes that scale the control error rather than
the control signal.
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26.12 Problems for the Reader

Problem 26.1. A discrete time MIMO system has a nominal model with transfer
function Gq(z), where

Gq(z) =
1

(z − 0.7)(z − 0.9)

[
z − a −0.5
0.5 z

]
(26.12.1)

26.1.1 For a = 1, build a decoupled loop such that the closed loop poles are located
inside the circle with radius 0.4.

26.1.2 Repeat for a = 2.

Problem 26.2. Consider a stable MIMO plant having nominal transfer function
Go(s).

26.2.1 If Go(s) is minimum phase, discuss the feasibility to design a controller
such that the input sensitivity Sio(s) is diagonal.

26.2.2 Repeat your analysis for the case when Go(s) is non-minimum phase.

Problem 26.3. Consider a MIMO system having a model given by

Go(s) =
2

(s+ 1)2(s+ 2)


2(−s+ 3) 0.5(−s+ 3) (−s+α)
0.5(s+ 1) −β −(s+ 2)

−1 0.5 2.5


 (26.12.2)

with α = −2 and β = 1. It is desired to achieve dynamic decoupling.

26.3.1 Is it possible without spreading the non minimum phase zeros in to the three
channels?

26.3.2 If α = 3 and β = −1, are your conclusions still valid?

Problem 26.4. Consider again the plant of problem 26.3.

26.4.1 Repeat problem 26.3, but aiming for a triangular (lower and upper) design.

26.4.2 Discuss the issue of dynamic decoupling cost when β = −1 and α has an
uncertain value around α = 3. (This is a hard problem.)
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Problem 26.5. Consider a process with a nominal model given by

Go(s) =
1

(s+ 1)(s+ 2)

[
2 −1
0.5 s+ 2

]
(26.12.3)

Design a Q − controller to achieve dynamic decoupling and zero steady state
error for constant references and step disturbances.

Problem 26.6. Discuss the difficulties of achieving dynamic decoupling for input
disturbances for stable although not necessarily minimum phase plants.

Problem 26.7. Consider a plant with the same nominal model as in problem 26.5.
Design a digital controller assuming that the sampling rate is ∆ = 0.1[s].



Name Index

Ahlen, A., 473
Anderson, B., 295, 579
Antsaklis, P., 687
Araki, M, 294
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De Doná, J., 473
De Souza, C., 580
Dendle, D., 257
Descusse, J., 687
Desoer, C., 348, 531, 642, 686
Diaz-Bobillo, I., 614
Dion, J., 687
Distefano, J., 78
Doeblin, E., 24
Doetsch, G., 77
Dorato, P., 427
Dorf, R., 24
Doyle, J., 227, 256, 347, 348, 403, 426,

427, 531, 532, 579, 580, 614,
642

Edwards, J., 614
Edwards, W., 257
Elsley, G., 24
Emami–Naeini, A., 24
Evans, W., 171

Falb, P., 532, 579, 642, 687

873



874 Name Index

Feuer, A., 99, 100, 294, 295, 473, 531,
687

Fortmann, T., 227
Francis, B., 227, 256, 294, 347, 381,

403, 426, 427
Franklin, G., 24, 294
Freudenberg, J., 403, 404, 613
Fuller, A., 24

Garcia, C., 473
Gevers, M., 428, 580
Gilbert, E., 135, 473, 687
Glover, K., 348, 426, 427, 531, 532,

579, 580, 614, 642
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Fröbenius norm, 666
function space methods, 575
fundamental frequency, 85
Fundamental Laws of Trade-Off

frequency domain, 258
MIMO, 773
SISO, 231

gain margin, 143
Green

theorem, 766

Hamiltonian matrix, 790
hold-up effect, 278
H2 optimization, 456
hybrid systems, 45

IMP, 185, 265
impulse response, 74



Subject Index 879

impulse sampler, 336
independence of the path, 763
initial conditions, 126

discrete systems, 325
inner-outer factorization, 459
innovation process, 519
input saturation, 201
instability, 36
integral action, 410

in the plant, 268
integral effect, 208
integral operator, 559
integrating systems

PID control, 434
interaction

MIMO system, 587
interactor matrix

left, 786
right, 786

Internal Model Principle, 267, 691
MIMO, 745
state space approach, 533

internal stability
nominal, 128

interpolation constraints, 428
intersample behavior, 389
intersample response, 353, 365
inverse

approximate, 32
restricted, 32

inverse response, 219
inversion, 26, 29, 405
Inverted pendulum, 771
inverted pendulum, 254

Kalman filter, 673
extended, 569
stochastic approach, 673

Laplace transform, 66
region of convergence, 67

Leibnitz rule, 49
linear quadratic filter, 673
linear quadratic regulator, 659

linearization, 52
LQR, 659

matrix fraction description, 591, 758
left, 759
right, 759

Matrix inversion lemma, 518
matrix norm

induced spectral, 607
matrix transfer function, 590
McMillan degree, 757
measurement, 35

requirements, 36
responsiveness, 37

measurement noise, 37
MIMO control loop

anti wind-up, 853
disturbance compensation, 610
Nyquist theory, 604
robust stability, 616
robustness, 616
saturation
error scaling, 854

stability, 601
steady state, 605, 745
time domain constraints, 747
tracking, 609
triangular coupling, 800
zeros and decoupling, 842

MIMO system
achieved sensitivity, 785
approximate inverse, 793
basic control loop, 599
directionality, 611
NMP zeros, 795
pole polynomial, 757
poles, 757
properness in, 785
relative degree, 785
Smith-McMillan form, 753
transmission zeros, 596
zero geometric multiplicity, 596
zero left direction, 596
zero polynomial, 757



880 Subject Index

zero right direction, 596
zeros, 757

minimal prototype, 362
minimal realization, 504
minimum phase, 76
model, 30, 42

basic principles, 44
calibration, 43
error, 43
input-output, 50
linearized, 52
nominal, 43
small signal, 54
state space, 45
structures, 45

model matching problem, 665
model predictive control, 303
modeling

black box approach, 44
phenomenological approach, 44

modeling errors, 50, 99, 204
additive, 51
in unstable systems, 101
missing pole, 101
missing resonance, 102
multiplicative, 51
time delay, 101

natural frequencies, 487
natural frequency

damped, 78
undamped, 78

noise, 200
non minimum phase, 77
non-minimum phase zeros

constraints due to, 247
in MIMO systems, 746

nonlinear plants
observer, 569

nonlinear system
inversion, 556
relative degree, 557

nonlinear systems
stability, 573

nonlinearity
dynamic, 556
input, 556
non-smooth, 571
smooth, 568

Nyquist
in MIMO control loops, 604
path, 140
modified, 141

plot, 140
stability theorem, 141

observability, 499
canonical form, 502

observable subspace, 501
observer, 519

disturbance estimation, 534
MIMO systems, 672
nonlinear, 569
unbiased, 528

observer states
uncontrollability, 530

open loop, 34
open loop control, 34
operating point, 52
operator, 29

identity, 576
invertible, 576
minimum phase, 576
stable, 576
unstable, 576

optimal regulator
discrete time, 668

optimality principle, 656
optimization

quadratic, 656
output equation, 484
overshoot, 212

and slow zeros, 84

Parseval’s theorem, 96
PBH test, 505
pH neutralization, 561
phase margin, 143



Subject Index 881

PID controller, 177
classic, 157
derivative mode, 158
derivative time, 158
empirical tuning, 160
integral mode, 158
model based, 416, 430
modes, 157
pole placement, 185
proportional band, 158
proportional mode, 158
reset time, 158
series form, 158
standard form, 158
tuning
Ziegler-Nichols methods, 160

plant, 29
dynamics, 45
input, 29
output, 29

Poisson integral, 775
Poisson summation formula, 393
Poisson-Jensen formula, 239
pole assignment, 177

polynomial approach, 177
state feedback, 517

pole placement, 180
pole zero cancellation, 183

implementation, 429
in PID design, 420
unstable, 128, 182, 514

poles
dominant, 80
fast, 79
MIMO, 757
slow, 80

polynomial
nominal characteristic, 125

polynomial matrices, 753
column proper, 754
coprime, 754
equivalent, 753
rank, 754
row proper, 754

Smith form, 754
postdiagonalization, 831
prediagonalization, 831
principal directions, 609
principal gains, 606, 608
process reaction curve, 164
pulse transfer function, 337

Q synthesis, 405
H2 optimal, 456
controller properness, 410

quadruple tank, 632, 749

reachability, 489
canonical decomposition, 493
test, 491

reachable subspace, 495
reconstruction, 319
reference, 29

feedforward, 269
generating polynomial, 265

reference filter, 123
relative gain array, 631
repetitive control, 372
resonant systems

PID control, 420
response

forced, 86
natural, 86

RGA, 631, 632
Riccati equation

continuous time dynamic, 661
discrete time algebraic, 670
discrete time dynamic, 669
dynamic
solution, 789

ringing, 326, 366
rlocus, 138
rltool, 138
robustness, 44, 204

and IMC control, 452
performance, 149

roll eccentricity, 698
rolling mill, 225, 268



882 Subject Index

flatness control, 702
rolling mill control, 698
root locus, 134

sampling zeros, 354, 366
satellite tracking, 692
saturation, 31, 221, 368, 852

in MIMO systems, 852
input, 571

sensitivity
algebraic constraints, 207
complementary, 125
control, 125
functions, 125
input, 125
interpolation constraints, 207, 208

sensitivity peak, 143, 249, 253
sensor

limitations, 200
sensor response, 201
sensors, 200
separation theory, 524
shaping filter, 410

for nonlinear systems, 556
shift operator, 320
singular values, 607

maximum, 608
properties, 608

slew rate
limitation, 202, 294

slew rate limitation, 223
Smith canonical form, 754
Smith controller, 425
Smith-McMillan canonical form, 753
split control, 770
stability, 73

critical, 141
internal, 127, 434
relative, 143
robust, 145

stability boundary, 74
stabilizable plant, 495
stable transformation, 31
state

observer, 519
state equation, 484
state estimate, 519

nonlinear, 559
optimal, 539

state estimation, 519
error, 525

state feedback, 515
MIMO systems, 653
optimal, 538

state saturation, 294
state space, 483

controllability canonical form, 495
controller canonical form, 496
observer canonical form, 502
similarity transformation, 484

state variables, 45
statically decoupled systems, 639
steady state errors, 265, 410

constant inputs, 410
sine wave inputs, 411

step response, 74
stochastic system, 673
sugar mill case, 758
Summary

Chapter 1, 18
Chapter 2, 37
Chapter 3, 58
Chapter 4, 103
Chapter 12, 343
Chapter 17, 508
Chapter 5, 150
Chapter 6, 172
Chapter 7, 188, 540
Chapter 8, 230
Chapter 13, 379, 394
Chapter 15, 445
Chapter 10, 284
Chapter 9, 257
Chapter 16, 476
Chapter 19, 304, 577
Chapter 20, 618
Chapter 21, 644
Chapter 22, 705



Subject Index 883

Chapter 24, 773
Chapter 25, 816
Chapter 26, 861

Sylvester matrix, 180
Sylvester’s theorem, 179
system zeros, 353

time constant, 78
time delay, 31

all pass approximation, 99
constraints due to, 252
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